EXERCICE 1 Soit $P = \sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha}$ un opérateur différentiel à coefficients constants sur \mathbb{R}^n tel que P possède une solution élémentaire E

$$PE = \sum_{|\alpha| \le m} a_{\alpha} \partial^{\alpha} E = \delta_0$$

qui est de classe $C^{\infty}(\mathbb{R}^n \setminus \{0\})$.

- (a) Soit $\varphi \in \mathcal{D}(\mathbb{R}^n)$ telle que $\varphi \equiv 1$ dans un voisinage de l'origine. Démontrer que $P(\varphi E) \delta \in \mathcal{D}(\mathbb{R}^n)$.
- (b) En déduire que si $T \in \mathcal{D}'(\mathbb{R}^n)$ est telle que $P T \in C^{\infty}(\mathbb{R}^n)$ alors on a deja $T = T_f$ pour un $f \in C^{\infty}(\mathbb{R}^n)$. Indication: $T = \delta * T$.

EXERCICE 2 Soit $f: \mathbb{R}^d$ une fonction mesurable et $f_n(x) = n^d f(n x)$.

- (a) En remarquant que toute fonction $\varphi \in \mathcal{D}(\Omega)$ est borné, donner un critère à imposer à la fonction f pour que $\lim_{n\to\infty} (f_n * \varphi)(x) = \varphi(x)$ pour tout $x \in \mathbb{R}^d$.
- (b) Donner un critère à imposer à la fonction f que pour tout $T \in \mathcal{D}'(\mathbb{R}^d)$ on ait $\lim_{n \to \infty} f_n * T = T \text{ si } n \to +\infty.$

EXERCICE 3 Soit H la fonction de Heaviside et X^n la fonction $x \mapsto x^n$. Calculer dans $\mathcal{D}'(\mathbb{R})$:

$$H * H,$$
 $(XY) * (X^2 H),$ $(\sin(\cdot)H) * \delta''$

EXERCICE 4 Décomposer $\int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx$ en une partie $P_{\varepsilon}(\varphi) + R_{\varepsilon}(\varphi)$ où $P_{\varepsilon}(\varphi)$ est une combinaison linéaire de puissances strictement négatives de ε ou de $\log(\varepsilon)$ (les coefficiants ayant droit de dépendre de φ) et tel que $\lim_{\varepsilon \to 0+} R_{\varepsilon}(\varphi)$ existe. Rappelons qu'on définit ainsi la partie finie $\operatorname{pf}(\frac{H}{x}) = \lim_{\varepsilon \to 0+} R_{\varepsilon}(\varphi)$. Calculer dans $\mathcal{D}'(\mathbb{R})$

$$\delta' * \operatorname{vp}(\frac{1}{x})$$
 et $H * \operatorname{pf}(\frac{H}{x})$

EXERCICE 5 Soit $P = \sum_{|\alpha| \leq m} a_{\alpha} \partial^{\alpha}$ un opérateur différentiel à coefficients constants sur \mathbb{R}^n tel que P possède une solution élémentaire E

$$PE = \sum_{|\alpha| \le m} a_{\alpha} \partial^{\alpha} E = \delta_0$$

qui est de classe $C^{\infty}(\mathbb{R}^n \setminus \{0\})$.

- (a) Soit $\varphi \in \mathcal{D}(\mathbb{R}^n)$ telle que $\varphi \equiv 1$ dans un voisinage de l'origine. Démontrer que $P(\varphi E) \delta \in \mathcal{D}(\mathbb{R}^n)$.
- (b) En déduire que si $T \in \mathcal{D}'(\mathbb{R}^n)$ est telle que $P T \in C^{\infty}(\mathbb{R}^n)$ alors on a deja $T = T_f$ pour un $f \in C^{\infty}(\mathbb{R}^n)$. Indication: $T = \delta * T$.

EXERCICE 6 Trouver dans $\mathcal{D}'(\mathbb{R})$ des inverses de convolution des distributions suivantes:

$$T = \delta' - a\delta$$
 $T = \sin(x)H$ $T = \cos(x)H$ $T = \exp(-x)H$

EXERCICE 7 Soit $f: \mathbb{R}^d$ une fonction mesurable et $f_n(x) = n^d f(n x)$.

- (a) En remarquant que toute fonction $\varphi \in \mathcal{D}(\Omega)$ est borné, donner un critère à imposer à la fonction f pour que $\lim_{n\to\infty} (f_n * \varphi)(x) = \varphi(x)$ pour tout $x \in \mathbb{R}^d$.
- (b) Donner un critère à imposer à la fonction f que pour tout $T \in \mathcal{D}'(\mathbb{R}^d)$ on ait $\lim_{n \to \infty} f_n * T = T$ si $n \to +\infty$.