Are the following functions differentiable? Calculate the (Frechet) derivative when Exercise 1 possible.

$$\begin{aligned} f(x,y) &= 2x^4 - 3x^2y^2 + x^3y, \quad f(x,y) = (y^3 + 2x^2y + 3)^2, \qquad f(x,y) = \frac{y}{x} + \frac{x}{y} \\ f(x,y) &= \frac{x}{\sqrt{x^2 + y^2}}, \qquad f(x,y) = \log(x + \sqrt{x^2 + y^2}), \quad f(x,y) = \arctan\frac{x + y}{x - y}, \\ f(x,y,z) &= \sqrt{x^2 + y^2 + z^2}, \qquad f(x,y,z) = e^{xy\sin z}. \end{aligned}$$

Suppose that $f: \mathbb{R}^3 \to \mathbb{R}^2$ is defined by $f(x, y, z) = (x^2 + yz, \sin(xyz) + z)$ Exercise 2 a) Why is f differentiable on R^3 ? Compute the Jacobian matrix at a = (-1, 0, 1)

- b) Are there any directions in which the directional derivative at a is zero? If so, find them.
- c) Same question for the functions $g(x,y) = 3x^2 + 5y^2$ at (1,1) and for $h(x,y) = x\sin(x+y)$
- at $(\frac{\pi}{4}, \frac{\pi}{4})$. Special question^{*}: can you prove (without calculating) that in each of these cases, some directional derivative must vanish? Give a geometric argument, and an algebraic one.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be differentiable in $a \in \mathbb{R}^2$. Let $u = \frac{1}{\sqrt{2}}(1,1)$ and v = (0,-1). The Exercise 3 following directional derivatives are given:

$$\frac{\partial f}{\partial u}(a) = \sqrt{8} \qquad \frac{\partial f}{\partial v}(a) = -3$$

Calculate $\nabla f(a)$ and $\frac{\partial f}{\partial w}(a)$ where $w = \frac{1}{\sqrt{5}}(1,2)$.

Exercise 4 Find a function (if one exists) whose gradient is

- a) $(y^2/x + 2xy^3 \frac{1}{1+x^2}, 2y \ln(x) + 3x^2y^2 \sin y)$ b) $(4x^3y \frac{1}{1+x^2} + e^y, x^4 + xe^y + x)$ c) $(y^3 + 2xy + 3x^2 + 2xy^2, 4y^3 + x^2 + 2x^2y + 3xy^2).$ d) $(x^2 \arcsin y, \frac{x^3}{3\sqrt{1-y^2}} \ln(y)).$
- e) $(\ln(x) + 2xye^{y} + \frac{x}{\sqrt{1-x^2}}, x^2(1+y)e^{y} + \frac{1}{\sqrt{1-y^2}}).$

Let $f(x,y) = x^2 + y^3 + \cos(x)$. Find a constant C > 0 such that Exercise 5 $|f(x,y) - 1| \le C(x^2 + y^2)^{\frac{1}{2}}$

for all x, y such that $x^2 + y^2 \leq 1$. Hint: use the mean value theorem.

Exercise 6

a) Let A be a square matrix and \mathbb{R}^n equipped with the Euclidean norm.

Show that $||A||_{2\to 2} := \sup_{x\neq 0} \frac{||Ax||_2}{||x||_2}$ is dominated by the matrix norm $N(A) = \left(\sum_{i,j} |a_{ij}|^2\right)^{\frac{1}{2}}$. b) Let

$$f(x,y) = \left(e^{-x^2/4} \cos(y/2), \sin(x/2) \cos(y/3) \right)^{t}$$

Show that f is a strict contraction on \mathbb{R}^2 , i.e. $\|f(x,y) - f(u,v)\|_2 \leq q \|(x,y) - (u,v)\|_2$ for some q < 1.

Exercise 7 Calculate the second-degree Taylor polynomial of $f(x, y) = e^{-x^2 - y^2}$ at the point (0, 0) and at the point (1, 2).

Exercise 8 Find the second-degree Taylor polynomial for functions $f(x, y) = \sin(2x) + \cos(y)$ for (x, y) near the point (0, 0) and for the function $g(x, y) = xe^y + 1$ for (x, y) near the point (1, 0).

Exercise 9 Show that for *h* and *k* small enough, the values of

$$\cos(\pi/4 + h)\sin(\pi/4 + k)$$
 and $\frac{1}{2}(1 - h + k)$

agree to 3 decimal places.

Exercise 10^{*} Assume $f : \mathbb{R}^2 \to \mathbb{R}$ is a function such that all partial derivatives of order 3 exist and are continuous. Write down (explicitly in terms of partial derivatives of f) a polynomial P(x, y) of degree 2 in x and y such that

$$|f(x,y) - P(x,y)| \le C(x^2 + y^2)^{3/2}$$

for all (x, y) in some small neighbourhood of (0, 0), where C is a number that may depend on f but not on x or y. (hint: use Taylor's formula of order 3).

Exercise 11 Find the local extrema of the following functions defined on \mathbb{R}^2 (if there exist any)

$$\begin{aligned} f_1(x,y) &= x^3 + x^2y - y^2 - 4y, & f_2(x,y) &= x^2y + x^2 + y^2, \\ f_3(x,y) &= x^3 + 3xy^2 - 15x - 12y, & f_4(x,y) &= \sin(x)\sin(y), \\ f_5(x,y) &= (x - y^2)e^{-x^2 - y^2}, & f_6(x,y) &= (x^4 + y^2)e^{1 - x^2} \end{aligned}$$

Homework: for each of these functions, visualise the surface given by their graph (i.e. the set of points $\{(x, y, f_k(x, y)) : (x, y) \in \mathbb{R}^2\}$) using adequate software (like GNU octave, scilab, wolframalpha, geogebra, or others).

Exercise 12 Let $\Omega = \{(x, y) : x + y > 0\}$ and $f : \Omega \to \mathbb{R}$ given by $f(x, y) = xy \ln(x + y)$. Find its local extrema (if there exist any).

Exercise 13 Prove that

 $\frac{1}{4}(x^2 + y^2) \le e^{x + y - 2}$

for all $x, y \in \mathbb{R}$. Hint: consider $f(x, y) = (x^2 + y^2)e^{-x-y}$.