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Abstract We define the fundamental group underlying the Weil-étale cohomology
of number rings. To this aim, we define the Weil-étale topos as a refinement of the
Weil-étale sites introduced by Lichtenbaum (Ann Math 170(2):657–683, 2009). We
show that the (small) Weil-étale topos of a smooth projective curve defined in this paper
is equivalent to the natural definition. Then we compute the Weil-étale fundamental
group of an open subscheme of the spectrum of a number ring. Our fundamental group
is a projective system of locally compact topological groups, which represents first
degree cohomology with coefficients in locally compact abelian groups. We apply
this result to compute the Weil-étale cohomology in low degrees and to prove that the
Weil-étale topos of a number ring satisfies the expected properties of the conjectural
Lichtenbaum topos.
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1 Introduction

Lichtenbaum has defined in [8] the Weil-étale cohomology of a number ring X =
Spec(OF ). He has shown that the resulting cohomology groups with compact support
Hi

W c(X, Z) for i ≤ 3 are related to the special value of the Dedekind zeta function
ζF (s) at s = 0. In this paper, we refine Lichtenbaum’s construction in order to define
and compute the Weil-étale fundamental group.

As observed in [11], the Weil-étale cohomology introduced in [8] is not defined
as the cohomology of a Grothendieck site (i.e. of a topos). More precisely, Lichten-
baum defined in [8] a family of sites TF/K ,S for any finite Galois extension K/F and
any suitable finite set S of primes of F . Then, he defined the Weil-étale cohomol-
ogy as the direct limit lim−→ H∗(TL/K ,S,−). In this paper, we define a single Weil-étale

topos X̄W which recovers Lichtenbaum’s computations. Here, X̄ denotes the Arakelov
compactification of X = Spec(OF ). The topos X̄W is endowed with a morphism to
the Artin–Verdier étale topos X̄et . This point of view has some technical advantages.
For example, the same definition is used in [4] to define the Weil-étale topos of an
arithmetic scheme as a fiber product.

Motivated by a question asked by Lichtenbaum (see the introduction of [8]), we
show in Sect. 3.5 that our definition of the (small) Weil-étale topos of a function field
is equivalent to the natural definition given in [7]. The same result is actually false
with the original definition of [8]. More precisely, let Y be an open subscheme of a
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The Weil-étale fundamental group II 69

smooth projective curve over a finite field k, and denote by Set (Wk, Y ) the topos of
Wk-equivariant étale sheaves on the geometric curve Y = Y ⊗k k.

Theorem 1.1 There is an equivalence

Y sm
W � Set (Wk, Y )

where Y sm
W is the (small) Weil-étale topos defined in this paper.

Section 4 is devoted to the computation of the Weil-étale fundamental group. Let
Ū be a connected étale X̄ -scheme. We define the Weil-étale topos of Ū as the slice
topos ŪW := X̄W /γ ∗Ū . Let K be the number field corresponding to the generic point
of Ū , and let qŪ : Spec(K )→ Ū be a geometric point. The étale fundamental group
π1(Ūet , qŪ ) is a (strict) projective system of finite quotients of the Galois group G K .
Replacing Galois groups with Weil-groups, we define the analogous (strict) projective
system W (Ū , qŪ ) of locally compact quotients of the Weil group WK . The following
theorem gives a computation of the fundamental group of ŪW .

Theorem 1.2 The Weil-étale topos ŪW is connected and locally connected over the
topos T of locally compact spaces. The geometric point qŪ defines a T -valued point
pŪ of the topos ŪW , and we have an isomorphism

π1(ŪW , pŪ ) � W (Ū , qŪ )

of topological pro-groups.

The consequences of this result are given in Sect. 6. We denote by CŪ := CK ,S the
S-idèle class group associated to Ū (here S is the set of places of K not corresponding
to a point of Ū ).

Corollary 1.3 For any connected étale X̄ -scheme Ū , we have an isomorphism of topo-
logical groups π1(ŪW , pŪ )ab � CŪ . In particular, for any locally compact abelian
group A, we have

H1(ŪW , A) = Homcont (CŪ , A)

In particular π1(X̄W )ab is topologically isomorphic to the Arakelov Picard group
Pic(X̄) of the number field F , and the canonical class is the canonical continuous
morphism

θ ∈ H1(X̄W ,˜R) = Homcont (Pic(X̄), R).

The previous corollary allows one to compute the cohomology of the Weil-étale topos
in low degrees and to recover Lichtenbaum’s computations.

Matthias Flach has shown in [3] that the current definition of the Weil-étale coho-
mology is not yet the right one. More precisely, the groups Hi

W (X̄ , Z) are infinitely
generated for any i ≥ 4 even. But the conjectural picture still stands. Indeed, Lich-
tenbaum conjectures in [8] the existence of a Grothendieck topology for an arithmetic
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70 B. Morin

scheme X such that the Euler characteristic of the cohomology groups of the constant
sheaf Z with compact support at infinity gives, up to sign, the leading term of the zeta-
function ζX (s) at s = 0. In [12], we gave a list of axioms that should be satisfied by the
category of sheaves on this conjectural Grothendieck topology for X = Spec(OF ).
We denote by X̄ L this conjectural category of sheaves, and we refer to the list of
axioms that must be satisfied by X̄ L as Axioms (1)− (9). We also showed in [12] that
any topos satisfying these axioms gives rise to complexes of étale sheaves computing
the expected Lichtenbaum cohomology. The author’s main motivation for the present
work was to provide an example of a topos satisfying Axioms (1) – (9).

Corollary 1.4 The Weil-étale topos X̄W satisfies Axioms (1)− (9).

This result shows that Axioms (1)–(9) are consistent. Moreover, it gives a natural
computation of the base change from the Weil-étale cohomology to the étale coho-
mology (see Corollary 6.13). More precisely, let γ : X̄W → X̄et be the canonical
map, and let ϕ : XW → X̄W be the open embedding. For any abelian sheaf A, we
denote by τ≤2 Rγ∗A the truncated complex.

Corollary 1.5 Assume that F is totally imaginary. Then, the Euler characteristic of
the hypercohomology groups of the complex of étale sheaves τ≤2 Rγ∗(ϕ!Z) gives, up
to sign, the leading term of the Dedekind zeta-function ζF (s) at s = 0.

2 Preliminaries

2.1 Left exact sites

The category of sheaves of sets on a Grothendieck site (C,J ) is denoted by (̃C,J )

while the category of presheaves on C is denoted by ̂C. A Grothendieck topology J
on a category C is said to be sub-canonical if J is coarser than the canonical topology.
This is the case precisely when any representable presheaf on C is a sheaf for the
topology J . A family of morphisms {Xi → X} in C is said to be a covering family
for the topology J when the sieve generated by this family of morphisms belongs to
J (X). A category C is said to be left exact when finite projective limits exist in C, i.e.
when C has a final object and fiber products. A functor between left exact categories
is said to be left exact if it commutes with finite projective limits.

Definition 2.1 A Grothendieck site (C,J ) is said to be left exact if C is a left exact
category endowed with a subcanonical topology J . A morphism of left exact sites
(C′,J ′)→ (C,J ) is a continuous left exact functor C′ → C.

Note that any Grothendieck topos, i.e. any category satisfying Giraud’s axioms,
is equivalent to the category of sheaves of sets on a left exact site. Note also that a
Grothendieck site (C,J ) is left exact if and only if the canonical functor (given in

general by Yoneda and sheafification) y : C → (̃C,J ) identifies C with a left exact
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The Weil-étale fundamental group II 71

full subcategory of (̃C,J ). A morphism of left exact sites f ∗ : (C′,J ′) → (C,J )

induces a morphism of topoi f : (C̃,J )→ (C̃′,J ′), such that the following diagram
is commutative

(C̃,J ) (C̃′,J ′)
f ∗��

C

��

C′
f ∗��

��

where the vertical arrows are the fully faithful Yoneda functors.
Finally, recall that for any object X of C, one has a canonical equivalence

(̃C,J )/y X � ˜(C/X,Jind)

where Jind is the topology on C/X induced by J via the forgetful functor C/X → C
(forget the map to X ).

2.2 Basic properties of geometric morphisms

Let S and S ′ be two Grothendieck topoi. A (geometric) morphism of topoi

f := ( f ∗, f∗) : S ′ −→ S

is defined as a pair of functors ( f ∗, f∗), where f ∗ : S → S ′ is left adjoint to
f∗ : S ′ → S and f ∗ is left exact (i.e. f ∗ commutes with finite projective limits).
One can also define such a morphism as a left exact functor f ∗ : S → S ′ commuting
with arbitrary inductive limits. Indeed, in this case, f ∗ has a uniquely determined right
adjoint f∗.

If X is an object of S, then the slice category S/X , of objects of S over X , is a
topos as well. The base change functor

S −→ S/X
Y 
−→ Y × X

is left exact and commutes with arbitrary inductive limits, since inductive limits are
universal in a topos. We obtain a morphism

S/X −→ S.

Such a morphism is said to be a localization morphism or a local homeomorphism (the
term local homeomorphism is inspired by the case when S is the topos of sheaves on
some topological space). For any morphism f : S ′ → S and any object X of S, there
is a natural morphism

f/X : S ′/ f ∗X −→ S/X.
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72 B. Morin

The functor f ∗/X is defined in the obvious way: f ∗/X (Y → X) = ( f ∗Y → f ∗X).
The direct image functor f/X,∗ sends Z → f ∗X to f∗Z × f∗ f ∗X X → X , where
X → f∗ f ∗X is the adjunction map. The morphism f/X is a pull-back of f , in the
sense that the square

S ′/ f ∗X
f/X ��

��

S/X

��
S ′

f �� S

is commutative and 2-cartesian. In other words, the 2-fiber product S ′ ×S S/X can
be defined as the slice topos S ′/ f ∗X .

A morphism f : S ′ → S is said to be connected if f ∗ is fully faithful. It is locally
connected if f ∗ has an S-indexed left adjoint f! (see [6, C3.3]). These definitions
generalize the usual ones for topological spaces: if T is a topological space, consider
the unique morphism Sh(T ) → Sets where Sh(T ) is the category of étalé spaces
over T . For example, a localization morphism S/X → S is always locally connected
(here f!(Y → X) = Y ), but is connected if and only if X is the final object of S.

A morphism f : S ′ → S is said to be an embedding when f∗ is fully faithful. It is
an open embedding if f factors through f : S ′ � S/X → S, where X is a subobject
of the final object of S. Then, the essential image U of the functor f∗ is said to be an
open subtopos of S. The closed complement F of U is the strictly full subcategory
of S consisting in objects Y such that Y × X is the final object of U (i.e. f ∗Y is the
final object of S ′). A closed subtopos F of S is a strictly full subcategory which is
the closed complement of an open subtopos. A morphism of topoi i : E → S is said
to be a closed embedding if i factors through i : E � F → S where F is a closed
subtopos of S.

A subtopos of S is a strictly full subcategory S ′ of S such that the inclusion functor
i : S ′ ↪→ S is the direct image of a morphism of topoi (i.e. i has a left exact left
adjoint). A morphism f : S ′ → S is said to be surjective if f ∗ is faithful. Any mor-
phism f : E → S can be decomposed as a surjection E → I m( f ) followed by an
embedding I m( f )→ S, where I m( f ) is a subtopos of S, which is called the image
of f (see [5, IV. 9.1.7.2]).

2.3 The topos T of locally compact topological spaces

In this paper, we denote by T op the category of locally compact topological spaces
and continuous maps. Locally compact spaces are assumed to be Hausdorff. This
category is endowed with the open cover topology Jop, which is generated by the
following pretopology: a family of morphisms (Xα → X)α∈A is in Cov(X) if and
only if (Xα → X)α∈A is an open cover in the usual sense. We denote by T the topos
of sheaves of sets on this left exact site:

T := ˜(T op,Jop).
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The Weil-étale fundamental group II 73

The family of compact spaces is a topologically generating family for the site
(T op,Jop). Indeed, if X is a locally compact space, then any x ∈ X has a com-
pact neighborhood Kx ⊆ X , so (Kx ↪→ X)x∈X is a local section cover, hence a
covering family for Jop. In particular, if we denote by T opc the category of compact

spaces, then the canonical morphism T → ˜(T opc,Jop) is an equivalence.
The Yoneda functor

y : T op −→ T
X 
−→ y(X) = HomT op(−, X)

sending a locally compact space to the sheaf represented by this space is fully faithful
(since Jop is subcanonical) and commutes with arbitrary projective limits. Since the
Yoneda functor is left exact, any locally compact topological group G represents a
group object of T . In what follows we consider T op as a (left exact) full subcate-
gory of T . For example, the sheaf of T represented by a locally compact space Z is
sometimes also denoted by Z .

Remark 2.2 In this paper, we consider topoi defined over the topos T of locally com-
pact spaces since all sheaves, cohomology groups and fundamental groups that we use
are defined by locally compact spaces. In order to use non-locally compact coefficients,
one can consider the topos

T ′ := ˜(T oph,Jop)

where T oph is the category of Hausdorff spaces. Then for any topos E (connected
and locally connected) over T , we consider the base change E ×T T ′ to obtain a
(connected and locally connected) topos over T ′.

2.4 Topological pro-groups

In this paper, a filtered category I is a non-empty small category such that the fol-
lowing holds. For any objects i and j of I , there exists a third object k and maps
i ← k → j . For any pair of maps i ⇒ j , there exists a map k → i such that the
diagram k → i ⇒ j is commutative. Let C be any category. A pro-object of C is
a functor X : I → C , where I is a filtered category. One can see a pro-object in
C as a diagram in C . One can define the category Pro(C) of pro-objects in C (see
[5, I. 8.10]). The morphisms in this category can be made explicit as follows. Let
X : I → C and Y : J → C be two pro-objects in C . Then one has

Hom Pro(C)(X , Y ) := lim←− j∈J lim−→i∈I Hom(Xi , Y j ).

A pro-object X : I → C is constant if it is a constant functor, and X : I → C
is essentially constant if X is isomorphic (in the category Pro(C)) to a constant
pro-object.
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74 B. Morin

Definition 2.3 A locally compact topological pro-group G is a pro-object in the cate-
gory of locally compact topological groups. A locally compact topological pro-group
is said to be strict if any transition map G j → Gi has local sections.

If the category C is a topos, then a pro-object X : I → C in C is said to be strict
when the transition map Xi → X j is an epimorphism in C , for any i → j ∈ Fl(I ). In
particular, a locally compact topological pro-group G : I → Gr(T op) pro-represents
a strict pro-group-object in T :

y ◦ G : I → Gr(T op)→ Gr(T )

where Gr(T op) and Gr(T ) are the categories of group-objects in T op and T , respec-
tively. Indeed, a continuous map of locally compact spaces Xi → X j has local sections
if and only if it induces an epimorphism y(Xi )→ y(X j ) in T .

2.5 The classifying topos of a group-object

2.5.1 General case

For any topos S and any group object G in S, we denote by BG the category of (left)
G-object in S. Then, BG is a topos, as it follows from Giraud’s axioms, and BG is
endowed with a canonical morphism BG → S, whose inverse image functor sends
an object F of S to F with trivial G-action. If there is a risk of ambiguity, we denote
the topos BG by BS(G). The topos BG is said to be the classifying topos of G since
it classifies G-torsors. More precisely, for any topos f : E → S over S, the category
HomtopS (E, BG) is anti-equivalent to the category of f ∗G-torsors in E (see [5, IV
Exercise 5.9]). It follows that the induced morphism

BE ( f ∗G) −→ E ×S BS(G)

is an equivalence (see [10, Corollary 10.14]).

2.5.2 Examples

Let G be a discrete group, i.e. a group object of the final topos Sets. We denote the
category of G-sets by Bsm

G := BSets(G). The topos Bsm
G is called the small classifying

topos of the discrete group G. If G is a profinite group, then the small classifying
topos Bsm

G is defined as the category of sets on which G acts continuously.
Let G be a locally compact topological group. Then, G represents a group object

of T , where T := ˜(T op,Jop) is defined above. Then

BG := BT (G)

is the classifying topos of the locally compact topological group G. One can define
the classifying topos of an arbitrary topological group by enlarging the topos T .
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The Weil-étale fundamental group II 75

2.5.3 The local section site

For any locally compact topological group G, we denote by BT op(G) the category
of G-equivariant locally compact topological spaces (elements of a given universe).
The category BT op(G) is endowed with the local section topology Jls , which can
be described as follows. A family of morphisms {Xi → X, i ∈ I } in BT op(G) is a
covering family for Jls if and only if the continuous map

∐

i∈I Xi → X has local
sections. Equivalently, Jls is the topology induced by the open cover topology on T op
via the forgetful functor BT op(G) → T op. The Yoneda functor yields a continuous
fully faithful functor

BT op(G) −→ BG,

and the induced morphism

BG −→ ˜(BT op(G),Jls)

is an equivalence (see [3]).

2.6 The classifying topos of a strict topological pro-group

Topos theory provides a natural way to define the limit of a strict topological pro-group
without any loss of information.

Definition 2.4 The classifying topos of a strict locally compact topological pro-group
G : I → Gr(T op) is defined as

BG := lim←−I BGi ,

where the projective limit is computed in the 2-category of topoi.

