Question 1 *Soit* $X = \{a, b, c, ..., z\}$ *et*

$$\mathcal{E} = \{\emptyset, \{t, o, p\}, \{o\}, \{l, o, g, i, e\}, X\}.$$

(a) Est-ce que \mathcal{E} est une topologie sur X? Si non, déterminer la plus petite topologie \mathcal{T} qui contient \mathcal{E} . \mathcal{E} n'est pas une topologie sur X, car non-stable par union. On a

$$\mathcal{T} = \{\emptyset, \{t, o, p\}, \{o\}, \{l, o, g, i, e\}, \{t, o, p, l, g, i, e\}, X\}.$$

qui est visiblement la plus petite topologie à contenir \mathcal{E} .

(b) Est-ce que X, muni de cette topologie, est un espace compact (bien justifier votre réponse). Puisque X est fini, il est compact, peu importe quelle topologie. En effet, soit (O_i) un recouvrement par des ouverts. Il existe un ouvert O_a qui contient a, un ouvert O_b qui contient b, etc. jusqu'à O_z qui contient z. Ainsi, $X = O_a \cup O_b \cup O_c \cup ... \cup O_z$.

Question 2 Soit $Y = \mathbb{R}$ et $Z = \mathbb{Z}$, les deux munis de la distance habituelle d(x, y) = |x - y|.

- (a) Est-ce que les singletons sont fermés dans Y? Et dans Z? (bien justifier votre réponse). Les singletons sont fermés dans tout espace de Hausdorff, en particulier dans des espaces métriques.
- (b) Est-ce que les singletons sont ouverts dans Y? Et dans Z? (bien justifier votre réponse). Dans Y, un singleton ne peut être ouvert. En effet, aucun intervalle $(a-\varepsilon,a+\varepsilon)$ n'est contenu dans $\{a\}$. Un autre argument est que $\mathbb R$ est connexe, ce qui exclut fermé et ouvert simultanément. Les choses sont différentes dans Z: $\{x\} = B(x, 1/2)$ montre que les singletons (et donc n'importe quelle partie de Z) sont ouverts.

Question 3

(a) Soit X un ensemble infini et $\mathcal{T} = \{O \subset X : O \text{ est vide ou bien } O^{\complement} \text{ est fini } \}$. Montrer que \mathcal{T} est une topologie (appelé la topologie co-finie). L'ensemble vide appartient à \mathcal{T} . Si $U, V \in \mathcal{T}$ sont non-vides, alors $(U \cap V)^{\complement} = U^{\complement} \cup V^{\complement}$ est fini, donc $U \cup V \in \mathcal{T}$. Finalement, si $O_i \in \mathcal{T}$ pour tout $i \in I$, avec au moins un O_{i_0} non-vide

$$\left(\bigcup O_i
ight)^{\complement} = \bigcap O_i^{\complement} \subset O_{i_0}^{\complement}$$

est fini, donc $\bigcup O_i \in \mathcal{T}$.

- (b) Décrire le système \mathcal{F} des parties fermées pour cette cette topologie. Une partie F est fermée si elle est égale à X ou bien finie.
- (c) Soit dorénavant \mathbb{R} équipé de sa topologie habituelle. Montrer que toute fonction continue $f: X \to \mathbb{R}$ est constante. (Indication: une application non-constante admet deux valeurs distincts dans \mathbb{R} qui est un espace de Hausdorff, c'est à dire, séparé). Par l'absurde: soit f n'est pas constante, nous avons $x, y \in X$ avec $f(x) \neq f(y)$. Soient U, V deux ouverts dans \mathbb{R} qui séparent f(x) et f(y). Par continuité $f^{-1}(U)$ et $f^{-1}(V)$ séparent alors x et y. Mais deux ouverts non-vides ont forcément une intersection dans X, car $(O_1 \cap O_2)^{\complement} = O_1^{\complement} \cup O_2^{\complement}$ est fini et donc différent de X. Ceci montre que $f^{-1}(U)$ et $f^{-1}(V)$ ne séparent pas x et y, ce qui est contradictoire.
- de X. Ceci montre que $f^{-1}(U)$ et $f^{-1}(V)$ ne séparent pas x et y, ce qui est contradictoire. (d) *Montrer que toute fonction injective* $f: \mathbb{R} \to X$ *est continue.* Soit F un fermé de X. Si F = X est tout l'espace, $f^{-1}(F) = \mathbb{R}$ est fermé. Sinon, F est fini, par injectivité $f^{-1}(F)$ aussi, et dans \mathbb{R} les parties finies sont fermés. Ainsi, l'image réciproque d'un fermé est fermé.

Question 4 Soit $d \ge 2$ et $X = \mathbb{R}^d \setminus \{0\}$, muni de la distance euclidienne.

- (a) Montrer que X est connexe par arcs, en explicitant un arc qui relie deux points $x\neq y$ de X. Il existe une rotation qui amène x sur le demi-rayon $\{ty:t>0\}$. Ensuite on poursuit sur le demi-rayon en ligne droite vers y. En concaténant les deux arcs, on obtient un arc qui relies x et y.
 - Une autre possibilité consiste à "ajuster" par ligne droite, parallèle aux axes, coordonnée par coordonnée pour passer en d arcs de x à y. On les concate à nouveau dans un seul arc.
- (b) Soit $Y = \{x \in X : \|x\|_2 = 1\}$ la sphère dans \mathbb{R}^d , munie de la topologie induite de \mathbb{R}^d . Expliciter une surjection continue $f: X \to Y$ (justifier surjectivité et continuité). Le candidat naturel est $f: X \to Y$, $f(x) = x/\|x\|$. Cette application est surjective car chaque $y \in Y \subset X$ satisfait f(y) = y. L'application f est continue car quotient de deux fonctions continues, avec un dénominateur qui s'annule jamais.
- (c) Est-ce que Y est connexe? X est connexe par arcs, donc connexe. L'image continue Y = f(X) est donc également connexe.

Question 5 *Voici la preuve d'un théorème. Compléter son l'énoncé suivant, en précisant clairement les hypothèses et les conclusions.*

Théorème: Soit (f_n) une suite de fonctions à valeurs dans \mathbb{R} , définies sur un espace topologique X

compact. On suppose que f_n soit continue pour tout n et que la suite (f_n) décroît simplement vers la fonction nulle (c'est-à-dire: $(f_n(x))_n$ décroît monotonément vers 0 pour tout x). Alors la convergence est uniforme.

démonstration: Soit $\varepsilon > 0$ fixé. Pour chaque $x \in X$, il existe un rang N(x) tel que $f_n(x) \in (-\varepsilon, \varepsilon)$ pour tout $n \geq N(x)$. Par continuité, il existe un voisinage ouvert V(x) de x tel que $f_{N(x)}(y) \in (-eps, \varepsilon)$ pour tout $y \in V(x)$. Les voisinages ouverts V(x) recouvrent l'espace X. Par hypothèse sur celui-ci on peut extraire un sous-recouvrement fini, disons $X = V(x_1) \cup \ldots \cup V(x_M)$. Soit $N := \max(N(x_1), \ldots, N(x_M))$. Pour tout $x \in X$ il existe un $i \in \{1, \ldots, M\}$ tel que $x \in V(x_i)$. Par monotonie, on a pour tout $n \geq N \geq N(x_i)$ que $0 \leq f_n(x) \leq f_{N(x_i)}(x) < \varepsilon$. Ainsi, $\|f_n\|_{\infty} \xrightarrow{n \to \infty} 0$.