Devoir maison

Exercice 1 Soit (M,d) un espace métrique, $A\subseteq M$ un ouvert et $B\subseteq M$ une partie quelconque.

- (a) Montrer que $A \cap \overline{B} \subset \overline{A \cap B}$.
- (b) En déduire
 - (i) $A \cap B = \emptyset \Rightarrow A \cap \overline{B} = \emptyset$.
 - (ii) Si B est dense dans M, $\overline{A \cap B} = \overline{A}$.
 - (iii) Si A et B sont denses dans M, $A \cap B$ est dense dans M.
- (c) Donner un exemple, avec A non ouvert, de parties denses dont l'intersection n'est pas dense.

Exercice 2 a) Soit E un e.v. réel E avec une norme $\|.\|$. Montrer que la boule d'unité est ouvert, convexe et contient l'origine.

b) Il est une question naturelle si tout ensemble C avec les propriétés trouvés dasn (a) est forcément une boule d'unité pour une certaine norme sur E (à déterminer). Le but est de démontrer ceci. Soit donc C un ouvert convexe d'un e.v.n. réel E qui contient l'origine. On définit la jauge p de C par

$$p(x) := \inf\{\alpha > 0, \alpha^{-1}x \in C\}, x \in E.$$

Montrer les propriétés suivantes:

- (a) $p(\lambda x) = \lambda p(x) \ \forall \lambda > 0, x \in E$.
- (b) $\{x \in E, p(x) < 1\} \subseteq C$ (utilisez $0 \in C$ et la convexité de C).
- (c) $C \subseteq \{x \in E, p(x) < 1\}$. Indication: C est ouvert. Si $x \in C$ il existe donc un r > 0 tel que $B(x,r) \subseteq C$. Faites une esquisse de C incluant x, B(X,r) et la ligne définie par x et $0 \in C$. Construire un $\beta > 1$ tel que $\beta x \in C$. Conclure.
- (d) Montrer qu'il existe un r > 0 tel que $B(0,r) \in C$. Pour $x \in E$, considérer $y = x \frac{1}{2r||x||}$. Calculer ||y||. Déduire des deux point précédents que p(y) < 1. Déduire de ceci que $p(x) \le 2r||x||$.
- (e) $p(x+y) \le p(x) + p(y) \quad \forall x, y \in E$. Indication:
 - (i) Faites d'abord une esquisse de C en indiquant $0 \in C$.
 - (ii) Ajoutez x, y en dehors de C, de façon que x, y sont linéairements indépendants. Indiquez x + y sur l'esquisse. (indication: addition vectorielle!).
 - (iii) Indiquez dans l'esquisse un point de la forme $\alpha^{-1}x$ qui appartient à C (il se trouve sur quelle droite??). De même, indiquez un point $\beta^{-1}y \in C$.

- (iv) La droite définie par 0 et (x + y) coupe la droite définie par $\alpha^{-1}x$ et $\beta^{-1}y$ dans un seul point P. Montrer que $P = \gamma(x + y)$ pour un γ positif.
- (v) Le point P est également une combinaison convexe de $\alpha^{-1}x$ et $\beta^{-1}y$. On a donc pour un $\lambda \in [0,1]$

$$\frac{\lambda}{\alpha}x + \frac{1-\lambda}{\beta}y = \gamma(x+y)$$

- (vi) Conclure $\frac{\lambda}{\alpha} = \frac{1-\lambda}{\beta}$ (indication: x,y sont linéairements indépendants!).
- (vii) Calculer λ et γ en fonction de α et β .
- (viii) En déduire $p(x+y) \le \alpha + \beta$.
- (ix) Cette dernière inégalité est vrai pour tout $\alpha, \beta > 0$ tels que $\alpha^{-1}x \in C$ et $\beta^{-1}y \in C$. Prenez donc dans cette inégalité le infimum sur tous les $\alpha, \beta > 0$ telles que $\alpha^{-1}x \in C$ et $\beta^{-1}y \in C$.
- (x) Conclure!

Il en suit que p(x) est une norme et que $C=\{x:\ p(x)<1\}$ est effectivement la boule d'unité par rapport à la norme p.