By ([5, VI.8.2.3]), a site for the projective limit topos BG is given by (lim−→I BT opGi ,

J ), where lim−→I BT opGi is the direct limit category and J is the coarsest topology
such that all the functors

(BT opGi ,Jls) −→ (lim−→I BT opGi ,J )

are continuous. The direct limit category

BT opG := lim−→I BT opGi

can be made explicit as follows. An object of this category is given by a locally com-
pact topological space on which Gi acts continuously for some i ∈ I . Let Zi and Z j

be two objects of BT opG, such that Zi and Z j are given with an action of Gi and G j ,
respectively. Then, there exists an index k ∈ I and maps Gk → Gi and Gk → Gi
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76 B. Morin

admitting local sections. Then, a morphism Z j → Zi is a Gk-equivariant continuous
map Z j → Zi . Consider the forgetful functor

BT opG −→ T op.

One can prove that the topology J on BT opG is induced by the local section topology
on T op via this forgetful functor, so that the topology J can be denoted by Jls . We
have obtained the following result.

Proposition 2.5 The site (BT opG,Jls) is a site for the classifying topos of the strict
topological pro-group G. In other words, the natural morphism

BG −→ ˜(BT opG,Jls)

is an equivalence.

3 The Weil-étale topos

In this section, we define a topos satisfying the expected properties of the conjectural
Lichtenbaum topos (see [12]). This yields a new computation of the Weil-étale coho-
mology. Our construction is a suitable refinement of the family of Weil-étale sites
introduced by Lichtenbaum in [8]. We denote by X̄ = (Spec OF , X∞) the Arakelov
compactification of the ring of integers in a number field F (i.e. X∞ is the set of
archimedean places of F).

3.1 The Weil-étale topos

As an illustration of the artificiality of the following construction, we start by making
several non-canonical choices.

Data 3.1 1. We choose an algebraic closure F̄/F .
2. We choose a Weil group WF .
3. For any place v of F , we choose an algebraic closure F̄v/Fv .
4. For any place v of F , we choose a local Weil group WFv .
5. For any place v of F , we choose an embedding F̄ → F̄v over F .
6. For any place v of F , we choose a Weil map θv : WFv −→ WF .

These choices are required to be compatible in the sense that the diagram

WFv

θv

��

�� G Fv

��
WF

�� G F

is commutative for any place v.
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Recall that if F̄/F is an algebraic closure and F̄/K/F a finite Galois extension
then the relative Weil group WK/F is defined by the extension of topological groups

1→ CK → WK/F → G K/F → 1

corresponding to the fundamental class in H2(G K/F , CK ) given by class field theory,
where CK is the idèle class group of K . A Weil group of F is then defined as the
projective limit WF := lim←−WK/F , computed in the category of topological groups. A
Weil group for the local field Fv is defined as earlier, replacing the idèle class group
CK with the mutiplicative group K×w where Kw/Fv is finite and Galois.

Definition 3.2 Let W 1
Fv

be the maximal compact subgroup of WFv . The Weil group

of the “residue field” at v ∈ X̄ is defined as Wk(v) := WFv /W 1
Fv

. We denote by

qv : WFv −→ WFv /W 1
Fv
=: Wk(v)

the map from the local Weil group WFv to the Weil group of the residue field at v.

Lichtenbaum defined in [8] a family of sites TK/F,S for K/F Galois and S a suitable
finite set of primes of F . Then, he defined the Weil-étale cohomology as the direct
limit of the cohomologies of the sites TK/F,S . Here, we define a single site TX̄ inspired
by a closer look at the étale site. This allows us to define a Weil-étale topos, over the
Artin-Verdier étale topos, giving rise to the Weil-étale cohomology without the direct
limit process.

Definition 3.3 Let TX̄ be the category of objects (Z0, Zv, fv) defined as follows. The
topological space Z0 is endowed with a continuous WF -action. For any place v of F ,
Zv is a topological space endowed with a continuous Wk(v)-action. The continuous
map fv : Zv → Z0 is WFv -equivariant, when Zv and Z0 are seen as WFv -spaces
via the maps θv : WFv → WF and qv : WFv → Wk(v). Moreover, we require the
following facts.

• The map fv is an homeomorphism for almost all places v of F and a continuous
injective map for all places.

• For any valuation v, the space Zv is locally compact.
• The action of WF on Z0 factors through WK/F , for some finite Galois subextension

F̄/K/F .

A morphism

φ : (Z0, Zv, fv) −→ (Z ′0, Z ′v, f ′v)

in the category TX̄ is a continuous WF -equivariant map φ : Z0 → Z ′0 inducing a con-
tinuous map φv : Zv → Zv for any place v. Then, φv is necessarily Wk(v)-equivariant.

The category TX̄ is endowed with the local section topology Jls , i.e. the topology
generated by the pretopology for which a family

{ϕi : (Zi,0, Zi,v, fi,v)→ (Z0, Zv, fv), i ∈ I }
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is a covering family if the continuous map
∐

i∈I Zi,v → Zv has local sections, for
any place v.

Definition 3.4 We define the Weil-étale topos X̄W as the topos of sheaves of sets on
the site defined earlier:

X̄W := ˜(TX̄ ,Jls).

Remark 3.5 One can extend the previous definition to any étale X̄ -scheme. If one
does so, the Weil-étale topos is no longer functorial (see Sect. 3.4).

Lemma 3.6 The site (TX̄ ,Jls) is a left exact site.

Proof The category TX̄ has fiber products and a final object; hence, finite projective
limits are representable in TX̄ . It remains to show that Jls is subcanonical. But for
any topological group G, the local section topology Jls = Jop on BT opG is nothing
else than the open cover topology (see [3, Corollary 2]), which is easily seen to be
subcanonical. The result follows easily from this fact. ��
Proposition 3.7 We have a morphism of topoi

j : BWF −→ X̄W .

Proof The classifying topos BWF is defined as the topos of y(WF )-objects of T and
the site (BT opWF ,Jls) is a defining site for BWF (see Sect. 2.5.3). We have a morphism
of left exact sites

j∗ : (TX̄ ,Jls) −→ (BT opWF ,Jls)

(Z0, Zv, fv) 
−→ Z0.

inducing the morphism of topoi j . ��
We have a morphism of left exact sites

t∗ : (T op,Jop) −→ (TX̄ ,Jls)

Z 
−→ (Z , Z , I dZ )
(3.1)

Definition 3.8 The canonical morphism from X̄W to T is the morphism of topoi

t : X̄W −→ T

induced by the morphism of left exact sites (3.1).

Consider the functor u∗ : T → BWF sending an object L of T to L with trivial
y(WF )-action. This functor commutes with arbitrary inductive and arbitrary projec-
tive limits. Therefore, we have a sequence of three adjoint functors u! , u∗ , u∗. More
explicitly, one has u!F = F/y(WF ) and u∗(F) = HomWF

({∗},F), where {∗} is
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the final object of BWF . We have a connected (u∗ is clearly fully faithful) and locally
connected morphism

u : BWF −→ T .

The topos BWF has a canonical point q over T . In other words, there exists a section
q : T → BWF of the structure map u : BWF → T . Indeed, the inverse image of the
morphism q is the functor q∗ : BWF → T sending a y(WF )-object F to F with no
action. Therefore, we have a canonical isomorphism of functor I d � q∗ ◦ u∗, hence
an isomorphism of morphisms of topoi:

I d � u ◦ q : T → BWF → T . (3.2)

Of course everything above is valid for any topological group G (and more generally
for any group object G in any topos E).

Proposition 3.9 One has a canonical isomorphism

u � t ◦ j : BWF −→ X̄W −→ T

In particular the morphism j ◦ q is a point of X̄W over T , i.e. the following diagram
is commutative.

BWF

j �� X̄W

t

��
T

q

��
p

����������� I d �� T

If there is a risk of ambiguity, the point p of X̄W over T will be denoted by pX̄ .

Proof The first claim of the proposition follows immediately from the description of
these morphisms of topoi in terms of morphisms of left exact sites. The second claim
then follows from (3.2). ��
Proposition 3.10 The morphism t : X̄W → T is connected and locally connected.

Proof Let us first make the inverse image functor t∗ explicit. Consider the full subcat-
egory CX̄ of TX̄ consisting in objects (Z0, Zv, fv) such that the quotient space Z0/WF

is locally compact and such that the canonical morphism in T

y(Z0)/y(WF ) −→ y(Z0/WF )

is an isomorphism. By Corollary 4.21, CX̄ is a topologically generating family of TX̄
(see [5, II 3.0.1]). Hence, the sheaf t∗L is completely determined by its restriction to
CX̄ , for any L of T .
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One can prove that that one has

t∗L(Z0, Zv, fv) = Hom BWF
(y(Z0), u∗L) = u∗L(Z0). (3.3)

for any object L of T and any (Z0, Zv, fv) ∈ CX̄ . Indeed, we check that one has a
bifunctorial isomorphism, in L ∈ L and F ∈ X̄W :

Hom X̄W
(t∗L,F) � HomT (L, t∗F),

where t∗L is defined as above and t∗F(Z) :=F(Z , Z , I dZ ) for any Z ∈ Ob(T op).
The proof of this fact is tedious but straightforward, using the fact that (Z0/WF ,

Z0/WF , I d) ∈ CX̄ and the identification y(Z0/WF ) = y(Z0)/y(WF ).
More generally, we have

Hom X̄W
(F , t∗L) = Hom BWF

( j∗F , u∗L) (3.4)

for any object F of X̄W and any object L of T . Indeed the family of representable
objects y(Z0, Zv, fv) is a generating family of X̄W (see [5, II Proposition 4.10]) hence
any object F of X̄W can be written as an (arbitrary) inductive limit of such represent-
able objects (see [5, I Proposition 7.2]). Therefore, (3.4) follows from (3.3) and from
the fact that j∗ commutes with inductive limits and with the Yoneda embedding.

If L and L′ are two objects of T , then one has

Hom X̄W
(t∗L′, t∗L) = Hom BWF

( j∗t∗L′, u∗L)

= Hom BWF
(u∗L′, u∗L)

= HomT (L′,L)

since t ◦ j � u and u∗ is fully faithful. Hence, t∗ is fully faithful, i.e. t is connected.
Let us define the left adjoint of t∗. We consider the functor defined by

t!F := u! j∗F = j∗F/y(WF )

where the quotient j∗F/y(WF ) is defined in T , for any object F of X̄W . The following
identifications show that t! is left adjoint to t∗.

HomT (t!F ,L) = HomT (u! j∗F ,L) = Hom BWF
( j∗F , u∗L) = Hom X̄W

(F , t∗L).

It remains to show that the functor t! is a T -indexed left adjoint to t∗. This means that
for any morphism x : I → J in T , the natural transformation

t I
! ◦ (t∗x)∗ → x∗ ◦ t J

! (3.5)
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defined by the square

X̄W /t∗ I
t I! �� T /I

X̄W /t∗ J

(t∗x)∗
��

t J
! �� T /J

x∗
��

should be an isomorphism (see [6, B.3.1.1]). Here, the functor

x∗ : T /J −→ T /I

(L→ J ) 
−→ (L×J I → I )

is the usual base change and one has

t J
! : X̄W /t∗ J −→ T /J

(F → t∗ J ) −→ (t!F → t!t∗ J → J )

where the map t!t∗ J → J is given by adjunction. Let F → t∗ J be an object of
X̄W /t∗ J , and denote it by F . On the one hand, one has

t I
! ◦ (t∗x)∗F = t!(F ×t∗ J t∗ I )

and

x∗ ◦ t J
! (F → t∗ J ) = t!(F)×J I

one the other. Hence, the natural transformation (3.5) is given by the canonical
morphism from

t!(F ×t∗ J t∗ I ) = u! j∗(F ×t∗ J t∗ I ) = u!( j∗F × j∗t∗ J j∗t∗ I ) = u!( j∗F ×u∗ J u∗ I )

to

u! j∗F ×u!u∗ J u!u∗ I � u! j∗F ×J I.

This morphism is an isomorphism because u : BWF → T is connected and locally
connected. Indeed, the adjunction map u!u∗ I → I is an isomorphism since u∗ is fully
faithful. Then,

u!( j∗F ×u∗ J u∗ I ) = ( j∗F ×J I )/yWF

is canonically isomorphic to

( j∗F/yWF )×J I

Author's personal copy



82 B. Morin

since inductive limits (in particular quotients of group actions) are universal in T .
For a down to earth argument proving the very last claim of this proof, one can use
the fact that T has enough Sets-valued points, and check that ( j∗F ×J I )/yWF →
( j∗F/yWF )×J I induces isomorphisms on stalks. ��
Definition 3.11 An object F of X̄W is said to be constant over T if there is an iso-
morphism F � t∗L, where L is an object of T .

Corollary 3.12 If F is a constant object over T then the adjunction map

F −→ j∗ j∗F

is an isomorphism.

Proof This follows immediately from (3.3). Indeed, if F = t∗L then

F(Z0, Zv, fv) = t∗L(Z0, Zv, fv) = u∗L(Z0) = j∗F(Z0) = j∗ j∗F(Z0, Zv, fv).

for any object (Z0, Zv, fv) of TX̄ . ��
Definition 3.13 Let F be an object of X̄W . The object of T

t!F := ( j∗F)/y(WF )

is called the space of connected components of F .

Definition 3.14 An object F of X̄W is said to be connected over T if its space of
connected components t!F is the final object of T .

Consider for example a constant object F = t∗L over T . Then, the space of connected
components of F is

t!F = t!t∗L � L

since t∗ is fully faithful. Therefore, a constant object F = t∗L of X̄W over T is
connected over T if and only if F is the final object of X̄W .

Remark 3.15 Note that t!F is not a topological space in general. However, this is
a topological space when F is representable by an object (Z0, Zv, fv) such that
y(Z0)/y(WF ) = y(Z0/WF ). Our terminology is justified by the fact that any object
of T is topological in nature.

3.2 The morphism from the Weil-étale topos to the Artin–Verdier étale topos

Let X̄ be the Arakelov compactification of a number ring OF . The set X̄ is given with
the Zariski topology. We recall below the definition of the Artin–Verdier étale site of
X̄ . We refer to [11] for more details.
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A connected étale X̄-scheme is a map

Ū = (U ;U∞) −→ X̄ = (X; X∞),

where U is a connected étale X -scheme in the usual sense. The set U∞ is a subset of
U (C)/ ∼, where U (C)/ ∼ is the quotient of the set of complex valued points of U
under the equivalence relation defined by complex conjugation. Moreover, U∞/X∞
is unramified in the sense that if v ∈ X∞ is real, then so is any point w of U∞ lying
over v. An étale X̄-scheme is a finite sum of connected étale X̄ -schemes, called the
connected components of X̄ . A morphism Ū → V̄ in the category EtX̄ is a morphism
of X -schemes U → V inducing a map U∞ → V∞ over X∞. The Artin–Verdier étale
site of X̄ is defined by the category EtX̄ endowed with the topology Jet generated by
the pretopology for which the coverings are the surjective families.

Definition 3.16 The Artin–Verdier étale topos of X̄ is the category of sheaves of sets
on the Artin–Verdier étale site:

X̄et := ˜(EtX̄ ,Jet ).

Let v be a closed point of X̄ . Data 3.1 gives an embedding G Fv ↪→ G F ; hence, we
have an inertia subgroup Iv ⊂ G F at v. One can define the strict henselization of X̄
at v as the projective limit X̄ sh

v = lim←− Ū , where Ū runs over the filtered system of

étale neighborhoods in X̄ of a geometric point over v. We refer to [11, Section 6.2]
for a precise definition. For v ultrametric, one has X̄ sh

v := Spec(Osh
X̄ ,v

) where the ring

Osh
X̄ ,v

is the strict henselization of the local ring OX,v . The generic point of X̄ sh
v is

Spec(F̄ Iv ). For an archimedean valuation v, X̄ sh
v can be formally defined as the pair

(Spec(F̄ Iv ), v) → (X, X∞). Hence for any closed point v of X̄ , Data 3.1 gives a
specialization map over X̄

Spec(F̄)→ Spec(F̄ Iv ) ↪→ X̄ sh
v . (3.6)

Proposition 3.17 There exists a morphism of left exact sites

γ ∗ : (EtX̄ ;Jet ) −→ (TX̄ ;Jls)

Ū 
−→ (U0, Uv, fv)
.

The functor γ ∗ is fully faithful, and the essential image of γ ∗ consists in objects
(U0, Uv, fv) where U0 is a finite WF -set.

This result is a reformation of [10, Proposition 4.61] and [10, Proposition 4.62].
Let us fix some notations. For any point v ∈ X̄ , we define the Galois group of the
“residue field at v” as follows:

Gk(v) := G Fv /Iv
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while the Weil group of the residue field at v is defined as Wk(v) := WFv /W 1
Fv

.
Note that we have a morphism αv : Wk(v) → Gk(v) compatible with the Weil map
θv : WFv → WF for any v ∈ X̄ . Note also that for an archimedean valuation v, the
group Gk(v) is trivial and Wk(v) is isomorphic to R

×+ as a topological group.

Proof For any étale X̄ -scheme Ū , we define an object γ ∗(Ū ) = (U0, Uv, fv) of TX̄
as follows. An algebraic closure F̄/F has been chosen in Data 3.1. The generic point
Ū ×X̄ Spec F is the spectrum of a finite étale F-algebra. The Grothendieck–Galois
theory shows that this étale F-algebra is uniquely determined by the finite G F -set

U0 := HomSpec F (Spec F̄, Ū ×X̄ Spec F) = Hom X̄ (Spec F̄, Ū ).

Let v be an ultrametric place of F . The maximal unramified sub-extension of the
algebraic closure F̄v/Fv chosen in Data 3.1 yields an algebraic closure of the residue
field k(v)/k(v). The scheme Ū×X̄ Spec k(v) is the spectrum of an étale k(v)-algebra,
corresponding to the finite Gk(v)-set

Uv := HomSpec k(v)(Spec k(v), Ū ×X̄ Spec k(v)) = Hom X̄ (Spec k(v), Ū )

Let v be an ultrametric place of F . Here, we define the set

Uv := Hom X̄ ((∅, v), Ū ) = v ×X∞ U∞

For any closed point v of X̄ , we have Uv = Hom X̄ (X̄ sh
v , Ū ); hence, the specialization

map (3.6) gives a G Fv -equivariant map

fv : Uv −→ U0.

