On a déjà vu que, si P et Q sont des propositions mathématiques, alors les propositions $P \implies Q$ et $\neg Q \implies \neg P$ sont équivalentes - comme on peut voir en regardant leurs tableaux de vérité. On appelle la proposition $\neg Q \implies \neg P$ la contraposée de la proposition $P \implies Q$. On peut alors demontrer la proposition $P \implies Q$ en démontrant sa contraposée.

Exercice 1 Énoncer les contraposée des propositions suivantes:

- (a) Si je suis à Bordeaux, alors c'est lundi.
- (b) Ceux qui parlent ne savent pas.
- (c) Si le dernier chiffre d'un nombre n est parmi 2, 3, 7 ou 8, alors n n'est pas le carré d'un entier.

Exercice 2 Démontrer les propositions suivantes par la contraposée:

- (a) Si x est un nombre réel tel que $x^2 < 1$ alors x > -1.
- (b) Si x est un nombre réel tel que $x^3 + x^2 2x < 0$ alors x < 1.

Exercice 3 Montrer que, si a+b est irrationnel alors où a où b est irrationnel. Est-ce que la reciproque de cette assertion est vraie?

Exercice 4 Soient A, B et C trois parties d'un ensemble E. Démontrer les propositions suivantes par la contraposée:

- (a) Si $A \subseteq B$, alors $A \cup B = B$.
- (b) Si $A \subseteq B$, alors $A \cap B = A$.
- (c) Si $A \cap B = \emptyset$ alors $A \subset \mathbf{C}_E B$
- (d) Si $A \cap B = \emptyset$ et $B \cap C = \emptyset$ alors $A \cap (B \cup C) = \emptyset$.

Exercice 5 Pour deux ensembles A et B on définit $A \Delta B$ comme l'ensemble formé des éléments de A qui n'appartiennent pas à B ainsi que des éléments de B qui n'appartiennent pas à A (c'est à dire

$$A \Delta B = (A \setminus B) \cup (B \setminus A).$$

Supposons que $A \neq B$. Montrer que $A \Delta B \neq \emptyset$.

Exercice 6 Soient a_1, \ldots, a_N des nombres positives réelles. Montrer que si la somme $a_1 + a_2 + \ldots + a_N > M$ alors $\max\{a_1, \ldots, a_N\} > \frac{M}{N}$.