Exercise 1 Are the following functions differentiable? Calculate the (Frechet) derivative when possible.

$$
\begin{array}{lll}
f(x, y)=2 x^{4}-3 x^{2} y^{2}+x^{3} y, & f(x, y)=\left(y^{3}+2 x^{2} y+3\right)^{2}, & f(x, y)=\frac{y}{x}+\frac{x}{y} \\
f(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}, & f(x, y)=\log \left(x+\sqrt{x^{2}+y^{2}}\right), & f(x, y)=\arctan \frac{x+y}{x-y}, \\
f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}, & f(x, y, z)=e^{x y \sin z} . &
\end{array}
$$

Exercise 2 Suppose that $f: R^{3} \rightarrow R^{2}$ is defined by $f(x, y, z)=\left(x^{2}+y z, \sin (x y z)+z\right)$
a) Why is f differentiable on R^{3} ? Compute the Jacobian matrix at $a=(-1,0,1)$
b) Are there any directions in which the directional derivative at a is zero? If so, find them.
c) Same question for the functions $g(x, y)=3 x^{2}+5 y^{2}$ at $(1,1)$ and for $h(x, y)=x \sin (x+y)$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$. Special question*: can you prove (without calculating) that in each of these cases, some directional derivative must vanish? Give a geometric argument, and an algebraic one.

Exercise $3 \quad$ Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be differentiable in $a \in \mathbb{R}^{2}$. Let $u=\frac{1}{\sqrt{2}}(1,1)$ and $v=(0,-1)$. The following directional derivatives are given:

$$
\frac{\partial f}{\partial u}(a)=\sqrt{8} \quad \frac{\partial f}{\partial v}(a)=-3
$$

Calculate $\nabla f(a)$ and $\frac{\partial f}{\partial w}(a)$ where $w=\frac{1}{\sqrt{5}}(1,2)$.

Exercise 4 Find a function (if one exists) whose gradient is
a) $\left(y^{2} / x+2 x y^{3}-\frac{1}{1+x^{2}}, 2 y \ln (x)+3 x^{2} y^{2}-\sin y\right)$
b) $\left(4 x^{3} y-\frac{1}{1+x^{2}}+e^{y}, x^{4}+x e^{y}+x\right)$
c) $\left(y^{3}+2 x y+3 x^{2}+2 x y^{2}, 4 y^{3}+x^{2}+2 x^{2} y+3 x y^{2}\right)$.
d) $\left(x^{2} \arcsin y, \frac{x^{3}}{3 \sqrt{1-y^{2}}}-\ln (y)\right)$.
e) $\left(\ln (x)+2 x y e^{y}+\frac{x}{\sqrt{1-x^{2}}}, x^{2}(1+y) e^{y}+\frac{1}{\sqrt{1-y^{2}}}\right)$.

Exercise 5 Let $f(x, y)=x^{2}+y^{3}+\cos (x)$. Find a constant $C>0$ such that

$$
|f(x, y)-1| \leq C\left(x^{2}+y^{2}\right)^{1 / 2}
$$

for all x, y such that $x^{2}+y^{2} \leq 1$. Hint: use the mean value theorem.

Exercise 6

a) Let A be a square matrix and \mathbb{R}^{n} equipped with the Euclidean norm.

Show that $\|A\|_{2 \rightarrow 2}:=\sup _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}$ is dominated by the matrix norm $N(A)=\left(\sum_{i, j}\left|a_{i j}\right|^{2}\right)^{1 / 2}$.
b) Let

$$
f(x, y)=\left(e^{-x^{2} / 4} \cos (y / 2), \sin (x / 2) \cos (y / 3)\right)^{\mathrm{t}}
$$

Show that f is a strict contraction on \mathbb{R}^{2}, i.e. $\|f(x, y)-f(u, v)\|_{2} \leq q\|(x, y)-(u, v)\|_{2}$ for some $q<1$.

Exercise 7 Calculate the second-degree Taylor polynomial of $f(x, y)=e^{-x^{2}-y^{2}}$ at the point $(0,0)$ and at the point $(1,2)$.

Exercise 8 Find the second-degree Taylor polynomial for functions $f(x, y)=\sin (2 x)+\cos (y)$ for (x, y) near the point $(0,0)$ and for the function $g(x, y)=x e^{y}+1$ for (x, y) near the point $(1,0)$.

Exercise 9 Show that for h and k small enough, the values of

$$
\cos (\pi / 4+h) \sin (\pi / 4+k) \quad \text { and } \quad \frac{1}{2}(1-h+k)
$$

agree to 3 decimal places.

Exercise 10* Assume $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function such that all partial derivatives of order 3 exist and are continuous. Write down (explicitly in terms of partial derivatives of f) a polynomial $P(x, y)$ of degree 2 in x and y such that

$$
|f(x, y)-P(x, y)| \leq C\left(x^{2}+y^{2}\right)^{3 / 2}
$$

for all (x, y) in some small neighbourhood of $(0,0)$, where C is a number that may depend on f but not on x or y. (hint: use Taylor's formula of order 3).

Exercise 11 Find the local extrema of the following functions defined on \mathbb{R}^{2} (if there exist any)

$$
\begin{array}{ll}
f_{1}(x, y)=x^{3}+x^{2} y-y^{2}-4 y, & f_{2}(x, y)=x^{2} y+x^{2}+y^{2} \\
f_{3}(x, y)=x^{3}+3 x y^{2}-15 x-12 y, & f_{4}(x, y)=\sin (x) \sin (y), \\
f_{5}(x, y)=\left(x-y^{2}\right) e^{-x^{2}-y^{2}}, & f_{6}(x, y)=\left(x^{4}+y^{2}\right) e^{1-x^{2}}
\end{array}
$$

Homework: for each of these functions, visualise the surface given by their graph (i.e. the set of points $\left.\left\{\left(x, y, f_{k}(x, y)\right):(x, y) \in \mathbb{R}^{2}\right\}\right)$ using adequate software (like GNU octave, scilab, wolframalpha, geogebra, or others).

Exercise 12 Let $\Omega=\{(x, y): x+y>0\}$ and $f: \Omega \rightarrow \mathbb{R}$ given by $f(x, y)=x y \ln (x+y)$. Find its local extrema (if there exist any).

Exercise 13 Prove that

$$
\frac{1}{4}\left(x^{2}+y^{2}\right) \leq e^{x+y-2}
$$

for all $x, y \in \mathbb{R}$. Hint: consider $f(x, y)=\left(x^{2}+y^{2}\right) e^{-x-y}$.