This map is bijective for almost all valuations and injective for all valuations. For
any place v of F , the set Uv is viewed as a Wk(v)-topological space via the morphism
Wk(v)→ Gk(v). Respectively, U0 is viewed as a WF -topological space via WF → G F .
Then, the map fv defined above is WFv -equivariant. We obtain a functor

γ ∗ : EtX̄ −→ TX̄ .

Note that if Ū is the a finite sum of connected étale X̄ -schemes Ū = ∐

Ūi , then we
have

γ ∗(Ū ) =
∐

γ ∗(Ūi )

where the sum one the right-hand side is understood in TX̄ . The functor γ ∗ is easily
seen to be left exact (i.e. it preserves the final object and fiber products) and continuous
(i.e. it preserves covering families). Hence, we do have a morphism of left exact sites.

Let U = (U0, Uv, fv) be an object of TX̄ such that U0 is a finite WF -set. Writing
U0 as the sum of its WF -orbits, we can decompose U =∐

i∈I Ui as a sum in TX̄ . The
action of WF on U0 factors through WF/W 0

F = G F , where W 0
F is the connected of 1
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in WF , since U0 is finite. Hence, we can see U0 as finite G F -sets. By Galois theory,
U0 corresponds to an essentially unique étale F-algebra A =∏

i∈I Ki . Then, for any
i ∈ I one has a finite set Si of places of Ki and an isomorphism in TX̄ :

Ui � γ ∗(Spec(OKi )− Si )

This shows that the essential image of γ ∗ consists in objects (U0, Uv, fv) such that
U0 is a finite WF -set.

Let Ū and Ū ′ be two objects of EtX̄ . We set γ ∗(Ū ) = (U0, Uv, fv) and γ ∗(Ū ′) =
(U ′0, U ′v, f ′v). By functoriality, we have a map

Hom X̄ (Ū , Ū ′)→ HomTX̄
((U0, Uv, fv), (U

′
0, U ′v, f ′v)). (3.7)

We define the inverse map as follows. A morphism φ : (U0, Uv, fv)→ (U ′0, U ′v, f ′v)
is given by a map of finite G F -sets φ0 : U0 → U ′0. This map gives a uniquely
determined morphism of F-algebras A′ → A, where Spec(A) := Ū ×X̄ Spec(F)

and Spec(A′) := Ū ′ ×X̄ Spec(F), again by Galois theory. The morphism A′ → A
induces a morphism of étale X̄ -schemes ˜φ : Ū → Ū ′ precisely because φ0 induces
a map φv : Uv → U ′v for any closed point v of X̄ . Then φ 
→ ˜φ is the inverse
isomorphism to (3.7). This shows that γ ∗ is fully faithful. ��

The next corollary follows immediately from the fact that a morphism of left exact
sites induces a morphism of topoi.

Corollary 3.18 There is a morphism of topoi

γ : X̄W −→ X̄et .

Remark 3.19 Let F be an object of X̄W represented by an étale X̄ -scheme Ū . In other
words, we assume that

F = γ ∗y(Ū ) = y(γ ∗Ū ) = y(U0, Uv, fv)

where U0 is a finite G F -set. The space of connected components

t!F := ( j∗F)/y(WF ) = U0/G F

is the object of T represented by the finite set U0/G F , which is the set of connected
components of Ū in the usual sense.

3.3 Structure of X̄W at the closed points

Let v be a place of F . We consider the Weil group Wk(v) and the Galois group Gk(v) of
the residue field k(v) at v ∈ X̄ . Recall that for v archimedean, one has Wk(v) � R and
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Gk(v) = {1}. We consider the big classifying topos BWk(v)
, i.e. the category of y(Wk(v))-

objects in T , and the small classifying topos Bsm
Gk(v)

, which is defined as the cate-
gory of continuous Gk(v)-sets. The category of Wk(v)-topological spaces BT opWk(v)

is endowed with the local section topology Jls . Then, (BT opWk(v),Jls) is a site for
the classifying topos BWk(v)

. Respectively, let B f Sets Gk(v) be the category of finite
Gk(v)-sets endowed with the canonical topology Jcan . The site (B f Sets Gk(v),Jcan)

is a site for the small classifying topos Bsm
Gk(v)

.
For any place v of F , we have a morphism of left exact sites

i∗v : (TX̄ ,Jls) −→ (BT opWk(v),Jls)

(Z0, Zv, fv) 
−→ Zv

hence a morphism of topoi

iv : BWk(v)
−→ X̄W .

Assume that v is ultrametric. The morphism of schemes Spec k(v) → X̄ induces a
morphism of topoi

uv : Bsm
Gk(v)
−→ X̄et

since the étale topos of Spec k(v) is equivalent to the category Bsm
Gk(v)

of continuous
Gk(v)-sets. This equivalence is induced by the choice of an algebraic closure of k(v)

given in Data 3.1. For v archimedean, we still have a morphism

uv : Bsm
Gk(v)
= Sets = Sh(v) −→ X̄et .

The category of finite Gk(v)-sets endowed with the canonical topology is a site for the
small classifying topos Bsm

Gk(v)
. We have a commutative diagram of left exact sites

(BT opWk(v),Jls) (B f Sets Gk(v),Jls)
α∗v��

(TX̄ ,Jls)

i∗v
��

(EtX̄ ,Jls)

u∗v
��

γ ∗��

where u∗v(Ū ) is the finite Gk(v)-set

Uv := Hom X̄ (Spec k(v), Ū ).

The diagram of sites above induces the commutative of topoi of the following result,
which is proven in [4].

Theorem 3.20 For any closed point v of X̄ , the following diagram is a pull-back of
topoi.
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BWk(v)

iv
��

αv �� Bsm
Gk(v)

uv

��
X̄W

γ �� X̄et

Corollary 3.21 For any closed point v of X̄ , the morphism iv is a closed embedding.

Proof It is well known that the morphism of étale topoi

uv : Bsm
Gk(v)
−→ X̄et

is a closed embedding. The result then follows from the fact that closed embeddings
are stable under pull-backs. Indeed, the image of uv is a closed subtopos I m(uv) of
X̄et . But the inverse image of I m(uv) under γ is precisely the image of iv , as it follows
from the previous theorem. Hence, I m(iv) is a closed subtopos of X̄W , and iv induces
an equivalence BWk(v)

� I m(iv). ��

3.4 The Weil-étale topos of an étale X̄ -scheme

Remark 3.22 In this section, we define the Weil-étale topos ŪW for any étale X̄ -
scheme Ū . Such a definition must be functorial. According to Proposition 3.28 below,
there are two possible definitions for ŪW . If one defines ŪW as in Definition 3.4 for
any Ū étale over X̄ , then Ū 
→ ŪW is not functorial. In order to get functoriality, we
define ŪW as a slice topos (see Definition 3.23 and Proposition 3.24 below). The fact

that ŪW is equivalent to ˜(TŪ ,Jls) will be used as a technical tool in the remaining
part of this paper.

Definition 3.23 Let Ū be an étale X̄ -scheme. We define the Weil-étale topos of Ū as
the slice topos

ŪW := X̄W /γ ∗(Ū ).

Proposition 3.24 One has a pseudo-functor

EtX̄ −→ Top

Ū 
−→ ŪW

where Top is the 2-category of topoi.

Proof The assignment Ū 
→ ŪW is obtained by composing the Yoneda embedding,
the functor γ ∗, and the pseudo-functor (see [5, IV.5.6])

X̄W −→ Top

F 
−→ X̄W /F

The result follows. ��
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Proposition 3.25 We have a pull-back of topoi

ŪW

��

γŪ �� Ūet

��
X̄W

γ �� X̄et

In other words, one has an equivalence ŪW � X̄W ×X̄et
Ūet , where the fiber product

is defined in the 2-category of topoi.

Proof One has a canonical equivalence X̄et/Ū � Ūet , as it follows from (see [5, III
Prop 5.4])

X̄et/yŪ := ˜(EtX̄ ,Jet )/Ū � ˜(EtX̄/Ū ,Jind) = ˜(EtŪ ,Jet ) =: Ūet .

We write below γ ∗Ū (respectively Ū ) for the object y(γ ∗Ū ) = γ ∗(yŪ ) (respectively
yŪ ) of the topos X̄W (respectively of X̄et ). By ([5, IV Prop 5.11]), the following
commutative diagram

X̄W /γ ∗Ū

��

γ/Ū �� X̄et/Ū

��
X̄W

γ �� X̄et

is a pull-back, i.e. 2-cartesian in the terminology of [5], where the vertical arrows are the
localization morphisms. The result then follows from the definition ŪW := X̄W /γ ∗Ū .

��
For any étale X̄ -scheme Ū , a site for the topos ŪW is given by the category TX̄/γ ∗Ū

endowed with the topology induced by the local sections topology via the forgetful
functor TX̄/γ ∗Ū → TX̄ . We want to define a site for ŪW analogous to TX̄ . Let Ū be
a connected étale X̄ -scheme. Again, we need to make non-canonical choices.

Data 3.26 1. We choose a geometric point qŪ : Spec F̄ → Ū over the geometric
point Spec F̄ → X̄ chosen in Sect. 3.1 (1). In other words, the following triangle

Ū

��
Spec F̄ ��

qŪ

�����������
X̄

is required to be commutative. The geometric point qŪ yields a sub-extension
F̄/K/F , where K is the function field of Ū .
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2. For any closed point u of Ū over v ∈ X̄ , we choose an embedding Ku → F̄v such
that the following diagram commutes.

Fv
�� Ku

�� F̄v

F

��

�� K

��

�� F̄

��

Then, the Weil group of F̄/K is defined by

WK := ϕ−1G K

where ϕ : WF → G F is the map chosen in 3.1(2). For any closed point u of Ū over
v ∈ X̄ , the Weil group of F̄v/Ku is defined by

WKu := ϕ−1
v G Ku

where ϕv : WFv → G Fv is the map chosen in 3.1(4). Finally, the Weil map θv :
WFv → WF of Data 3.1(6) induces a Weil map

θu : WKu → WK .

Definition 3.27 Let Ū be a connected étale X̄ -scheme endowed with the data 3.26.
We consider the category TŪ of objects (Z0, Zu, fu)u∈Ū defined as follows. The space
Z0 is locally compact and given with a continuous action of WK . For any point u of
Ū , Zu is a locally compact topological space endowed with a continuous action of
Wk(u). The map fu : Zu → Z0 is continuous and WKu -equivariant.

The action of WK on Z0 factors through WL/K for a finite Galois sub-exten-
sion F̄/L/K . The map fu is an homeomorphism for almost all points u of Ū and
a continuous injective map for all points of Ū . An arrow φ : (Z0, Zu, fu) →
(Z ′0, Z ′u, f ′u) in the category TŪ is a WK -equivariant continuous map φ : Z0 → Z ′0
inducing a continuous map Zu → Z ′u for any u ∈ Ū . The category TŪ is endowed
with the local section topology Jls .

The argument of the proof of Proposition 3.17 gives a morphism of topoi

˜(TŪ ,Jls) −→ Ūet .

Moreover, the choices 3.26 above define a morphism of topoi

˜(TŪ ,Jls) −→ ˜(TX̄ ,Jls) =: X̄W .

Indeed, we have a morphism of left exact sites

(TX̄ ,Jls) −→ (TŪ ,Jls)

(Z0, Zv, fv)v∈X̄ 
−→ (Z0, Zu, fu)u∈Ū
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defined as follows. The space Z0 on the right-hand side is given with the action of
WK induced by the morphism WK ↪→ WF . For any closed point u of Ū lying above
v ∈ X̄ , the space Zu is Zv endowed with the action of Wk(u) induced by the morphism
Wk(u) ↪→ Wk(v), which in turn induced by the morphism WKu ↪→ WFv .

We obtain a commutative square

˜(TŪ ,Jls)

��

�� Ūet

��
X̄W

γ �� X̄et

since the corresponding diagram of sites is commutative. By the universal property
of fiber products in the 2-category of topoi, this commutative square gives rise to an
essentially unique morphism

˜(TŪ ,Jls) −→ X̄W ×X̄et
Ūet � ŪW .

Proposition 3.28 Let Ū be a connected étale X̄-scheme endowed with the Data 3.26.
Then, the morphism defined above

˜(TŪ ,Jls) −→ ŪW .

is an equivalence.

Proof Recall that γ ∗Ū = (U0, Uv, hv), where U0 := Hom X̄ (Spec F̄, Ū ) as a
WF -set. The sub-extension F̄/K/F given by the point qŪ yields an isomorphism
of WF -sets

U0 := Hom F (K , F̄) � G F/G K � WF/WK ,

sending qŪ ∈ U0 to the distinguished element of WF/WK . This gives an isomorphism
of categories

BT opWF/U0 � BT opWF/(WF/WK ).

Hence, the functor

�0 : BT opWF/U0 −→ BT opWK

φ0 : Z0 → U0 
−→ Zu0 := φ−1
0 (qŪ )

is an equivalence of categories. Let φ : (Z0, Zv, fv)→ (U0, Uv, hv) be an object of
the slice category TX̄/γ ∗Ū and let u ∈ Ū be a closed point lying above v ∈ X̄ . The
action of WKu on

f −1
v (Zu0) ↪→ Zu0 := φ−1

0 (qŪ )
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via the map WKu → WK is unramified, in the sense that W 1
Ku

acts trivially on

f −1
v (Zu0). Then, we see f −1

v (Zu0) as a Wk(u)-space, where f −1
v (Zu0) is given with

the topology induced by the inclusion f −1
v (Zu0) ⊆ Zv . We define Zu to be the space

Zu := f −1
v (Zu0)

endowed with its Wk(u)-action. Finally, the WFv -equivariant map fv : Zv → Z0
induces a WKu -equivariant map gu : Zu → Zu0 , which is injective and continuous
everywhere and an homeomorphism almost everywhere. Then, the equivalence �0
induces a functor

� : TX̄/γ ∗Ū −→ TŪ

(Z0, Zv, fv)→ (U0, Uv, hv) 
−→ (Zu0 , Zu, gu)

which is an equivalence as well. Moreover, the topology induced on BT opWK by the
local section topology on BT opWF via the functor (forget the map to U0)

BT opWK � BT opWF/U0 → BT opWF

is still the local section topology on BT opWK . The same is true for any place v of F ,
and we obtain an equivalence of sites:

(TX̄/γ ∗Ū ,Jls) −→ (TŪ ,Jls)

Therefore, the induced morphism of topoi

˜(TŪ ,Jls) −→ ˜(TX̄/γ ∗Ū ,Jls) � ˜(TX̄ ,Jls)/γ
∗y(Ū ) =: ŪW

is an equivalence (see [5, III Prop. 5.4] for the last equivalence). ��

3.5 The Weil-étale topos of a function field

In this section, we show that our definition of the (small) Weil-étale topos of a func-
tion field coincides with the definition given by Lichtenbaum in [7]. More precisely,
let Y be an open subscheme of a smooth projective curve over a finite field k. The
most natural definition for the Weil-étale topos is given by the category Set (Wk, Y )

of Wk-equivariant étale sheaves on the geometric curve Y = Y ⊗k k. On the other
hand, Definition 3.3 yields a left exact category T sm

Y endowed with the local section
topology Jls , where we replace T op by Sets. We define below an equivalence

˜(T sm
Y ,Jls) � Set (Wk, Y ).

In other words, we show that the artificial definition of the (small) Weil-étale topos
coincides with the natural one in the case of a function field. This justifies the term
“Weil-étale topos” for the topos defined in this paper.
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Data 3.29 Let Y be an open subscheme of a geometrically connected smooth
projective curve over a finite field k with function field K .

1. We choose a separable algebraic closure K̄/K .
2. For closed point y of Y , we choose a separable algebraic closure K̄v/Kv and a

K -embedding K̄ → K̄v .

We have a natural map G K → Gk , and the global Weil group WK is defined as
the fiber product topological group WK := G K ×Gk Wk . For any closed point v of
Y , one has Gk(v) = G Kv /IKv , and WKv := G Kv ×Gk(v)

Wk(v). There exists a unique
Weil map WKv → WK such that the following diagram is commutative

WKv

��

�� G Kv

��
WK

�� G K

Definition 3.30 Let T sm
Y be the category of objects (Z0, Zv, fv) defined as follows.

The set Z0 is endowed with a continuous WK -action. For any closed point v of Y , Zv

is a set endowed with a continuous Wk(v)-action. The map fv : Zv → Z0 is WKv -
equivariant, when Zv and Z0 are seen as WKv -spaces via the maps WKv → WK and
qv : WKv → Wk(v). We require the following facts:

• The map fv is bijective for almost all closed points and injective for all closed
points v of Y .

• The action of WK on Z0 factors through WL/K , for some finite Galois subextension
K̄/L/K .

A morphism

φ : (Z0, Zv, fv) −→ (Z ′0, Z ′v, f ′v)

in the category T sm
Y is a WK -equivariant map φ : Z0 → Z ′0 inducing a WKv -equivari-

ant map φv : Zv → Zv for all closed points v of Y .
The category T sm

Y is endowed with the local section topology Jls , i.e. the topology
generated by the pretopology for which a family

{ϕi : (Zi,0, Zi,v, fi,v)→ (Z0, Zv, fv), i ∈ I }

is a covering family if the map
∐

i∈I Zi,v → Zv is surjective, for any point v of Y .

