

Année Universitaire 2015 / 2016 DEUXIÈME SESSION

Sciences et technologies

Licence 2, analyse 3 Durée: 3h00

Documents: non autorisés

La calculatrice homologuée est le seul matériel électronique autorisé.

Pour les questions à choix multiples, il une ou plusieurs réponses sont correctes. Toute proposition justement cochée donnera +1 point, toute proposition non cochée donnera zero points et toute proposition cochée par erreur donnera -1 points. La somme des points par question à choix multiples ne pouvant être négative, elle sera compté comme nulle si le nombre d'erreurs dépasse

le nombre de réponses correctes. Il est donc vivement déconseillé de cocher "au hasard" sans être sûr de la réponse. Le nombre de points obtenus est ensuite pondéré avec le barème indiqué. Version B Numéro d'anonymat Question 1 (Barème indicatif: 1.5 points) A l'aide d'un changement de variables, étudier la convergence de l'intégrale impropre $\int_{0}^{\infty} \sin(e^x) dx$. (Barème indicatif: 1.5 points) Montrer que $\int_{-\infty}^{0} \sin(e^x) dx$ converge comme intégrale Question 2 impropre.

	Numéro d'anonymat				
Question 3	(Barème indicatif: 1 point) Quelle est la valeur de la série $\sum_{n=0}^{\infty} \frac{3^{n+1}}{4^n}$				
	□ 1 □ 7		☐ 4 ☐ la série diverge		
Question 4 nécessaireme $\square \sum_{n=1}^{\infty} \frac{1}{n^p}$	nt vraies? converge	p > 1. I	Lesquelles des assertions suivantes sont		
$ \Box \sum_{n=1}^{n-1} \frac{1}{n^p} $ $ \Box \sum_{n=1}^{\infty} \frac{1}{n^{p-1}} $	$\frac{1}{1}$ converge				
	ī diverge				
Question 5 telle que $\sum_{n=1}^{\infty} a_n$ votre raisonne	a_n et $\sum_{n=1}^{\infty} \frac{1}{a_n}$ convergent	simultanément?	suite réelle $(a_n)_{n\in\mathbb{N}}$, à termes non nuls, Si oui, en expliciter une, si non, justifier		
Question 6 $\square \sum_{n=1}^{\infty} \frac{n}{n+1}$ $\square \sum_{n=1}^{\infty} \frac{n}{n(n+1)}$ $\square \sum_{n=1}^{\infty} \frac{1}{n+1}$ Usetified bridge	$\frac{\overline{2}}{2}$ $\frac{1}{2}$	ts) Lesquelles des	séries suivantes convergent?		
Justifier brièv	ement vos réponses.				

1	Numéro d'anonyma	ıt		
Question 7 ($\square \sum_{n=1}^{\infty} (-1)^n$		oints) Lesquelles des	séries suivantes co	onvergent?
	$\frac{n+2}{n(n+2)}$			
	$\frac{1}{n+2}$			
	nent vos réponses.			
Question 8 () elles simultanén	nent	-		eux séries convergent-
	$\sum_{i=1}^{\infty} \frac{(i)^{2}}{i}$	$\frac{-1)^{kn}}{n}$ et	$\sum_{k=0}^{\infty} \left(\frac{k}{4}\right)^n$	
	$ \begin{array}{c} $		n=1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3
	\Box 4	\Box 5		3
Question 9	Barème indicatif: 1 po	int) Donner un exem	nple d'une série en	tière $\sum_{n=0}^{\infty} a_n x^n$ qui con-
verge pour tout	$x \in \mathbb{R}$ et telle que a_n	$n \neq 0$ pour tout $n \in \mathbb{N}$	$\mathbb{N}.$	n=0
Question 10 de convergence		<i>points)</i> Lesquelles d	les séries entières s	uivantes ont un rayon
			\Box $\sum_{n=1}^{\infty}$	$\sum_{n=1}^{\infty} n^2 \cdot x^n$
		$\sum_{n=1}^{n=1}$		-1
	n=	1	11-1	

Numéro d'anonymat
Question 11 (Barème indicatif: $0.5 + 1 + 1$ points) Soit $f_n(x) = \frac{1}{1+x^n}$. Déterminer, si elle existe, pour $x > 0$ la limite simple $f(x) = \lim_{n \to \infty} f_n(x)$.
La convergence de f_n vers f est elle uniforme sur $[a,b]$ pour tout $0 < a < b < 1$? uniforme sur $[a,b]$ pour tout $1 < a < b < \infty$?
\square uniforme sur \mathbb{R}_+^* ?
Justifier la réponse brièvement .
Question 12 (Barème indicatif: 1 point) Sous quelles conditions la série $g(x) = \sum_{n=1}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$ converge-t-elle nécessairement? (donner une seule réponse, s.v.p)
\square Pour tout x tel que $-3 \le x < -1$. \square Pour tout x tel que $-3 \le x \le -1$.
\square Pour tout x tel que $-1 \le x \le 1$.
Question 13 (Barème indicatif: 1 point) Soit $f(x) = \sum_{n=1}^{\infty} \left(\frac{2}{x^2 + 1}\right)^n$ et $a > 1$. Lesquelles des
assertions suivantes sont vraies?
\sqcup La série converge simplement sur $(1,\infty)$ mais pas uniformément. \sqcup La série converge uniformément sur $(1,\infty)$ mais pas normalement.
\square La série converge normalement sur $(1, \infty)$.
\square La série converge simplement sur (a, ∞) mais pas uniformément. \square La série converge uniformément sur (a, ∞) mais pas normalement.
I a série converge normalement sur (a, ∞)

Numero d'anonymat
Question 14 (Barème indicatif: $0.5 + 0.5 + 1 + 0.5$ points) Soit $f(x) = \max(0, \sin(x))$. Calculer le coefficient de Fourier complexe c_0 de f .
En écrivant $\sin(x) = \frac{1}{2i}(e^{ix} - e^{-ix})$, calculer le coefficient de Fourier complexe c_1 de f .
l sera admis que $c_{-1}=-c_1$. Pour $ n >1$, calculer les coefficients de Fourier complexes c_n de f
Quelle est la série de Fourier de f
$\Box f(x) = \frac{1}{\pi} + \frac{\sin(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nx)}{4n^2 - 1}$
$\Box f(x) = \frac{1}{\pi} + \frac{\sin(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos((2n+1)x)}{n^2 + n}$

 $\Box f(x) = \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin(2nx)}{4n^2 - 1}$ $\Box f(x) = \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)x)}{n^2 + n} - \text{FIN} - \text{FIN} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)x)}{n^2 + n} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)x)}{n^2 + n} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)x)}{n^2 + n} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)x)}{n^2 + n} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)x)}{n^2 + n} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)x)}{n^2 + n} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)x)}{n^2 + n} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)x)}{n^2 + n} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin((2n+1)x)}{n^2 + n} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{1}{\pi} + \frac{\cos(x)}{2} - \frac{\cos(x)}{$