EXERCICE 1 Soit f une fonction définie sur]a,b[de classe C^1 par morceaux. Soit $a=a_0 < a_1 < \cdots < a_N = b$ une subdivision adaptée à f, c'est-é-dire que f se prolonge en une fonction de classe C^1 sur chaque $[a_i,a_{i+1}]$. Montrer que l'on a :

$$(T_f)' = T_{f'} + \sum_{i=1}^{N-1} (f(a_i+0) - f(a_i-0)) \delta_{a_i},$$

où f' est la dérivée usuelle de f, définie hors des points a_i , et $f(a_i \pm 0)$ sont les limites à droite et à gauche de f en a_i (les distributions sont considérées comme éléments de $\mathcal{D}'(]a,b[)$.

EXERCICE 2 Soit $T \in \mathcal{D}'(\Omega)$ et $f \in C^{\infty}(\Omega)$. Expliciter (fT)'' et f(T''). Convergence de distributions

EXERCICE 3 Soit (T_n) une suite de distributions qui converge vers $T \in \mathcal{D}'(\Omega)$. Démontrer que (T'_n) onverge vers T'.

EXERCICE 4 Soit T_k la distribution associé à la fonction $f_k(x) = \left(\cos(x/\sqrt{k})\right)^k$. Montrer que (T_k) converge au sens des distributions vers $T \in \mathcal{D}'(\mathbb{R})$ que l'on déterminera.

EXERCICE 5 Soit $F_N(t) = \frac{1}{2\pi} \sum_{k=-N}^N e^{ikt}$, qui est une fonction localement intégrable. On note T_N la distribution associée à F_N . Le but de l'exercice est de déterminer la limite (au sens des distributions) de (T_N) .

(a) Montrer que

$$F_N(t) = \frac{1}{2\pi} \frac{\sin((2N+1)t/2)}{\sin(t/2)}$$

- (b) Montrer que la suite F_N converge dans aucun poit t qui est un multiple irrationel de π .
- (c) Soit $\varphi \in \mathcal{D}(\mathbb{R})$ une fonction à support dans $[-(2M+1)\pi, (2M+1)\pi]$. Déduire de l'égalité précedente que

$$\langle T_N, \varphi \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin((2N+1)t/2)}{\sin(t/2)} \psi(t) dt,$$

où
$$\psi(t) = \sum_{n=-M}^{M} \varphi(t + 2n\pi).$$

(d) En écrivant $\psi(t) = \psi(0) + th(t)$, où h est C^{∞} , démontrer que T_N converge vers $\sum_{p \in \mathbb{Z}} \delta_{2\pi p}$.

Le support d'une distribution

EXERCICE 6 Démontrer que si $f \in L^1(\Omega)$ à support compact et si T_f désigne la distribution $\langle T_f, \varphi \rangle = \int_{\Omega} f \varphi$, alors on a supp $T_f \subseteq \text{supp } f$.

EXERCICE 7 Soit $T \in \mathcal{D}'(\Omega)$ une distribution et $\varphi \in \mathcal{D}(\Omega)$. Montrer que φT est à support compact. En déduire que T est limite de distributions à support compact.

EXERCICE 8 Etablir une implication entre

- (a) La distribution T est à support compact.
- (b) La distribution T est d'ordre fini.

Exercice 9

(a) Donner un exemple de distribution $T \in \mathcal{D}'(\mathbb{R})$ et d'une fonction $\varphi \in \mathcal{D}(\mathbb{R})$ telles que

supp
$$T = \{0\}$$
 $\varphi(0) = 0$, et $\langle T, \varphi \rangle \neq 0$

(b) Plus généralement, si $T \in \mathcal{D}'(\mathbb{R})$ et $\psi \in \mathcal{D}(\mathbb{R})$, donner une condition (non-triviale) sur T et ψ pour que $\langle T, \psi \rangle = 0$? Quelle condition donner à $\psi_1, \psi_2 \in \mathcal{D}(\mathbb{R})$ pour que $\langle T, \psi_1 \rangle = \langle T, \psi_2 \rangle$?

EXERCICE 10 Soit $T \in \mathcal{D}'(\mathbb{R}^n)$ et $f \in C^{\infty}(\mathbb{R}^n)$.

- (a) Montrer que f T = 0 implique supp $T \subseteq \{x \in \mathbb{R}^n : f(x) = 0\} = Z(f)$.
- (b) On suppose de plus que T est d'ordre 0, alors l'inclusion supp $T \subseteq Z(f)$ implique que fT = 0.
- (c) Montrer que la condition supplémentaire de (b) que T est d'ordre 0 est nécessaire: trouver une distibution T d'ordre > 0 tel que $fT \neq 0$ alors que supp $T \subseteq Z(f)$.
- (d) Résoudre l'équation $f\delta' = 0$.

Exercice 11

- (a) Soit $\operatorname{vp}(\frac{1}{x})$ la valeur principale de $\frac{1}{x}$. Calculer au sens des distributions $x \operatorname{vp}(1/x)$.
- (b) Soit $T \in \mathcal{D}'(\mathbb{R})$ telle que xT = 0. Montrer qu'il existe $C \in \mathbb{R}$ telle que $T = C\delta_0$ (on pourra utiliser que le support de T est $\{0\}$ et que $T = \rho u$, où $\rho \in \mathcal{D}(\mathbb{R})$ vaut 1 au voisinage de 0.
- (c) Résoudre l'équation xT = 1.
- (d) Soit $S \in \mathcal{D}'(\mathbb{R})$. Montrer que $(\sin x)S = 0$ si, et seulement si, il existe une suite (c_n) telle que $S = \sum_{n=-\infty}^{+\infty} c_n \delta_{n\pi}$.