Definition 3.31 We define the small Weil-étale topos Y sm
W as the topos of sheaves on

the site (T sm
Y ,Jls).

Let K k be the function field of the geometric curve Y . We have the sub-extension
K/K k/K and we set G K k := G(K/K k). For any closed point y ∈ Y , we denote
by Iy the Galois group of the completion of K k at y. We choose maps Iy ↪→ G K k
compatible with Data 3.29.
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Definition 3.32 Let T sm
Y

be the category of objects (Z0, Z y, fy), where y runs over

the closed points of Ȳ , defined as follows. The set Z0 is endowed with a continuous
G K k-action. For any closed point y of Y , Z y is a set endowed with a Iy-equivariant
a map fy : Z y → Z0, where Iy acts trivially on Z y and Iy acts on Z0 via the map
Iy → G K k . Moreover, we assume that

• The map fy is bijective for almost all closed points y of Y and injective for all
closed points y of Y .

• The action of G K k on Z0 factors through G(L/K k), for some finite Galois sub-
extension K̄/L/K k.

The morphisms in the category T sm
Y

are defined as above. The local section topology
Jls on the category T sm

Y
is generated by the pretopology of surjective families as

above.

We consider below the category EtY of finitely presented étale Y -schemes. The
site (EtY ,Jet ) is called the restricted étale site. Since Y is quasi-compact and
quasi-separated, the restricted étale site (EtY ,Jet ) is a site for the étale topos of
Y , i.e. we have

Y et = ˜(EtY ,Jet ).

Proposition 3.33 There is an equivalence

˜(T sm
Y

,Jls) � Y et .

Proof The arguments of Proposition 3.17 can be generalized to this context. This
yields a natural functor EtY → T sm

Y
. This functor is not essentially surjective because

an object (Z0, Z y, fy) of T sm
Y

can have an infinite number of connected compo-

nents (i.e. Z0/G K k is infinite), while a finitely presented étale Y -scheme has finitely
many connected components. However, the previous functor is fully faithful, EtY is a
topologically generating family of the site (T sm

Y
,Jls), and the étale topology on EtY

is induced by the local section topology on T sm
Y

. Hence, the result follows from ([5,
IV Corollary 1.2.1]). ��

We recall below some basic facts concerning truncated simplicial topoi. We refer
to ([10, Chapter 10 Sect. 1.2]) for more details and references. A truncated simplicial
topos S• is given by the usual diagram

S2
������ S1

��
�� S0

��

Given such truncated simplicial topos S•, we define the category Desc(S•) of objects
of S0 endowed with a descent data. One can prove that Desc(S•) is always a topos.
More precisely, Desc(S•) is the inductive limit of the diagram S• in the 2-category
of topoi.
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The most simple non-trivial example is the following. Let S be a topos and let U
be an object of S. We consider the truncated simplicial topos

(S, U )• : S/(U ×U ×U ) �� ���� S/(U ×U )
��
�� S/U��

where these morphisms of topoi are induced by the projections maps (of the form
U ×U ×U → U ×U and U ×U → U ) and by the diagonal map U → U ×U . It
is well known that if U covers the final object of S, then the natural morphism

Desc(S, U )• −→ S

is an equivalence. In other words, S/U → S is an effective descent morphism for
any U covering the final object of S.

We will also use the following example. Let G be a discrete group acting on a
scheme Ȳ . The truncated simplicial scheme

G × G × Y �� ���� G × Y
��
�� Y��

defined by the action of the group G on Y induces a truncated simplicial topos:

(G, Y et )• : (G × G × Y )et
������ (G × Y )et

��
�� Y et

��

The descent topos of this truncated simplicial topos is precisely the category of G-
equivariant étale sheaves on Ȳ :

Set (G, Y ) := Desc((G, Y et )•).

Theorem 3.34 There is an equivalence

˜(T sm
Y ,Jls) � Set (Wk, Y ).

Proof First, there is a canonical morphism of topoi

f : ˜(T sm
Y ,Jls) −→ Bsm

Wk

induced by the morphism f ∗ of left exact sites defined as follows. The functor f ∗ sends
a Wk-set Z to the object (Z , Z , I dZ ) of T sm

Y , where WK (respectively Wk(v)) acts on
Z via the map WK → Wk (respectively via Wk(v) → Wk). Let EWk be the object of
Bsm

Wk
defined by the action of Wk on itself by multiplications. One has f ∗(EWk) =

y(EWk, EWk, I d). Adapting the proof of Proposition 3.28 to this context, we obtain
the following equivalences:

˜(T sm
Y ,Jls)/ f ∗(EWk) � ˜(T sm

Y / f ∗EWk,Jls) � ˜(T sm
Y

,Jls).
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By Proposition 3.33, we have

Y sm
W / f ∗(EWk) = ˜(T sm

Y ,Jls)/ f ∗(EWk) � ˜(T sm
Y

,Jls) � ˜(EtY ,Jet ) = Y et (3.8)

The morphism from f ∗EWk to the final object of ˜(T sm
Y ,Jls) is certainly an

epimorphism, i.e. a covering morphism. We consider the truncated simplicial topos
S1• obtained by localization:

Y sm
W /( f ∗EWk× f ∗EWk × f ∗EWk)

������ Y sm
W /( f ∗EWk× f ∗EWk)

��
�� Y sm

W / f ∗EWk
��

The descent topos of this truncated simplicial topos S1• is canonically equivalent to
Y sm

W since f ∗EWk covers the final object:

Y sm
W � Desc(S1• )

By (3.8), the truncated simplicial topos S1• is equivalent to

S2• : Y et/(g∗Wk × g∗Wk)
�� ���� Y et/g∗Wk

��
�� Y et

��

where g : Y et → Sets is the unique morphism. One has g∗Wk×g∗Wk = g∗(Wk×Wk)

and

g∗Wk = g∗
⎛

⎝

∐

Wk

{∗}
⎞

⎠ =
∐

Wk

g∗({∗}) =
∐

Wk

y(Y ) = y

⎛

⎝

∐

Wk

Y

⎞

⎠ = y(Wk × Y )

where {∗} and y(Y ) are the final objects of Sets and Y et respectively, since g∗
commutes with finite projective limits and arbitrary inductive limits. We obtain

Y et/g∗Wk = Y et/y(Wk × Y ) = (Wk × Y )et

since the projection Wk × Y → Y is an étale morphism of schemes, and

Y et/(g
∗Wk × g∗Wk) = Y et/y(Wk ×Wk × Y ) = (Wk ×Wk × Y )et

The truncated simplicial topos S2• is equivalent to

S3• : (Wk ×Wk × Y )et
������ (Wk × Y )et

��
�� Y et

��

where the maps of this simplicial topos are given by the group structure of Wk and its
action on Y . Hence, we have equivalences of truncated simplicial topoi:

S1• � S2• � S3•
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inducing equivalences between the associated descent topoi:

Y sm
W � Desc(S1• ) � Desc(S2• ) � Desc(S3• ) � Set (Wk, Y ).

��
Recall that Lichtenbaum has defined in [7] the Weil-étale cohomology as follows:

Hn
W (Y,A) := Rn(�

Wk

Y
)A

Here, A is a Wk-equivariant abelian étale sheaf on Y and �
Wk

Y
is the functor of

Wk-invariant global sections on Y . This cohomology is precisely the cohomology
of the Weil-étale topos Set (Wk, Y ). Indeed, the latter is defined as Rn(α∗)A, where
α : Set (Wk, Y )→ Sets is the unique map from the Weil-étale topos to the final topos.
But we have canonically α∗ = �

Wk

Y
.

4 The Weil-étale fundamental group

4.1 Local sections

For W a locally compact topological group and I a closed subgroup of W , it is not
known in general that the continuous projection W → W/I admits local sections.
The result below, due to Mostert, shows that local sections do exist when W/I is
finite dimensional. We denote below by dim(X) the covering dimension of the space
X in the sense of Lebesgue. Note that for any locally compact space X , we have the
inequality

cd(X) ≤ dim(X)

where cd(X) denotes the cohomological dimension that is used in [13].

Theorem 4.1 Let W be a locally compact topological group and let I ⊆ W be a
closed subgroup such that W/I is finite dimensional. Then, the continuous projec-
tion W → W/I has local sections. If W/I is 0-dimensional, then the projection
W → W/I has a global continuous section.

Proof This is [13, Theorem 8]. ��
Corollary 4.2 Let W be a finite dimensional locally compact topological group and
let I ⊆ W be a closed subgroup. Then the continuous projection W → W/I has local
sections.

Proof By [13, Corollary 2], if W is finite dimensional then so is W/I , and the result
follows from the previous theorem. ��
Lemma 4.3 Let L/K be a finite Galois extension of number fields. The idèle class
group CL and relative Weil group WL/K both have finite dimension.
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Proof Let us first note that CL is an open (and closed) subgroup of WL/K , hence

dim(WL/K ) = dim(CL).

Global class field theory provides us with an exact sequence of topological groups

1→ C0
L → CL → Gab

L → 1,

where C0
L is the connected component of CL . We mean by the term exact sequence that

C0
L is a closed normal subgroup of CL endowed with the induced topology and that Gab

L
becomes isomorphic to the group CL/C0

L endowed with the quotient topology. The
space Gab

L is profinite hence compact and totally disconnected. Hence, dim(Gab
L ) = 0.

By Theorem 4.1, the continuous map CL → Gab
L has a global continuous section. We

obtain an homeomorphism CL � C0
L × Gab

L (which is not a group morphism). We
obtain

dim(CL) ≤ dim(C0
L)+ dim(Gab

L ) = dim(C0
L).

But the connected component C0
L is the product of R with r1(L)+r2(L)−1 solenoids

and r2(L) circles. Recall that a solenoid is a filtered projective limit of circles:

V := lim←−S
1

hence V is of dimension 1. We obtain

dim(WL/K ) = dim(CL) ≤ dim(C0
L) ≤ r1(L)+ 2 r2(L) = [L : Q]

��
Corollary 4.4 Let L/K be a finite Galois extension of number fields. The map WK →
WL/K has local sections. The relative Weil group WL/K ,S has finite dimension, and
WK → WL/K ,S has local sections. For two Galois extensions L ′/L/K , the map
WL ′/K ,S → WL/K ,S has local sections.

Proof The group WL/K ,S is the quotient of WL/K by a closed subgroup. Hence,
WL/K ,S has finite dimension by Lemma 4.3 and [13, Corollary 2]. The maps WK →
WL/K , WK → WL/K ,S , and WL ′/K ,S → WL/K ,S are all quotient maps of locally
compact groups by closed subgroups with finite dimensional targets. Those results
follow from Theorem 4.1. ��

4.2 Weil groups

Again we consider a connected étale X̄ -scheme Ū endowed with the Data 3.26. Thus,
we have a geometric point qŪ : Spec F̄ → Ū over Spec F̄ → X̄ , i.e. a sub-extension
F̄/K/F , where K is the function field of Ū . The Weil group of K is WK := ϕ−1G K .
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If u is a closed point of Ū lying over v ∈ X̄ , then the Weil map θv : WFv → WF of
Data 3.1(6) induces a Weil map θu : WKu → WK . We denote by W 1

Ku
⊂ WKu the

maximal compact subgroup, which should be thought of as the inertia subgroup.

Definition 4.5 We define the Weil group W (Ū , qŪ ) of the pair (Ū , qŪ ) as the quotient

W (Ū , qŪ ) := WK /NŪ

where NŪ is the closure of the normal subgroup in WK generated by the images of
the maps

W 1
Ku

↪→ WKu → WK

where u runs through the closed points of Ū .

We will show below that this group W (Ū , qŪ ) is the limit in the category of topolog-
ical groups of a projective system of topological groups, i.e. of a topological pro-group.
We can either consider this topological pro-group or we can consider its limit as a topo-
logical group. It turns out that a topological pro-group contains more information than
its limit computed in the category of topological groups. For example, there exist non-
trivial strict pro-groups whose limit, computed in the category of topological groups,
is the trivial group. Topos theory provides a natural framework to overcome this kind
of pathologies.

Let (Ū , qŪ ) be as above and let F̄/L/K be a finite Galois subextension, where the
algebraic closure F̄/K is given by the geometric point qŪ .

Definition 4.6 We consider the topological group W (Ū , L) defined as the quotient

W (Ū , L) := WL/K /NŪ ,L ,

where NŪ ,L is the closure of the normal subgroup in WL/K generated by the images
of the maps

W 1
Ku

↪→ WKu → WL/K

where u runs through the closed points of Ū .

Definition 4.7 We denote by W (Ū , qŪ ) the strict topological pro-group

W (Ū , qŪ ) := {W (Ū , L) ; F/L/K f ini teGalois}

indexed over the system of finite Galois subextension of F̄/K .

Recall that the term “strict” means that the transition maps

W (Ū , L ′) −→ W (Ū , L)

have local sections. This follows from Theorem 4.1, Lemma 4.3 and from the fact that
W (Ū , L) is the quotient of WL/K by a compact subgroup.
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Proposition 4.8 The canonical morphism of topological groups

α : W (Ū , qŪ ) −→ lim←−W (Ū , L)

is an isomorphism, where the right-hand side is the projective limit computed in the
category of topological groups. Moreover, the map

W (Ū , qŪ ) −→ W (Ū , L)

has local sections.

Proof Consider the product decompositions

W (Ū , qŪ ) � W 1(Ū , qŪ )× R and W (Ū , L) � W 1(Ū , L)× R

where W 1(−) is the maximal compact subgroup of W (−). We have

lim←−W (Ū , L) � lim←−W 1(Ū , L)× R

since projective limits commute between themselves (in particular with products).
Hence, it is enough to show that

α1 : W 1(Ū , qŪ ) −→ lim←−W 1(Ū , L)

is an isomorphism of topological groups. For any L/K finite Galois, we have an exact
sequence of topological groups:

1→ NŪ ,L → W 1
L/K → W 1(Ū , L)→ 1

Passing to the limit we obtain an exact sequence (since projective limits are left exact)

1→ lim←− NŪ ,L → lim←−W 1
L/K → lim←−W 1(Ū , L) (4.1)

By definition of NŪ and NŪ ,L , the inclusion NŪ ↪→ W 1
K factors through lim←− NŪ ,L .

We obtain an injective continuous map

n : NŪ ↪→ lim←− NŪ ,L

which has dense image, since all the maps NŪ ↪→ NŪ ,L are surjective. This mor-
phism n is an isomorphism of topological groups because NŪ is compact. The exact
sequence (4.1) then shows that α1 is injective. On the other hand, the map

W 1(Ū , qŪ ) −→ W 1(Ū , L)
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is surjective for any L , hence α1 has dense image. Therefore, α1 is surjective and
bicontinuous, since W 1(Ū , qŪ ) is compact. Finally, the map

W (Ū , qŪ ) −→ W (Ū , L)

has local sections by Theorem 4.1. ��
Let V̄ be another connected étale X̄ -scheme. The generic point of V̄ is the spectrum

of a number field L and we denote by S the finite set of places of L not corresponding
to a point of V̄ . The S-idèle class group CL ,S of L is defined by the following exact
sequence of topological groups

0→
∏

w∈V̄

O×Lw
→ CL → CL ,S → 0 (4.2)

where
∏

w∈V̄ O×Lw
is the product of the local units O×Lw

:= K er(L∗w → R>0) indexed

by the sets of places of L corresponding to a point of V̄ .

Definition 4.9 For any connected étale X̄ -scheme V̄ with function field L , we define
the formation module CV̄ of V̄ as the S-idèle class group of L

CV̄ := CL ,S

where S is the set of places of L not corresponding to a point of V̄ .

The geometric point qŪ : Spec F̄ → Ū gives a point of the étale topos

qŪ : Sets −→ Ūet

and the étale fundamental group π1(Ūet , qŪ ) is well defined as a profinite group. This
group is the Galois group of the maximal sub-extension of F̄/K unramified at any
place of K corresponding to of Ū (regardless if such a place is ultrametric or archime-
dean). More geometrically, we consider the filtered set of pointed Galois étale cover
{(V̄ , qV̄ )→ (Ū , qŪ )} to define the étale fundamental group

π1(Ūet , qŪ ) := lim←−(V̄ ,qV̄ ) Gal(V̄ /Ū )

The pair

(π1(Ūet , qŪ ), lim−→(V̄ ,qV̄ ) CV̄ ) (4.3)

is a (topological) class formation (see [14, Proposition 8.3.8] and [14, Theorem
8.3.12]). This follows from the fact that if L/K is a Galois extension unramified over
Ū , then the GL/K -module

∏

w∈V̄ O×Lw
in (4.2) is cohomologically trivial. Therefore,

one can consider the Weil group associated to this class formation (see [15]). More
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precisely, one has a compatible system of fundamental class leading to a projective
system of extensions

1→ CV̄ → WV̄ /Ū → Gal(V̄ /Ū )→ 1.

This projective system is indexed by the filtered set of pointed Galois cover of (Ū , qŪ ).

Definition 4.10 The Weil group of the class formation (4.3) is the projective limit

WŪ ,qŪ
:= lim←−(V̄ ,qV̄ ) WV̄ /Ū

computed in the category of topological groups.

We have a canonical map W (Ū , pŪ )→ lim←−(V̄ ,qV̄ ) WV̄ /Ū =: WŪ ,qŪ
.

If W is an Hausdorff topological group, we denote W c the closure of the commu-
tator subgroup of W , and by W ab = W/W c the maximal Hausdorff abelian quotient
of W .

Lemma 4.11 We have topological isomorphisms

W (Ū , qŪ )ab � CŪ and W (Ū , L)ab � CŪ

for any finite Galois extension L/K .

