Devoir surveillé Analyse : dualité et convergence 4 Novembre 2016 10:00 - 12:30

Lesquelles des applications linéaires suivantes sont continues?

- a) $R: \ell_1 \to \mathbb{C}$ défini par $R(x_n) := \sum_{n=1}^{\infty} \frac{x_n}{n}$. b) $S: \ell_2 \to \mathbb{C}$ défini par $S(x_n) := \sum_{n=1}^{\infty} \frac{x_n}{n}$.
- c) $T:(c_{00},\|\cdot\|_{\infty})\to\mathbb{C}$ défini par $T(x_n):=\sum_{n=1}^{\infty}\frac{x_n}{n}$.

Justifier vos réponses. Il n'est pas demandé de déterminer la norme d'opérateur, le cas échéant.

Montrer que $\|\varphi\| := \int |\varphi(x)| dx$ est une norme sur $X := \mathcal{C}([0,\pi])$.

- a) Existe il un $C_1 > 0$ tel que pour tout $f \in X$, $|||f||| \le C_1 ||f||_{\infty}$?
- b) Existe il un $C_2 > 0$ tel que pour tout $f \in X$, $||f||_{\infty} \leq C_2 |||f|||_{\infty}$?

Exercice 3 Soit A une matrice réelle $n \times n$ qu'on identifie avec l'application linéaire $x \mapsto Ax$. On munit $X = \mathbb{R}^n$ avec la norme sup.

- a) Exprimer la norme d'opérateur $||A||_{\mathscr{L}(X)}$ avec les coefficients (a_{ij}) . b) Supposons que pour tout $i=1\ldots n, \sum_{j=1}^n |a_{ij}|<1$. Montrer que le système linéaire x-Ax=b, d'inconnue $x\in X$ admet une solution pour tout $b\in X$.

On munit \mathbb{R}^d d'une norme $\|.\|$ quelconque. Soit $f: \mathbb{R}^d \to \mathbb{R}^d$ une fonction continue. On dit que f est propre si pour tout compact K de \mathbb{R}^d , $f^{-1}(K)$ est compact.

a) Soit $(y_n)_{n\geq 0}$ une suite dans \mathbb{R}^d qui converge vers y. Montrer que

$$K := \{y_n : n \ge 0\} \cup \{y\}$$

est compact.

- b) On suppose que f est propre. Montrer que l'image par f d'un fermé est un fermé.
- c) Montrer que f est propre si et seulement si $\lim_{\|x\|\to+\infty} \|f(x)\| = +\infty$.

Le but de cet exercice est de rechercher des fonctions u intégrables telles que, pour tout $x \in \mathbb{R}$,

$$u(x) = e^{-|x|} + \beta \int_{\mathbb{R}} e^{-|x-s|} u(s) ds,$$

où β est un réel strictement positif.

- (a) Pour a > 0, calculer la transformation de Fourier de $f(x) = e^{-a|x|}$.
- (b) Écrire cette équation sous forme d'une équation faisant intervenir un produit de convolution.
- (c) En utilisant la transformée de Fourier, prouver qu'il existe une solution si et seulement si $\beta \in (0, 1/2)$. Montrer qu'alors cette solution est unique. La déterminer.

Soit $X := \mathcal{C}(\mathbb{R})$ l'espace vectoriel des fonctions continues sur \mathbb{R} . Pour $f \in \mathcal{C}(\mathbb{R})$, soit $p_n(f) := \max\{|f(x)| : |x| \le n\}$. Pour $f, g \in \mathcal{C}(\mathbb{R})$ posons

$$d(f,g) := \sum_{n=0}^{\infty} 2^{-n} \frac{p_n(f-g)}{1 + p_n(f-g)}$$

- a) Montrer que l'application $x\mapsto \frac{x}{1+x}$ (pour $x\geq 0$) est croissante. b) Déduire que d est une distance sur $\mathcal{C}(\mathbb{R})$.
- c) Montrer que $f_n \xrightarrow{d} f$ si et seulement si $p_m(f_n f) \longrightarrow 0$ pour tout $m \in \mathbb{N}^*$. Indications: " \Rightarrow ": contraposé. " \Leftarrow " couper la série en deux sommes portant sur $\{n < N\}$ et sur $\{n > N\}$ respectivement.
- d) Montrer que (X, d) est complet.