Proof Recall that K is the number field of Ū and that L/K is a finite Galois exten-
sion. We have W ab

L/K � CK . The morphism W 1
L/K → W 1(Ū , L) is surjective and

closed. Hence, W (Ū , L)c is the image of W c
L/K . On the other hand, the image of

NŪ ,L ⊂ WL/K in CK is
∏

v∈Ū O×Kv
. Since quotients commute between themselves,

we have

W (Ū , L)ab = W ab
L/K /

∏

v∈ Ū

O×Kv
=: CŪ .

The proof concerning W (Ū , qŪ ) is similar. ��

Corollary 4.12 The topological pro-group

W (Ū , qŪ )ab := {W (Ū , L)ab; L/K finite Galois}

is constant and can therefore be identified with a usual topological group. One has an
isomorphism of topological groups

W (Ū , qŪ )ab � CŪ .
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4.3 Normal subgroups

Let G be a group object in a topos S. A subgroup of G is an equivalence class of
monomorphisms of group objects H ↪→ G. A quotient of G, the dual notion, is an
equivalence class of epimorphisms of group objects G � Q.

Such a subgroup is said to be normal if the conjugation action of G on itself induces
an action on H. In other words, H is normal if there exists a commutative diagram

G × G c �� G

G ×H ��

��

H

��

where c is the conjugation action on G (which can be defined on sections, or more
directly as the conjugation action on a group object in any category). If such an induced
action of G on H does exist, then it is unique since H ↪→ G is mono.

Let H ↪→ G be a subgroup. Consider the quotient G/H in T of the equivalence
relation

H× G ⇒ G,

where the arrows are given by projection and multiplication. Then G/H has a group
structure compatible with the group structure on G (i.e. the map G → G/H is a group
morphism) if and only if H is normal in G.

In particular, let f : G′ → G be a morphism of group objects. The kernel of f is
defined as

K er( f ) := G′ ×G ∗

where ∗ → G is the unit section. Then, K er( f ) is a normal subgroup of G′.

4.3.1 Normal subgroup generated by a subgroup

Let i : H ↪→ G be a subgroup. Consider the category of triangles

N

��
H i ��

���������
G

where the maps are all monomorphisms of groups and N is normal in G. This category
is not empty since it contains I dG as the final object. The normal subgroup generated
by H in G is the projective limit in T

N (H) := lim←− N ,
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More precisely, N (H) is the projective limit of the functor that sends a triangle as
above to N . We check immediately that N (H) is the smallest normal subgroup of G
containing H.

4.3.2 Subgroup generated by a family of subgroups

Let {H j ↪→ G, j ∈ J } be a family of subgroup of G. We define analogously the
subgroup

< H j , j ∈ J >↪→ G

generated by the H j ’s in G. In what follows, we denote by

H1 ∨H2

the subgroup generated by two subgroups H1 and H2 in G.

4.3.3 Special cases

We consider now subgroups of representable group objects in T . Let G be a (locally
compact) topological group. A topological subgroup of G is a subgroup H ⊆ G
endowed with the induced topology. A topological quotient of G is a quotient G/H
endowed with the quotient topology, where H is a normal subgroup.

Lemma 4.13 Let y(G) be a group of T representable by a topological group G. The
following are equivalent.

1. G is discrete.
2. Any subgroup of yG is representable by a topological subgroup of G.
3. Any quotient of yG is representable by a topological quotient of G.

Proof By ([10, Lemma 10.29]) the unique morphism

eT : T −→ Sets

is hyperconnected. This means that for any set I , the (ordered) set SubSets(I ) of
subobjects of I in Sets is in 1 − 1 correspondence with the set SubT (e∗T I ) of su-
bobjects of e∗T I in T . Note that SubSets(I ) is just the family of subsets of I , and that
e∗T I = y(I ) is the sheaf of T represented by the discrete topological space I . Thus
we have (1)⇒ (2). We have also (1)⇒ (3) for the same reason. Let us write a more
direct proof of this fact using (1)⇒ (2). Let G be a discrete group. If

f : yG � Q

is a quotient in T , then the kernel

K er( f ) := yG ×Q ∗ ↪→ yG
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is a subobject of yG in T . Therefore, K er( f ) = y(K ) is representable by a usual
subgroup K ⊆ G, and we have

Q = y(G)/y(K ) = y(G/K )

since the map G → G/K has (obviously) local sections (see [3, Lemma 4]).
We claim that (2) ⇒ (1) and (3) ⇒ (1). Let G be a non-discrete topological

group. We denote by Gδ the abstract group G endowed with the discrete topology.
The injective continuous map Gδ → G yields a monomorphism in T :

yGδ ↪→ yG.

This map is not an isomorphism. Indeed, the Yoneda functor is fully faithful and the
identity map G → Gδ is not continuous. Hence, yGδ is a proper subgroup of yG. But
yGδ is not representable by a topological subgroup of G, since the induced morphism
on global sections

eT ,∗(yGδ) := HomT op(∗, Gδ) = Gδ −→ eT ,∗(yG) := HomT op(∗, G) = Gδ

is an isomorphism. Similarly, the quotient

yG/yGδ

is not representable by a quotient of G, since the kernel of the map yG → yG/yGδ

is not representable by a topological subgroup of G (this is yGδ). ��
Lemma 4.14 Let W be a locally compact finite dimensional topological group and
let N1 and N2 be two normal compact subgroups of W . Let N1 ∨ N2 be the nor-
mal topological subgroup of W generated by N1 and N2, endowed with the induced
topology. Then, N1 ∨ N2 is compact, and the canonical map

yN1 ∨ yN2 −→ y(N1 ∨ N2)

is an isomorphism of subgroups of yW . Moreover, one has

yW/(yN1 ∨ yN2) � y(W/N1 ∨ N2).

Proof The subgroup y(N1 ∨ N2) ↪→ y(W ) contains both yN1 and yN2. Hence, it
contains (yN1 ∨ yN2) as well, i.e. one has

(yN1 ∨ yN2) ↪→ y(N1 ∨ N2) ↪→ yW

We show below that the inverse inclusion holds.
Any element of N1 ∨ N2 is of the form xy for x ∈ N1 and y ∈ N2. We have a

continuous map

N1 × N2 → W ×W → W,
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where the second map is the multiplication. The image of this map is precisely N1∨N2;
hence, we obtain a surjective continuous map

N1 × N2 −→ N1 ∨ N2.

This shows that N1 ∨ N2 is compact. Note that this map is not a morphism of groups
in general. This map induces a bijective continuous map

N1 × N2/(N1 ∩ N2) −→ N1 ∨ N2 (4.4)

where the group (N1 ∩ N2) acts on the space N1 × N2 by

σ(x, y) = (xσ−1, σ y)

for any σ ∈ (N1 ∩ N2) and (x, y) ∈ N1 × N2. The map (4.4) is also closed since
N1 × N2/(N1 ∩ N2) is compact, hence we get an homeomorphism

N1 × N2/(N1 ∩ N2) � N1 ∨ N2.

The map N1 × N2 → N1 × N2/(N1 ∩ N2) is a local section cover by Corollary 4.2.
Indeed, (N1 ∩ N2) is a closed subgroup of the compact group N1 × N2, and N1 × N2
is finite dimensional since N1 and N2 are two compact subgroups of W which is finite
dimensional (see [13, Corollary 2]). Hence, the map

y(N1 × N2)→ y(N1 ∨ N2)

is an epimorphism in T (again, this is not a morphism of groups in general).
It follows that y(N1 ∨ N2) is the image of the map

y(N1 × N2)→ y(W ×W )→ yW,

where the second map is the multiplication. In other words, one has the epi-mono
factorization

y(N1 × N2) � y(N1 ∨ N2) ↪→ yW.

But the image of y(N1 × N2) in y(W ) is contained in (yN1 ∨ yN2) (check this on
sections), hence we have

y(N1 ∨ N2) ↪→ (yN1 ∨ yN2) ↪→ yW

We obtain y(N1 ∨ N2) = (yN1 ∨ yN2) (recall that the set of subgroups of yW has is
an ordered set). In particular, one has

yW/(y(N1) ∨ y(N2)) = yW/y(N1 ∨ N2) = y(W/N1 ∨ N2)
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where the last equality follows from the fact that W → W/N1∨N2 has local sections,
since N1 ∨ N2 is a compact subgroup of the locally compact and finite dimensional
group W (see Corollary 4.2). ��
Remark 4.15 The previous result generalizes immediately to the case of a finite
number of compact normal topological subgroups {N j ⊂ W, 1 ≤ j ≤ n}.

Let L/K be a finite Galois extension of number fields (inside the fixed algebraic
closure F̄/K ) and let

1→ CL → WL/K → GL/K → 1

be the associated relative Weil group. Let v be a place of K and let ˜W 1
Kv

be the image
of the composite morphism

W 1
Kv

↪→ WKv ↪→ WK � WL/K

endowed with the induced topology. We consider the topological normal subgroup
N ( ˜W 1

Kv
) of WL/K generated by ˜W 1

Kv
. We consider also the normal subgroup N (y ˜W 1

Kv
)

of yWL/K generated by y ˜W 1
Kv

.

Lemma 4.16 With the notations above, the group N ( ˜W 1
Kv

) is a compact subgroup of
WL/K .

Proof Let F̄/L/K be a finite Galois sub-extension. The image of W 1
Kv

in WK/F is

topologically isomorphic to W 1
Lw/Kv

, i.e. one has

˜W 1
Kw
� W 1

Lw/Kv
.

Here, W 1
Lw/Kv

is the maximal compact subgroup of WLw/Kv , which is in turn given
by the group extension

1→ L×w → WLw/Kv → G(Lw/Kv)→ 1

where w is a place of L lying above v. More precisely, W 1
Lw/Kv

is given by the following
extension

1→ O×Lw
→ W 1

Lw/Kv
→ I (Lw/Kv)→ 1

where I (Lw/Kv) is the usual inertia subgroup of G(Lw/Kv). The map W 1
Lw/Kv

→
WL/K sits in the (injective) morphism of group extensions

1 �� O×Lw

��

��

W 1
Lw/Kv

��

��

I (Lw/Kv)

��

�� 1

1 �� CL
�� WL/K

ϕ �� G(L/K ) �� 1
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We thus have W 1
Lw/Kv

∩CL = O×Lw
where the intersection makes sense inside WL/K .

The conjugation action of WL/K on CL corresponds to the Galois action. Hence for
any η ∈ WL/K , we set σ = ϕ(η) and we have

η O×Lw
η−1 = O×Lσ(w)

⊂ CL .

We denote by Nv := N ( ˜W 1
Kv

) the normal subgroup generated by W 1
Lw/Kv

in WL/K .

We obtain
∏

w|v O×Lw
⊂ Nv ∩ CL and a quotient map (hence surjective, continuous,

and open)

Cv
L := CL/

∏

w|v
O×Lw
−→ CL/(Nv ∩ CL).

On the other hand, we have

ϕ(Nv) = G(L/K un) ⊂ G(L/K )

where K un/K is the maximal subextension of L/K unramified above v, since ϕ(Nv)

is the normal subgroup of G(L/K ) generated by I (Lw/Kv). We have the following
commutative diagram with exact rows:

1 �� Nv ∩ CL
��

��

Nv
��

��

G(L/K un)

��

�� 1

1 �� CL
��

��

WL/K
ϕ ��

��

G(L/K ) ��

��

1

1 �� CL/CL ∩ Nv
��

��

WL/K /Nv
��

��

G(K un/K )

��

�� 1

1 �� Cv
K un

�� W v
K un/K

�� G(K un/K ) �� 1

In the diagram above, W v
K un/K is the extension of G(K un/K ) by Cv

K un :=
CK un /

∏

w|v O×K un
w

corresponding to the fundamental class (note that
∏

w|v O×K un
w

is
a cohomologically trivial G(K un/K )-module since K un/K is unramified at v). It can
be seen from the diagram above that CL/CL ∩ Nv is a G(L/K un)-invariant quotient
of CL . To reach the same conclusion, one can also observe that the group CL ∩ Nv

contains the group generated by the family

{ασ(α)−1 = αηα−1η−1, α ∈ CL , σ ∈ G(L/K un), η ∈ Nv, σ := ϕ(η)}

since ασ(α)−1 ∈ CL and αηα−1η−1 ∈ Nv for any α ∈ CL and η ∈ Nv . Let
H0(G(L/K un), Cv

L) be the maximal G(L/K un)-invariant quotient of Cv
L , endowed
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with the quotient topology. We obtain a continuous, surjective, open map

H0(G(L/K un), Cv
L) −→ CL/CL ∩ Nv.

Considering the norm map, we obtain a commutative triangle

H0(G(L/K un), Cv
L) ��

N

����������������
CL/CL ∩ Nv

��
H0(G(L/K un), Cv

L)

More precisely, the norm map N can be decomposed as follows:

N : H0(G(L/K un), Cv
L) � CL/CL ∩ Nv � Cv

K un ↪→ H0(G(L/K un), Cv
L). (4.5)

The kernel and cokernel of the norm map N are given by the following exact sequence

0→ ̂H−1(G(L/K un), Cv
L)→ H0(G(L/K un), Cv

L)

→ H0(G(L/K un), Cv
L)→ ̂H0(G(L/K un), Cv

L)→ 0

It follows from class field theory that ̂H−1(G(L/K un), Cv
L) and ̂H0(G(L/K un), Cv

L)

are both finite. In particular, the continuous, open and surjective map

CL/CL ∩ Nv −→ Cv
K un

has finite kernel. It is a finite étale Galois cover (in the topological sense), hence a local
homeomorphism. Hence, CL/CL ∩ Nv is Hausdorff, i.e. CL ∩ Nv is closed in CL .
But Nv is contained in W 1

L/K , hence CL ∩ Nv is a closed subgroup of C1
L , where C1

L
denotes the maximal compact subgroup of CL . Therefore, CL ∩ Nv is compact, and
Nv is an extension of the finite group G(L/K un) by CL ∩ Nv . Hence, Nv is compact
as well. ��

Lemma 4.17 We keep the notations of Lemma 4.16. One has the equality

N (y ˜W 1
Kv

) = yN ( ˜W 1
Kv

).

of subgroups of y(WL/K ) in T .

Proof Following the notations of the previous proof, we set

Nv := N ( ˜W 1
Kv

) and Nv := N (y ˜W 1
Kv

).
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We have the following morphism of exact sequences of group objects in T , where the
vertical maps are all monomorphisms.

1 �� Nv ×yWL/K yCL
��

��

Nv
��

��

yG(L/K un)

��

�� 1

1 �� yCL
�� yWL/K

ϕ �� yG(L/K ) �� 1

The subgroup Nv ×yWL/K yCL contains

yW 1
Lw/Kv

×yWL/K yCL = y(W 1
Lw/Kv

∩ CL) = y(O×Lw
) (4.6)

since the Yoneda functor commutes with fiber products. Hence, Nv ×yWL/K yCL

contains the conjugates in yWL/K of the subgroup (4.6):

η(yO×Lw
)η−1 = y(ηO×Lw

η−1) = yO×Lσ (w)

for any η ∈ WL/K with σ = φ(η). Thus, Nv ×yWL/K yCL contains the subgroup of
yWL/K generated by those subgroups:

< yO×Lσ (w), σ ∈ G(L/K ) >= y(< O×Lσ (w), σ ∈ G(L/K ) >) = y

⎛

⎝

∏

w|v
O×Lw

⎞

⎠ ,

where the first identity follows from Lemma 4.14. Let σ ∈ G(L/K un), and consider
the topological subgroup of CL given by

(I d − σ)(CL) := {ασ(α)−1, α ∈ CL}.

Then (I d − σ)(CL) is compact, since it is the image of the continuous morphism

C1
L −→ CL

α 
−→ ασ(α)−1

where C1
L is the maximal compact subgroup of CL . Using this fact and an argument

similar to the proof of Lemma 4.14, we see that we have the inclusion

y((I d − σ)(CL)) ↪→ Nv ×yWL/K yCL

of subgroups of yWL/K . Therefore, Nv×yWL/K yCL contains the subgroup of yWL/K

generated by all the subgroups considered above:

< y

⎛

⎝

∏

w|v
O×Lw

⎞

⎠ ;y(I d − σ)(CL) ∀ σ ∈ G(L/K un) > ↪→ Nv ×yWL/K yCL .
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We have above a finite number of compact subgroups of WL/K . By Lemma 4.14, we
obtain

y(�) := y

⎛

⎝<
∏

w|v
O×Lw

;(I d − σ)(CL)∀σ ∈ G(L/K un) >

⎞

⎠ ↪→ Nv ×yWL/K yCL .

where � :=<
∏

w|v O×Lw
;(I d−σ)(CL)∀σ ∈ G(L/K un) > is a topological subgroup

of CL . Note that we have

CL/� = H0(G(L/K un), Cv
L).

The proof of the previous lemma shows that � is a subgroup of finite index in Nv∩CL ,
since the norm map N has finite kernel (see (4.5)). More precisely, we have the fol-
lowing exact sequence of topological groups

1→ H ′ → CL/� = H0(G(L/K un), Cv
L)→ CL/Nv ∩ CL → 1

where H ′ is a finite subgroup of ̂H−1(G(L/K un), Cv
L). In particular, � is open in

Nv ∩ CL . We have monomorphisms

y� ↪→ Nv ×yWL/K yCL ↪→ y(Nv ∩ CL).

This implies that Nv×yWL/K yCL is representable by a topological group, as it follows
from Lemma 4.13.

Now the exact sequence

1→ Nv ×yWL/K yCL → Nv → yG(L/K un)→ 1

and the fact that the Yoneda functor y : T op→ T commutes with (disjoint) sums (of
topological spaces) show that Nv is itself representable. Hence, Nv is representable by
a topological group N ′v , and we have continuous injective morphisms of topological
groups

� ↪→ N ′v ↪→ Nv

since the maps y� ↪→ and yN ′v ↪→ yNv are both monomorphisms in T . But � is
open in Nv , hence N ′v is a topological subgroup of Nv , i.e. N ′v ⊆ Nv is endowed with
the induced topology.

Moreover, Nv = yN ′v is normal in yWL/K , hence so is N ′v in WL/K (since Yoneda
is fully faithful). Finally N ′v must contain ˜W 1

Kv
and we get N ′v = N ( ˜W 1

Kv
) = Nv hence

Nv = yN ′v = yN ( ˜W 1
Kv

).

��

Author's personal copy



The Weil-étale fundamental group II 111

4.4 A generating family for the Weil-étale topos

Let Ū be a connected étale X̄ -scheme endowed with Data 3.26. We denote by K the
function field of Ū . In this section, we define a simple topologically generating family
for the site (TŪ ,Jls) (hence a generating family for the topos ŪW ). This has already
been used to show that ŪW is connected and locally connected over T , and this will
be necessary to compute the fundamental group of ŪW .

Let us fix a finite Galois sub-extension F̄/L/K , an open subset V of Ū , a point
u of Ū and a locally compact topological space T . In this section, we denote by N
the closed normal subgroup of WL/K generated by the subgroups ˜W 1

Kv
⊆ WL/K for

any closed point v ∈ V . Let (N , ˜W 1
Ku

) be the subgroup of WL/K generated by N and
˜W 1

Ku
. This subgroup is compact hence closed. We define an object of TŪ

GL ,V,u,T := (G0 × T, Gv × T, gv)

as follows. If u is not in V , we consider

G0 = WL/K /(N , ˜W 1
Ku

)

as a WK -space and

Gv = WL/K /(N , ˜W 1
Ku

)

as a Wk(v)-space for any point v of V ⊆ Ū . Then we set Gu = Wk(u) on which Wk(u)

acts by multiplication, and Gv = ∅ anywhere else. The group WK (respectively Wk(v))
acts on the first factor of G0 × T (respectively of Gv × T ). The map

gv : Gv × T −→ G0 × T

is the identity for any point v of V ⊆ Ū , and the continuous map

gu : Wk(u) × T = WKu /W 1
Ku
× T −→ WL/K /(N , ˜W 1

Ku
)× T

is induced by the Weil map WKu → WK .
If u ∈ V we define GL ,V,u,T as above except that we set

Gu = WL/K /(N , ˜W 1
Ku

) = WL/K /N .

Notation 4.18 We denote by GL ,V,u,T the object of TŪ defined above. If T = ∗ is the
one point space, then we set GL ,V,u := GL ,V,u,∗.

For any space T of T op, one has a product decomposition in TŪ :

GL ,V,u,T = GL ,V,u × t∗T

where t∗T = (T, T, I dT ) is the constant object of TŪ associated to the space T .
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Definition 4.19 Let GŪ be the full subcategory of TŪ consisting in objects of the

form GL ,V,u,T , where F̄/L/K is a finite Galois sub-extension, V is an open subset of
Ū , u is a point of Ū , and T is a locally compact topological space. The category GŪ
is endowed with the local section topology Jls .

Theorem 4.20 The canonical morphism

ŪW −→ ˜(GŪ ,Jls)

is an equivalence.

Proof We have a composition of fully faithful functors

GŪ → TŪ → ŪW

where the second functor is the Yoneda embedding. The local section topology on
GŪ is the topology induced by the local section topology on TŪ via the inclusion
GŪ → TŪ . Hence, Jls on GŪ is the topology induced by the canonical topology
of ŪW via the composite functor defined above. But the Yoneda embedding takes a
topologically generating family of a site to a generating family of the corresponding
topos. Hence, it remains to show that GŪ is a topologically generating family for the
site (TŪ ,Jls). In other words, we need to prove that any object of TŪ admits a local
section cover by objects of GX̄ .

Let (Z0, Zv, fv) be an object of TŪ . The action of WK on Z0 factors through WL/K ,
for a finite Galois extension L/K . Since the group WL/K is locally compact, its action
on the space Z0 yields a continuous morphism of topological groups

ρ : WL/K −→ AutT op(Z0)

where the group AutT op(Z0), of homeomorphisms of Z0, is endowed with the com-
pact-open topology. The space Z0 is Hausdorff hence so is the topological group
AutT op(Z0). It follows that the kernel of ρ is a closed normal subgroup of WL/K :

K er(ρ) ⊆ WK/F .

Let V be the open set of points of Ū such that fv is an homeomorphism. Take the
generic point u = u0 of Ū and T = Z0 as a topological space. Let N be the closed
normal subgroup of WL/K generated by the subgroups ˜W 1

Kv
⊆ WL/K for any closed

point v ∈ V . The action of WK on Z0 factors through WL/K /N , since the kernel of the
continuous morphism ρ is closed in WL/K . Hence ρ induces a continuous morphism

WL/K /N −→ AutT op(Z0).

Such an action is given by a continuous map

G0 × T := WL/K /N × Z0 −→ Z0
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which is WK -equivariant. This map has an obvious global continuous section. We
obtain a morphism in TŪ

GL ,V,u0,Z0 −→ (Z0, Zv, fv)

which is a global section cover over any point v ∈ V .
Let u ∈ Ū − V . Here, we consider

GL ,V,u,Zu = (G0 × Zu, Gv × Zu, gv),

with Gv = G0 = WL/K /(N , ˜W 1
Ku

) for any v ∈ V . The second projection gives a
Wk(u)-equivariant continuous map

φu : Gu × Zu := Wk(u) × Zu −→ Zu

which has a global continuous section. Then there exists a unique morphism in TŪ

φ : GL ,V,u,Zu −→ (Z0, Zv, fv)

inducing φu at the point u ∈ Ū . Indeed, the given Wk(u)-equivariant continuous map
fu : Zu → Z0 provide us with a WK -equivariant map

φ0 : G0 × Zu := WL/K /(N , ˜W 1
Ku

)× Zu −→ Z0

For any point v of V , the same map φv := φ0 is also Wk(v)-equivariant and continuous:

φv : Gv × Zu := WL/K /(N , ˜W 1
Ku

)× Zu −→ Z0 � Zv.

We have obtained a local section cover of Z := (Z0, Zv, fv) by objects of GŪ :

{GL ,V,u0,Z0 → Z, GL ,V,u,Zu → Z for u ∈ Ū − V }

Hence, (the essential image of) GŪ is a generating full subcategory of ŪW endowed
with the topology induced by the canonical topology. The result then follows from
([5, IV Corollary 1.2.1]). ��
Corollary 4.21 Consider the full subcategory CŪ of TŪ consisting in objects
(Z0, Zv, fv) such that the canonical morphism in T

y Z0/yWK −→ y(Z0/WK )

is an isomorphism with Z0/WK locally compact. Then, CŪ is a topologically gener-
ating family of TŪ .
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Proof It is enough to show that

GL ,V,u,T = (G0 × T, Gv × T, gv)

satisfies those properties. The map

WL/K → WL/K /(N , ˜W 1
Ku

)

admits local sections by Corollary 4.2, since WL/K is locally compact and finite dimen-
sional, and (N , ˜W 1

Ku
) is compact hence closed. The map WK → WL/K admits local

sections by Corollary 4.4. We obtain an epimorphism in T

yWK � y(WL/K /(N , ˜W 1
Ku

)).

Hence, the quotient of the action of yWK on y(WL/K /(N , ˜W 1
Ku

)) is the final object
of T . Thus, the quotient of

y(G0 × T ) := y(WL/K /(N , ˜W 1
Ku

)× T ) = y(WL/K /(N , ˜W 1
Ku

))× yT

under the action of yWK is yT , since inductive limits (in particular quotients of group
actions) are universal in T .

On the other hand, the quotient of the topological space

G0 × T := WL/K /(N , ˜W 1
Ku

)× T

by the action of the topological group WK is the locally compact space T . ��
Remark 4.22 The space of connected components of GL ,V,u,T is

t!GL ,V,u,T = T .

4.5 The category SLCT (ŪW ) of sums of locally constant sheaves

Let Ū be a connected étale X̄ -scheme endowed with Data 3.26. In this section, we
denote by t : ŪW → T the canonical map. This morphism t is connected and locally
connected (see Theorem 4.27 (i)).

4.5.1 Locally constant sheaves

Recall that an object L of ŪW is said to be locally constant over T if there exists
a covering morphism F → 1 of the final object of ŪW , an object S of T and an
isomorphism over F

L× F � t∗S × F .
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Definition 4.23 An object L of ŪW is said to be locally component-wise constant
over T if there exists a epimorphism F → 1 where 1 denotes the final object of ŪW ,
an object S→ t!F of T /t!F and an isomorphism over F

L× F � t∗S ×t∗t!F F .

Proposition 4.24 An object L of ŪW is locally component-wise constant if and only
if L is locally constant.

Proof Any locally constant object is locally component-wise constant. Indeed, if L is
locally constant, then one has

L× F � t∗S × F = t∗S × t∗t!F ×t∗t!F F = t∗(S × t!F)×t∗t!F F .

The converse is also true. Let L be a locally component-wise constant object. There
exist F covering the final object, S→ t!F and an isomorphism over F

L× F � t∗S ×t∗t!F F .

By Theorem 4.20, there exists an epimorphic family {Fi → F , i ∈ I } where Fi is
represented by an object GLi ,Vi ,ui ,Ti of GŪ . Choosing a point of Ti for any element i
of the set I , we obtain a map

G :=
∐

i∈I

yGLi ,Vi ,ui ,∗ →
∐

i∈I

yGLi ,Vi ,ui ,Ti → F → 1

which is a cover of the final object of ŪW . Then we have

L× G = L× F ×F G � t∗S ×t∗t!F F ×F G = t∗S ×t∗t!F G
= t∗(S ×t!F t!G)×t∗t!G G.

Hence, one can assume that F = G. Note that t!G is the object of T represented by the
discrete set I , so that S→ t!G = I can be seen as a family of objects Si of T , indexed
by the set I . We set Gi := GLi ,Vi ,ui ,∗ and we have L× Gi � Si × Gi . For any i, j ∈ I
we consider an object K = GL ,V,u,∗ of GŪ endowed with a map K→ Gi × G j . Then
we have an isomorphism in the slice topos ŪW /K

Si ×K � L×K � S j ×K. (4.7)

But K is connected over T (i.e. t!K is the final object of T ) and it follows that
ŪW /K→ T is connected, so that there exists a (unique) isomorphism Si � S j in T
inducing (4.7). We obtain an isomorphism S �∐

I Si � Si0 × I over I and one has

L× G = S ×t!G G = S ×I G � Si0 × G

where i0 is some fixed element of I . Hence, L is locally constant. ��
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The category of “sums” of locally constant objects can be defined as follows (see
[1], and [2, section 2] for more details). For any F covering the final object of ŪW ,
one defines the push-out topos

ŪW /F ��

��

ŪW

σF
��

T /t !F �� SplF (ŪW )

By definition of the push-out topos, an object of SplF (ŪW ) is a triple (L, S, χ) where
L is an object of ŪW , S an object of T /t !F and χ is an isomorphism in ŪW /F

L× F � t∗S ×t∗t!F F .

The morphisms in the category SplF (ŪW ) are the obvious ones.
The inverse image functor

σ ∗F : SplF (ŪW ) −→ ŪW

(L, S, χ) 
−→ L

is fully faithful, and its essential image is precisely the full subcategory of ŪW con-
sisting in locally component-wise constant objects split by F .

Given two epimorphisms F → e and F ′ → e and any map F ′ → F , we have a
canonical morphism SplF ′(ŪW )→ SplF (ŪW ) such that the triangle

ŪW
σF ′ ��

σF 		���
���

���
� SplF ′(ŪW )

ρF ′,F
��

SplF (ŪW )

is commutative. Hence, two different maps f1 : F ′ → F and f2 : F ′ → F yield two
morphisms ρ1

F ′,F and ρ2
F ′,F which are isomorphic.

Definition 4.25 The topos SLCT (ŪW ) is defined as the projective limit topos

SLCT (ŪW ) := lim←−SplF (ŪW )

where F runs over a small cofinal system of coverings of the final object of ŪW .

The canonical morphism

σ : ŪW −→ SLCT (ŪW ), (4.8)
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induced by the compatible maps σF , is connected and locally connected (see [2,
Theorem 2.2]) so that SLCT (ŪW ) can be seen as a full subcategory of ŪW , which we
call the category of sums of locally constant objects.

4.5.2 The role of the fundamental group

The purpose of the fundamental group is to classify the category of sums of locally
constant objects. The Weil-étale topos ŪW is connected and locally connected over
T (see Theorem 4.27 (i)). Consider a T -point p of ŪW (see Theorem 4.27 (ii)), i.e. a
section of the structure map

t : ŪW −→ T .

Composing p and the morphism (4.8), we obtain a point

p̃ : T −→ ŪW −→ SLCT (ŪW )

of the topos SLCT (ŪW ) over T . The theory of the fundamental group in the context of
topos theory shows the following. We refer to [9] and [2, Sect. 1], or [2, Sect. 2] (and [1]
for more details) for a different approach. There exists a “pro-discrete localic group”
π1(ŪW , p) in T well defined up to a canonical isomorphism and an equivalence

Bπ1(ŪW ,p) � SLCT (ŪW ),

where Bπ1(ŪW ,p) is the classifying topos of π1(ŪW , p). Moreover, the equivalence

above identifies the inverse image of the point p̃ : T → SLCT (ŪW ) with the forgetful
functor Bπ1(ŪW ,p)→ T . In our situation, the “pro-discrete localic group” π1(ŪW , p)

is in fact (the “limit” of) a strict pro-group in T , as it follows from Theorem 4.27.
More precisely, π1(ŪW , p) is pro-represented by a strict locally compact topological
pro-group in the sense of Definition 4.7, and Bπ1(ŪW ,p) is the classifying topos of

π1(ŪW , p) in the sense of Definition 2.4.

4.6 Computation of the fundamental group

Recall that one has a morphism

j : BWF −→ X̄W .

Lemma 4.26 If L is a locally constant object of X̄W over T , then the adjunction map

L −→ j∗ j∗L

is an isomorphism.
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Proof Let L be a locally constant object of X̄W over T . There exist an object S of
T , an epimorphism F → e where e is the final object of X̄W , and an isomorphism
L × F � t∗S × F over F . Consider the morphism defined by base change of the
adjunction map:

L× F −→ j∗ j∗L× F . (4.9)

For any object U → F of X̄W /F one has (using several adjunctions):

Hom X̄W /F (U , j∗ j∗L× F) = Hom X̄W
(U , j∗ j∗L)

= Hom BWF
( j∗U , j∗L)

= Hom BWF /j∗F ( j∗U , j∗(L× F))

� Hom BWF /j∗F ( j∗U , j∗(t∗S × F))

= Hom BWF
( j∗U , j∗t∗S)

= Hom X̄W
(U , j∗ j∗t∗S)

= Hom X̄W /F (U , j∗ j∗t∗S × F)

Hence, we have an isomorphism over F

j∗ j∗L× F � j∗ j∗t∗S × F ,

and a commutative diagram

L× F

��

� �� t∗S × F
�

��
j∗ j∗L× F � �� j∗ j∗t∗S × F

where the map t∗S ×F → j∗ j∗t∗S ×F is an isomorphism by Corollary 3.12. This
shows that the morphism (4.9) is an isomorphism. But F → e is epimorphic, so that
the base change functor X̄W → X̄W /F is faithful, hence conservative. Therefore, the
adjunction map

L −→ j∗ j∗L

is an isomorphism. ��

The following theorem is the main result of this paper. Data 3.1 gives a geometric
point qX̄ : Spec F → X̄ . Then, we defined a T -point of X̄W (see Proposition 3.9):

pX̄ : T −→ X̄W .
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Recall also that the Weil-étale topos of a connected étale X̄ -scheme Ū is defined as
the slice topos

ŪW := X̄W /γ ∗Ū .

We consider below the topological pro-group W (Ū , qŪ ) introduced in Definition 4.7.

Theorem 4.27 For any connected étale X̄-scheme Ū , one has

(i) The topos ŪW is connected and locally connected over T .
(ii) A geometric point qŪ of the scheme Ū over qX̄ induces a T -valued point pŪ

over pX̄ of the Weil-étale topos ŪW , and respectively.
(iii) One has an isomorphism of topological pro-groups

π1(ŪW , pŪ ) � W (Ū , qŪ ).

Proof (i) Composing the localization map lŪ : X̄W /γ ∗Ū → X̄W with t , we obtain
the canonical morphism

tŪ : ŪW := X̄W /γ ∗Ū −→ X̄W −→ T .

The morphism lŪ is locally connected, since it is a localization map, i.e. a
local homeomorphism (the left adjoint of l ∗̄

U
is lŪ !(F → γ ∗Ū ) := F). By [6,

C3.3.2], the class of locally connected morphisms is closed under composition.
Hence, tŪ is locally connected, i.e. t ∗̄

U
has a T -indexed left adjoint tŪ !. This

functor is defined as follows tŪ ! = t! ◦ lŪ !, so that we have

tŪ ! = t! ◦ lŪ !(F → γ ∗Ū ) = t!(F).

for any object F → γ ∗Ū of the slice topos ŪW . Let I dγ ∗Ū be the final object

of ŪW . Then

tŪ !(I dγ ∗Ū ) = t!(γ ∗Ū ) = {∗}

is the final object of T since Ū is connected (see Remark 3.19). It follows from
([6, C3.3.3]) that tŪ : ŪW → T is connected and locally connected.
One can also give the following easier—but less canonical—argument. By Prop-
osition 3.28, (TŪ ,Jls) is a site for the topos UL . The proof of Proposition 3.10
is still valid by replacing TX̄ with TŪ (without any other change). This shows
that ŪW is connected and locally connected over T .

(ii) A geometric point qŪ : Spec F → Ū gives a point of the étale topos

qŪ : Sets −→ Ūet

where q ∗̄
U

is the usual fiber functor. We obtain a morphism

pŪ = qŪ ×qX̄
pX̄ : T = Sets ×Sets T −→ Ūet ×X̄et

X̄W =: X̄W
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defined over T . One can recover the geometric point qŪ from pŪ . Indeed, let
pŪ : T → ŪW be a T -point of ŪW . Then, we have a point of the étale topos

Sets −→ T −→ ŪW −→ Ūet , (4.10)

where the map Sets → T is the canonical one (see [5, IV4.10]). By ([5, VIII
Theorem 7.9]), the category of points of the étale topos of a scheme is equivalent
to the category of geometric points (algebraic and separable) and specialization
maps. Then, the map (4.10) corresponds to the given geometric point qŪ of Ū .
However, two distinct T -points of ŪW over pX̄ can induce the same Sets-valued
point of Ūet , hence the same geometric point.

(iii) We make the choices listed in Data 3.26. Proposition 3.28 yields an equivalence

˜(TŪ ,Jls) −→ ŪW .

This equivalence provides us with the morphism

j : BWK −→ ˜(TŪ ,Jls) � ŪW

corresponding to the generic point of the connected étale X̄ -scheme Ū . Then
the T -point pŪ defined in (ii), using the geometric point qŪ of Ū given by
Data 3.26, is isomorphic to the map defined over T :

p := j ◦ u : T −→ BWK −→ ˜(TŪ ,Jls) � ŪW

where T → BWK is the canonical T -point of BWK (see Proposition 3.9). In
order to ease the notations, we denote here by j and p the maps jŪ and pŪ .
Finally, we denote by u : BWK → T the canonical map, i.e. the map induced
by the morphism of groups WK → 1.
If L is an object of ŪW , then j∗L is the object p∗L of T endowed with an
action of y(WK ). In other words, j∗L comes with a morphism of groups in T :

y(WK ) −→ AutT (p∗L).

The following proof consists in two steps:

Step 1 We define a projective system of Galois torsors in the topos ŪW .

Let F̄/L/K be a finite Galois subextension given by a geometric point qŪ :
Spec F̄ → Ū over X̄ . Consider the topological group W (Ū , L) of Definition 4.6.
The morphism of left exact sites

t ∗̄
U
: (T op,Jop) −→ (TŪ ,Jls) (4.11)
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factors through the morphism

(BT opW (Ū , L),Jls) −→ (TŪ ,Jls)

Z 
−→ (Z , Z , I dZ )
(4.12)

where WK acts on Z via the morphism WK → W (Ū , L). Respectively, Wk(u) acts
on Z via the morphism Wk(v) = WKu /W 1

Ku
→ W (Ū , L). We obtain a commutative

diagram of topoi

BWK

jŪ
��

�� BW (Ū ,L)

��
ŪW

π


��������

tŪ
�� T

where the map BWK → BW (Ū ,L) is induced by the surjection

WK −→ WK /N (Ū , L) = W (Ū , L).

The map π : ŪW → BW (Ū ,L) corresponds to the torsor

Tors(Ū , L) := π∗EW (Ū , L)

where EW (Ū , L) is the universal torsor of BW (Ū ,L) given by W (Ū , L) acting on

itself by multiplications. Note that Tors(Ū , L) is a torsor of group W (Ū , L), which
is connected over T . Indeed, its space of connected components

tŪ ,!Tors(Ū , L) = yW (Ū , L)/yWK

is the final object of T , since yWK → yW (Ū , L) is an epimorphism in T . The last
claim follows from the fact that WK → W (Ū , L) has local sections since W (Ū , L)

is finite dimensional (see Theorem 4.1 and Lemma 4.3). The topological pro-group

W (Ū , qŪ ) := {W (Ū , L), for F̄/L/K finite Galois}

yields a projective system of connected torsors

{Tors(Ū , L), for F̄/L/K finite Galois} (4.13)

This projective system of torsors is given by compatible maps to classifying topoi.
By the universal property of projective limits, the pro-torsor (4.13) corresponds to an
essentially unique morphism

ŪW −→ lim←− BW (Ū ,L) =: BW (Ū ,qŪ )

into the classifying topos of the topological pro-group W (Ū , qŪ ).
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Step 2 The pro-torsor (4.13) is universal.

In other words, we have to show that any locally constant object L of ŪW over T is
trivialized by a torsor of the form Tors(Ū , L). This is the technical part of the proof.

Step 2.1 Let L be such a locally constant object. There exist an object S of T , an
epimorphism F → e where e is the final object of ŪW , and an isomorphism

L× F � t∗S × F (4.14)

over F . Since the full-subcategory GŪ of ŪW defined in Sect. 4.4 is a generating
subcategory (see Theorem 4.20), one can assume that F is representable by a sum of
objects in GŪ :

F =
∐

i∈I

Fi = y GLi ,Vi ,ui ,Ti .

For any index i ∈ I , a point of the topological space Ti �= ∅ yields a morphism

GLi ,Vi ,ui := GLi ,Vi ,ui ,∗ −→ GLi ,Vi ,ui ,Ti

in the category TŪ , where ∗ denotes the one point space as usual.
Recall that GLi ,Vi ,ui is defined as follows. Here F̄/Li/K be a finite Galois sub-

extension, Vi is an open subset of Ū , ui is a point of Ū and Ti is a separated topo-
logical space. We denote by Ni the closed normal subgroup of WLi /K generated by
the subgroups ˜W 1

Kv
⊆ WLi /K for any point v ∈ Vi . Let (Ni , ˜W 1

Kui
) be the compact

subgroup of WLi /K generated by Ni and ˜W 1
Ku

. The object

Gi := yGLi ,Vi ,ui = y(Gi,0, Gi,u, gi,u)

is then defined as follows. Assume that ui is not in Vi . We consider

Gi,0 = WLi /K /(Ni , ˜W 1
Kui

)

as a WK -space and

Gi,v = WLi /K /(Ni , ˜W 1
Kui

)

as a Wk(v)-space for any point v of Vi ⊆Ū . Then we set Gi,ui =Wk(ui ) on which Wk(ui )

acts by multiplication, and Gi,u = ∅ anywhere else.
Note that the image of Gi in the final object yŪ of ŪW , i.e. the support of the sheaf

Gi , is precisely the subobject of yŪ given by

Vi ∪ {ui } ↪→ Ū .
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The family

{Gi → yŪ , i ∈ I }

is an epimorphic family, i.e. a covering family of the final object of the topos ŪW

for the canonical topology. Indeed, the corresponding family of TŪ is a local section
cover, as it follows from the facts that a map from an non-empty space to the one point
space is a local section cover and that we have

⋃

i∈I

(Vi ∪ {ui }) = Ū . (4.15)

Step 2.2 Applying the base change functor along the map (given by any point of Ti )

Gi := yGLi ,Vi ,ui −→ yGLi ,Vi ,ui ,Ti = Fi

to the trivialization (4.14), we obtain an isomorphism over Gi :

L× Gi = (L× Fi )×Fi Gi � (t∗S × Fi )×Fi Gi = t∗S × Gi

where S is an object of T . Applying in turn the functor j∗, we get an isomorphism

j∗L× yGi,0 = j∗(L× Gi ) � j∗(t∗S × Gi ) = j∗t∗S × j∗Gi = u∗S × yGi,0

(4.16)

over y(Gi,0) = j∗Gi , i.e. an isomorphism in the topos BWK /yGi,0.

Assume for a moment that the action of yWK on p∗L (given by the object j∗L
of BWK ) factors through WLi /K . In other words, suppose that one has a commutative
triangle

yWK

�� �������������

yWLi /K
�� AutT (p∗L)

Then j∗L is an object of the full subcategory

BWLi /K ↪→ BWK .

Recall that

Gi,0 = WLi /K /(N , ˜W 1
Kui

).
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But there is a canonical equivalence

BWLi /K /yGi,0 := BWLi /K /y(WLi /K /(Ni , W 1
˜Kui

))

= BWLi /K /(yWLi /K /y(Ni , ˜W 1
Kui

)

� B(Ni , ˜W 1
Kui

)

where the second equality follows (by [3, Lemma 3]) from the fact that the projection

WLi /K −→ WLi /K /(Ni , ˜W 1
Kui

)

admits local sections, as it follows from Corollary 4.2 and Lemma 4.3. Let us make
the equivalence above more explicit. The homogeneous space Gi,0 has a distinguished
(non-equivariant) point ∗ → Gi,0, and we have

BWLi /K /yGi,0 −→ B(Ni , ˜W 1
Kui

)

(X → yGi,0) 
−→ X ×yGi,0 ∗

Under this equivalence, the base change functor

BWLi /K −→ BWLi /K /yGi,0

F 
−→ F × yGi,0

takes a yWLi /K -object F of T to the same object of T :

F = F × yGi,0 ×yGi,0 ∗

endowed with the induced y(Ni , ˜W 1
Kui

)-action. Therefore, (4.16) means that

y(Ni , ˜W 1
Kui

) acts trivially on j∗L, i.e. y(Ni , ˜W 1
Kui

) is in the kernel of the map

yWLi /K −→ AutT (p∗L). (4.17)

Hence, the action of yWLi /K on p∗L factors through

yWLi /K /y(Ni , ˜W 1
Kui

) = y(WLi /K /(Ni , ˜W 1
Kui

)).

The same argument shows that the action of yWK on p∗L factors through yWLi /K ,
i.e. that the commutative triangle considered above exists. Indeed, by (4.16) one has
an isomorphism

j∗L× yWLi /K = ( j∗L× yGi,0)×yGi,0 yWLi /K

� (u∗S × yGi,0)×yGi,0 yWLi /K

= u∗S × yWLi /K
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where we consider the object of BWK

yWLi /K = y(WK /W c
Li

) = yWK /yW c
Li

.

Note that W c
Li

, which is the closure of the commutator subgroup of WLi , is compact in
WK . Then, the previous argument shows that the action of yWK on p∗L factors through
yWLi /K = yWK /yW c

Li
(this last identification is valid by Theorem 4.1, Lemma 4.3

and [3, Lemma 3]). In summary, we have proven the following

Proposition 4.28 The action yWK → AutT (p∗L) induces a morphism

ρi : yWLi /K −→ AutT (p∗L)

for any i ∈ I , and we have

y(Ni , ˜W 1
Kui

) ↪→ K er(ρi ).

Step 2.3 Choose an object Gi0 (i.e. an index i0 ∈ I ). We have a morphism

ρi0 : yWLi0 /K −→ AutT (p∗L).

Let Ni0 be the closed normal subgroup of WLi0 /K defined above. We have an open sub-

set Vi0 ⊆ Ū such that ˜W 1
Kv
⊆ Ni0 for any v ∈ Vi0 . We claim that for any u ∈ Ū − Vi0 ,

the subgroup y ˜W 1
Ku
⊂ yWLi0 /K is in the kernel of ρi0 , i.e. one has

y ˜W 1
Ku

↪→ K er(ρi0); for anyu ∈ Ū − Vi0 . (4.18)

Let u ∈ Ū − Vi0 . By (4.15), there exists an index i ∈ I such that the support of Gi

contains u, i.e. one has:

u ∈ Vi ∪ {ui }.

Proposition 4.28 then shows that the subgroup y ˜W 1
Ku
⊂ yWLi /K is in the kernel of

the morphism

ρi : yWLi /K −→ AutT (p∗L).

Hence the subgroup yW 1
Ku
⊂ yWK is in the kernel of the morphism

ρ : yWK −→ AutT (p∗L).

It follows that the image of yW 1
Ku

in yWLi0 /K is in the kernel of ρi0 . But the continuous
surjection

W 1
Ku

� ˜W 1
Ku
⊂ WLi0 /K
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admits local sections (using Theorem 4.1 and the fact that ˜W 1
Ku

is finite dimensional),

hence induces an epimorphism in T . Thus the image of yW 1
Ku

in yWLi0 /K is y ˜W 1
Ku
⊂

y(WLi0 /K ), which is therefore in the kernel of ρi0 . We have proven (4.18).

Let N ( ˜W 1
Ku

) be the normal topological subgroup of WLi0 /K generated by the sub-

group ˜W 1
Ku

. By Lemma 4.17, N ( ˜W 1
Ku

) is compact and we have

N (y ˜W 1
Ku

) = yN ( ˜W 1
Ku

),

where N (y ˜W 1
Ku

) is the normal subgroup of yWLi0 /K generated by y ˜W 1
Ku

. We obtain

yN ( ˜W 1
Ku

) = N (y ˜W 1
Ku

) ↪→ K er(ρi0).

Therefore, the subgroup of yWLi0 /K generated by yNi0 and yN ( ˜W 1
Ku

), for any

u ∈ Ū − Vi0 , is contained in K er(ρi0):

< yNi0 ; yN ( ˜W 1
Ku

); for any u ∈ Ū − Vi0 > ↪→ K er(ρi0)

The topological subgroup of WLi0 /K , generated by Ni0 and N ( ˜W 1
Ku

) for any

u ∈ Ū − Vi0 , is normal and compact. Hence, this subgroup is precisely N (Ū , Li0),
which is the closed normal subgroup of WLi0 /K generated by all the subgroups
˜W 1

Ku
⊂ WLi0 /K for any u ∈ Ū (see Sect. 4.2).

Lemma 4.14 then shows that

yN (Ū , Li0) ↪→ K er(ρi0)

and that the morphism ρi0 induces a morphism from

yWLi0 /K /yN (Ū , Li0) = y(WLi0 /K /N (Ū , Li0)) = yW (Ū , Li0)

to the automorphism group

AutT (p∗L).

Therefore, we have an isomorphism

j∗L× yW (Ū , Li0) � u∗S × yW (Ū , Li0)

in the topos BWK /yW (Ū , Li0), where S is an object of T . In other words, we have

j∗L× j∗Tors(Ū , Li0) � u∗S × j∗Tors(Ū , Li0)

since

j∗Tors(Ū , Li0) = yW (Ū , Li0)
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where Tors(Ū , Li0) is the torsor corresponding to the morphism

π : ŪW −→ BW (Ū ,Li0 )

defined in Step1.

Step 2.4 The torsor Tors(Ū , Li0) is locally constant over T , since any torsor is
trivialized by itself, hence Lemma 4.26 applies. We obtain an isomorphism over
Tors(Ū , Li0):

L× Tors(Ū , Li0) � j∗ j∗(L× Tors(Ū , Li0))

� j∗ j∗L× j∗ j∗Tors(Ū , Li0)

� j∗( j∗L× j∗Tors(Ū , Li0))

� j∗(u∗S × j∗Tors(Ū , Li0))

� j∗u∗S × j∗ j∗Tors(Ū , Li0)

� j∗ j∗t∗S × j∗ j∗Tors(Ū , Li0)

� t∗S × Tors(Ū , Li0).

This shows that any locally constant object L of ŪW over T is trivialized by a torsor
of the form Tors(Ū , L). Hence, the pro-torsor (4.13)

{Tors(Ū , L), for F̄/L/K finite Galois}

is universal. The pro-group object of T defined by this pro-torsor is the projective
system of its Galois groups:

y W (Ū , qŪ ) := {yW (Ū , L), for F̄/L/K finite Galois}.

Equivalently, this pro-group object of T is obtain by applying the fiber functor p∗̄
U

:

y W (Ū , qŪ ) := p∗̄
U
{Tors(Ū , L), for F̄/L/K finite Galois}.

This yields an isomorphism of pro-group objects in T

π1(ŪW , pŪ ) � y W (Ū , qŪ ).

Hence, π1(ŪW , pŪ ) is a topological pro-group canonically isomorphic to W (Ū , qŪ ).
��

5 Weil-étale Cohomology with coefficients in ˜R

Let Ū be a connected étale X̄ -scheme. For any topos t : E → T defined over T , we
set ˜R := t∗(yR), where yR is the sheaf of T represented by the standard topological
group R.
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Lemma 5.1 Let j : BWK → ŪW be the canonical map. We have j∗˜R = ˜R and
Rn j∗˜R = 0 for any n ≥ 1.

Proof The identification j∗˜R = ˜R follows immediately from

HomTŪ
((Z0, Zu, fu), (R, R, I d)) = Hom BT op WK (Z0, R).

where (Z0, Zu, fu) is any object of TŪ . By Theorem 4.20, the site (GŪ ,Jls) is a site
for ŪW . Then Rn j∗˜R is the sheaf on (GŪ ,Jls) associated to the presheaf

Pn j∗˜R : GŪ −→ Ab

GL ,V,u,T −→ Hn(BWK /( j∗GL ,V,u,T ),˜R)

for any n ≥ 1. Recall that one has

j∗GL ,V,u,T = WL/K /(N , ˜W 1
Ku

)× T

where N is the closure of the normal subgroup of WL/K generated by the images
of the maps W 1

Kv
→ WL/K where v runs over the closed points of V ⊂ Ū (see

Sect. 4.4). One can write WL/K /(N , ˜W 1
Ku

) = WK /� where � is a compact subgroup
of WK . The map WK → WK /� has local sections as it follows from Theorem 4.1
and from the fact that WK /� = WL/K /(N , ˜W 1

Ku
) is finite dimensional. We obtain

yWK /y� = y(WK /�), and the following identifications:

BWK /( j∗GL ,V,u,T ) = BWK /y(WL/K /�× T )

= BWK /(yWL/K /y�× yT )

= (BWK /(yWL/K /y�))/yT

= B�/T

Therefore, for any n ≥ 1, one has

Pn j∗˜R(GL ,V,u,T ) = Hn(B�/T,˜R).

Consider the pull-back square

T /T
a ��

b

��

T

d

��
B�/T

c �� B�

This pull-back square is obtained by localization since B�/E�= T and (B�/T )/

(E�× T ) = T /T . One checks immediately that such a pull-back satisfies the Beck–
Chevalley condition d∗c∗ � a∗b∗ (this is a special case of the Beck–Chevalley con-
dition for locally connected morphisms). But b∗ is a localization functor, hence it
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preserves injective abelian objects. We obtain

d∗Rm(c∗) � Rm(a∗)b∗. (5.1)

The sheaf Rm(a∗)(˜R) is the sheaf associated to the presheaf

Pm(a∗)(˜R) : T op −→ Ab
T ′ 
−→ Hm(T /(T × T ′),˜R) = Hm(Sh(T × T ′), C0(R))

where C0(R) denotes the sheaf of germs of continuous real-valued functions on the
locally compact space T × T ′, and Sh(T × T ′) is the topos of sheaves (i.e. of étalé
spaces) on T×T ′. The isomorphism Hm(T /(T×T ′),˜R) = Hm(Sh(T×T ′), C0(R))

follows from the fact that the big topos T /(T ×T ′) of the space T ×T ′ is cohomolog-
ically equivalent to Sh(T ×T ′) (see [5, IV 4.10]). But T ×T ′ is locally compact hence
paracompact, so that the sheaf C0(R) is “fin” on T × T ′ hence acyclic for the global
sections functor. We obtain Pm(a∗)(˜R) = 0 for any m ≥ 1, so Rm(a∗)(˜R) = 0 for
any m ≥ 1. Then it follows from (5.1) that Rm(c∗)(˜R) = 0 for any m ≥ 1, since d∗ is
faithful. Moreover, by (5.1) with m = 0, the sheaf c∗(˜R) can be identified with a∗(˜R)

with trivial y�-action, which is in turn represented by the space HomT op(T, R) on
which � acts trivially. Hence, the Leray spectal sequence

Hn(B�, Rm(c∗)(˜R))⇒ Hn+m(B�/T,˜R)

degenerates and yields

Hn(B�/T,˜R) � Hn(B�, HomT op(T, R))

By ([3, Corollary 8]), we have Hn(B�, HomT op(T, R)) = 0 for any n ≥ 1, since
� is compact and HomT op(T, R) is a locally convex, Hausdorff and quasi-complete
real vector space. We have shown the following:

Pn j∗˜R(GL ,V,u,T ) = Hn(B�/T,˜R) = 0

for any n ≥ 1 and any object GL ,V,u,T of GŪ . Hence Rn j∗˜R = 0 for any n ≥ 1. ��

Proposition 5.2 We have Hn(ŪW ,˜R)=R for n=0, 1 and Hn(ŪW ,˜R)=0 for n≥2.

Proof We use the spectral sequence associated with the morphism j : BWK → ŪW

and obtain Hn(ŪW ,˜R) � Hn(BWK ,˜R), thanks to the previous Lemma. The latter
group can be computed using the product decomposition WK = W 1

K ×R and the fact
that W 1

K is compact (see [3]). ��

Author's personal copy



130 B. Morin

6 Consequences of the main result

6.1 Direct consequences

In this section, Ū denotes a connected étale X̄ -scheme with function field K . We con-
sider the classifying topos of the topological pro-group W (Ū , qŪ ), which is defined
as the projective limit:

BW (Ū ,qŪ ) := lim←− BW (Ū ,L)

Recall from Sect. 4.5 the definition of the category SLCT (ŪW ) of sums of locally
constant objects over T . The following result, which is an immediate consequence -in
fact a rewriting- of the previous theorem, gives an explicit description of the category
of sums of locally constant objects.

Corollary 6.1 There is an equivalence defined over T and compatible with the
point pŪ :

SLCT (ŪW ) � BW (Ū ,qŪ )

This equivalence is canonically induced by Data 3.26.

Corollary 6.2 The fundamental group π1(ŪW , pŪ ) is pro-representable by a locally
compact strict pro-group indexed over a filtered poset.

If G is a group object of T , then we consider the internal Hom group object

GD := HomT (G, yS
1).

For a locally compact topological group G, one can show that

(yG)DD � y(Gab)

is represented by the maximal Hausdorff abelian quotient Gab of G (see [12]). Let
G be a pro-group object of T given by a covariant functor G : I → Gr(T ), where
Gr(T ) denotes the category of groups in T , and I is a small filtered category. We
consider the pro-abelian group object GDD of T defined as the composite functor

(−)DD ◦ G : I −→ Gr(T ) −→ Ab(T ).

Recall from Definition 4.9 the definition of the abelian topological group CŪ .

Corollary 6.3 The pro-group object π1(ŪW , pŪ )DD of T is essentially constant,
hence can be identified with an actual topological group. Then, we have a canonical
isomorphism of topological groups

rŪ : CŪ � π1(ŪW , pŪ )DD.
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Proof The pro-group object π1(ŪW , pŪ )DD is the projective system of abelian objects
given by the groups (yW (Ū , L))DD for K/L/K finite and Galois. But one has

(yW (Ū , L))DD = y(W (Ū , L)ab) = yCŪ .

for any K/L/K . The second equality has been proved in Sect. 4.2. ��
We simply denote by t : ŪW → T the canonical map. Since the Weil-étale topos

ŪW is defined over the base topos T , the cohomology groups of ŪW have a topological
structure. To make this precise, we introduce the following notion.

Definition 6.4 The T -cohomology of ŪW with coefficients in A is defined as

Hn
T (ŪW ,A) := Rn(t∗)(A)

Corollary 6.5 For any abelian object A of T , one has

H0
T (ŪW , t∗A) = A and H0(ŪW , t∗A) = A(∗)

where A(∗) denotes the group of global sections of the abelian object A of T .

Proof We have

H0
T (ŪW , t∗A) := t∗t∗A = A

since t : ŪW → T is connected, i.e. t∗ is fully faithful. Let eT be the unique map
eT : T → Sets. We have

H0(ŪW , t∗A) := (eT ∗ ◦ t∗) t∗A = eT ∗A = A(∗).

��
Corollary 6.6 For any abelian locally compact topological group A, one has

H1
T (ŪW , t∗A) = HomT op(CŪ , A) and H1(ŪW , t∗A) = Homcont (CŪ , A).

Proof Let A be an abelian locally compact group. One has

H1
T (ŪW , t∗y A) = HomT (π1(ŪW , pŪ ), y A)

= lim−→ HomT (yW (L , Ū ), y A)

= lim−→ y(HomT op(W (L , Ū ), A))

= lim−→ y(HomT op(W (L , Ū )ab, A))

= y(HomT op(CŪ , A)).

Here HomT op(CŪ , A) is the group of continuous morphisms from CŪ to A, endowed
with the compact-open topology.
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Consider the unique map eT : T → Sets. This map has a canonical section sT
such that eT ∗ � s∗T . Hence, the direct image functor eT ∗ : T → Sets commutes with
arbitrary inductive limits (see [5, IV.4.10]). Then the first cohomology group

H1(ŪW , t∗A) = eT ∗H1
T (ŪW , t∗A)

= eT ∗y HomT op(CŪ , A)

= Homcont (CŪ , A)

is the discrete group of continuous morphisms from CŪ to A. ��
Corollary 6.7 There is a fundamental class

θŪ ∈ H1(ŪW ,˜R) = Homcont (CŪ , R)

given by the canonical continuous morphism θŪ : CŪ → R.

Remark 6.8 Recall that CSpec Z
= Pic(Spec Z) = R

×+. For any Ū , the fundamental
class θŪ is the pull-back of the logarithm morphism:

θSpec Z
:= log ∈ H1(Spec ZW ,˜R) = Homcont (R

×+, R)

along the map Ū → Spec Z.

The maximal compact subgroup of CŪ , i.e. the kernel of the absolute value map
CŪ → R

×+, is denoted by C1
Ū

. The Pontraygin dual (C1
Ū

)D is a discrete abelian group.

Proposition 6.9 For any connected étale X̄-scheme Ū , we have canonically

Hn(ŪW , Z) = Z for n = 0

= 0 for n = 1

= (C1
Ū

)D for n = 2.

Proof The result for n = 0 follows from Corollary 6.5. By Corollary 6.6, we have

H1(ŪW , Z) = Homc(CŪ , Z) = 0.

Moreover, we have an isomorphism

H1(ŪW ,˜S1) = Homc(CŪ , S
1) = C D

Ū
.

The exact sequence of topological groups 0→ Z→ R→ S
1 → 0 induces an exact

sequence 0 → Z → ˜R → ˜S
1 → 0 of abelian sheaves on ŪW , where ˜R := t∗(yR)

and ˜S
1 := t∗(yS

1). The induced long exact sequence

0=H1(ŪW , Z)→H1(ŪW ,˜R)→H1(ŪW ,˜S1)→H2(ŪW , Z)→ H2(ŪW ,˜R)=0
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is canonically identified with

0→ Homc(CŪ , R)→ Homc(CŪ , S
1)→ H2(ŪW , Z)→ 0

and we obtain H2(ŪW , Z) = (C1
Ū

)D . ��

6.2 The Weil-étale topos and the axioms for the conjectural Lichtenbaum topos

Lichtenbaum conjectured in [8] the existence of a Grothendieck topology for an arith-
metic scheme X such that the Euler characteristic of the cohomology groups of the
constant sheaf Z with compact support at infinity gives, up to sign, the leading term of
the zeta-function ζX (s) at s = 0. We call the category of sheaves on this conjectural
site the conjectural Lichtenbaum topos, which we denote by X̄ L . In [12, Sect. 5.2], we
gave a list of axioms that should be satisfied by the conjectural topos X̄ L , in the case
where X = Spec(OF ). We refer to them as Axioms (1)–(9). We also showed in [12]
that any topos satisfying these axioms gives rise to complexes of étale sheaves comput-
ing the expected Lichtenbaum cohomology. The main motivation for the present work
is to provide an example of a topos (the Weil-étale topos) satisfying Axioms (1)–(9).
This shows that that Axioms (1)–(9) are consistent, and this gives a natural computa-
tion of the base change from the Weil-étale cohomology to the étale cohomology (see
Corollary 6.13 below). Axioms (1)–(9) are recalled in the proof of Theorem 6.12.

The morphism γ : ŪW → Ūet induces a morphism ϕŪ of fundamental pro-groups.
Applying the functor (−)DD , we obtain a morphism ϕDD

Ū
of abelian fundamental

pro-groups.

Corollary 6.10 The composite morphism

ϕDD
Ū
◦ rŪ : CŪ � π1(ŪW )ab −→ π1(Ūet )

ab

is the reciprocity law of class field theory.

Proof The fundamental group

π1(ŪW , pŪ ) = W (Ū , qŪ ) := {W (Ū , L), for K/L/K finite Galois}

can be seen as the automorphism group of the pro-torsor

{Tors(Ū , L) := π∗EW (Ū , L), for F̄/L/K finite Galois}

in X̄W . Consider the morphism of fundamental groups induced by γ :

ϕŪ : π1(ŪW , pŪ ) −→ π1(Ūet , qŪ )

It follows from the definition of γ , in terms of morphism of left exact sites (see
Proposition 3.17), that ϕŪ is the morphism of topological pro-groups from

{W (Ū , L),K/L/K finite Galois}
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to

{G(L ′/K ), K/L ′/K finite Galois unramified over Ū }

Here the morphism ϕŪ is given by the compatible family of morphisms W (Ū , L)→
G(Lun/K ), where Lun is the maximal sub-extension of L/K unramified over Ū .
Indeed, the previous statement follows from the fact that the following square is com-
mutative, where KŪ /K is the maximal sub-extension of K/K unramified over Ū :

ŪW
γ ��

��

Ūet

��
BW (Ū ,qŪ )

�� Bsm
G(KŪ /K )

The commutativity of this square in turn follows from the description of these mor-
phisms in terms of morphisms of sites, which is given in Proposition 3.17 and (4.12).

Hence, the morphism ϕDD
Ū
◦ rŪ is given by the family of compatible morphisms

CŪ � W (Ū , L)ab → G(Lun/K )ab

indexed over the finite Galois sub-extensions K/L/K . Let us fix such a sub-extension
L/K . We consider the usual relative Weil group WL/K , which is given with maps
WL/K → GL/K and CK � W ab

L/K , where CK is the idèle class group of K . The
corollary now follows from the commutative diagram

CK
� ��

��

W ab
L/K

��

�� G(L/K )ab

��
CŪ

� �� W (Ū , L)ab �� G(Lun/K )ab

since the first row is the reciprocity map of class field theory. ��
Remark 6.11 Let KŪ /K be the maximal sub-extension of K/K unramified over Ū .
The map

lim←−ϕŪ : lim←−π1(ŪW , pŪ ) = W (Ū , qŪ ) −→ lim←−π1(Ūet , qŪ ) = G(KŪ /K )

sits in the following commutative square

WK

��

�� G K

��
W (Ū , qŪ ) �� G(KŪ /K )
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Theorem 6.12 The Weil-étale topos X̄W satisfies Axioms (1)–(9) of [12, Sect. 5.2].

Proof Recall from [12, Sect. 5.2] the following expected properties of the conjectural
Lichtenbaum topos.

1. There is a morphism γ : X̄W → X̄et .
2. The topos X̄W is defined over T . The structure map X̄W → T is connected locally

connected and X̄W has a T -point p. For any connected étale X̄ -scheme Ū , the
object γ ∗Ū of X̄W is connected over T .

3. There is a canonical isomorphism rŪ : CŪ � π1(ŪW )ab such that the composition

CŪ � π1(ŪW )ab → π1(Ūet )
ab

is the reciprocity law of class field theory, where the second morphism is induced
by γ .

4. The isomorphism rŪ is covariantly functorial for any map V̄ → Ū of connected
étale X̄ -schemes.

5. For any Galois étale cover V̄ → Ū of étale X̄ -schemes, the conjugation action on
π1(V̄W )ab corresponds to the Galois action on CV̄ .

6. The isomorphism rŪ is contravariantly functorial for an étale cover.
7. For any closed point v of X̄ , one has a pull-back of topoi:

BWk(v)

iv
��

αv �� Bsm
Gk(v)

uv

��
X̄W

γ �� X̄et

8. For any closed point w of a connected étale X̄ -scheme Ū , the composition

BWk(w)
−→ ŪW −→ BCŪ

is the morphism of classifying topoi induced by the canonical morphism of topo-
logical groups Wk(w)→ CŪ .

9. For any étale X̄ -scheme Ū , one has Hn(ŪW ,˜R) = 0 for any n ≥ 2.

Indeed, Axiom (1) is given by Corollary 3.18 and Axiom (2) is given by Theo-
rem 4.27 (i) and (ii). Axiom (3) is given by Corollary 6.3 and Corollary 6.10. The
fundamental group is functorial by Proposition 3.24. Then Axioms (4)–(6) follow
from the usual functorial properties of the Weil group (see Remark 6.11). Axiom (7)
is given by Theorem 3.20. Axiom (8) follows immediately from the description of the
morphisms

ŪW → BW (Ū ,L)→ BCŪ
and iv : BWk(v)

→ ŪW

in terms of morphisms of left exact sites (see (4.12) and Theorem 3.20 respectively).
Finally, Axiom (9) is given by Proposition 5.2. ��
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We denote by ϕ : XW → X̄W the natural open embedding, and by Hn
c (XW ,A) :=

Hn(X̄W , ϕ!A) the cohomology with compact support with coefficients in the abelian
sheaf A.

Corollary 6.13 (Lichtenbaum’s formalism) Assume that F is totally imaginary. We
denote by τ≤2 Rγ∗ the truncated functor of the total derived functor Rγ∗. Then one
has:

• H
n(X̄et , τ≤2 Rγ∗(ϕ!Z)) is finitely generated and zero for n ≥ 4.

• The canonical map

H
n(X̄et , τ≤2 Rγ∗(ϕ!Z))⊗ R −→ Hn

c (XW ,˜R)

is an isomorphism for any n ≥ 0.
• There exists a fundamental class θ ∈ H1(X̄W ,˜R). The complex of finite dimen-

sional vector spaces

· · · → Hn−1
c (XW ,˜R)→ Hn

c (XW ,˜R)→ Hn+1
c (XW ,˜R)→ · · ·

defined by cup product with θ is acyclic.
• The vanishing order of the Dedekind zeta function ζF (s) at s = 0 is given by

ords=0ζF (s) =
∑

n≥0

(−1)n n dimR Hn
c (XW ,˜R)

• The leading term coefficient ζ ∗F (s) at s= 0 is given by the Lichtenbaum Euler
characteristic:

ζ ∗F (s) = ±
∏

n≥0

|Hn(X̄et , τ≤2 Rγ∗(ϕ!Z))tors|(−1)n
/det(Hn

c (X L ,˜R), θ, B∗)

where Bn is a basis of H
n(X̄et , τ≤2 Rγ∗(ϕ!Z))/tors.

Proof By [12, Theorem 6.3], this follows from Theorem 6.12. ��
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