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NEW EFFICIENT BOUNDARY CONDITIONS FOR INCOMPRESSIBLE
NAVIER-STOKES EQUATIONS : A WELL-POSEDNESS RESULT (*)

by C.-H. BRUNEAU 0) and P. FABRIE (\ 2)

Abstract. — Efficient natural conditions on open boundaries for incompressible fiows are
derived from a weak formulation of Navier-Stokes équations. Energy estimâtes in velocity-
pressure are established from a mixed formulation and a ri gourous proof of existence of solutions
is given. As an illustration, the conditions are written down for the flow behind an obstacle in
a channel. Moreover, numerical tests have shown the accuracy and robustness ofsuch conditions.

INTRODUCTIO N

The aim of this work is to find out boundary conditions that convey properly
the vortices through an artificial limit of the domain. These last ten years,
many authors have dealt with this problem for various équations, the most
famous of which is the wave équation. Following the theory of absorbing
boundary conditions, Halpern [8] for the linear advection diffusion équation
and Halpern-Schatzman [9] for the linearized Navier-Stokes équations dérive
artificial conditions that yield a well-posed problem. In [2], Begue-Conca-
Murat-Pironneau review a family of boundary conditions on dynamical pres-
sure for stationary Stokes and Navier-Stokes équations, show that these
conditions lead to well-posed problems and give some numerical experiments.
Their conditions in vorticity are, in some way, natural boundary conditions for
a weak formulation in velocity-pressure.

In this paper, we present natural boundary conditions for a weak formulation
in velocity-pressure involving the stress tensor

o 1 fdu;  duj
o(U,p)=±D(U)-pI, with ö(C/),y = i ^

For Stokes problem, these conditions reduce to

a( U, p ) . n = G

(*) Manuscript received February 14, 1995, revised July 25, 1996.
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(2) LEPT-ENSAM-URA 873.
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816 C.-H. BRUNEAU, P. FABRIE

on open boundaries where n is the unit outward normal vector.
For Navier-Stokes équations, we take into account the contribution of

convection terms to avoid reflections on artificial boundaries. We establish in
the gênerai case, existence of a weak solution for unsteady flows and uni-
queness in two dimension. The proof follows classical techniques using
Cauchy-Kovaleska regularization. Moreover, our conditions have been used
successfully to compute the flow behind a cylinder in a channel [3]. The
numerical results at high Reynolds numbers, exhibit accurate solutions without
any reflections even when strong vortices cross the artificial limit of the
domain.

1. WEAK FORMULATIO N

The goal of this work is to find out open boundary conditions for incom-
pressible Navier-Stokes équations. Let Q be a connected bounded domain in
RN (N ^ 3) with smooth boundary 3Q ; we assume that dQ has two
connected components FQ and F{ =  FDKJ FN with meas (FD) ^ 0
meas ( FN) =*  0 and FD n FN = 0 (see fig. 1).

Figure 1. — The domain Q.

We want to solve the following évolution problem for t e (0, T)

dtU+(U.V).U-diva(U,p) = 0 in QT = Q x ( 05 T)

div U = 0 in QT

U(x,0) = Uin(x) in Q

C/( . , r ) = 0 on Fox ( 0 , 7)

U(.9t) = GD on r D x ( 0 , 7)

and an artificial condition on FM
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EFFICIENT BOUNDARY CONDITIONS FOR NAVrER-STOKES EQUATIONS 817

and we assume that there exists Gl an extension of GD to Fx such that

G, dy = 0.ƒ,
We shall précise the functional spaces and the regularity of the data in

Section 2.

1.1. Auxiliar y Stokes problem

For solving the problem ( SP ), it is convenient to introducé a divergence
free function UQ such that the trace of Uo on Fo is zero and the trace of Uo on
7", is G,. Without any loss of generality we take (UQyp0) solution of the
following Stokes problem

div a( UQ1 pQ ) = 0 in Q

(Sf) div *70 = 0 'm Q
U0 = 0 in FQ

Uo = G, on r, .

Under hypothesis of regularity on Q and Gv the problem ( £f ) has always
a unique regular solution [14]. So, by setting V— U - Uo and
q = p - p0, the problem ( 0> ) is equivalent to (^h o m)

^ V+((V+ f/0).V).(V+ f/0) -divrr(K^) =0 in &x (0,7)
div V= 0 in ^ x ( O J)

v(., 0 - o on r() u rD x (o, T)

and an artificial condition on FN .

In this work, we establish a family of natural boundary conditions on FN for
( < ĥom)*  These conditions can depend on UQ and, as Uo is uniquely determined
by Gp the only arbitrary action is the choice of Gr In Section 3, we show that
the physics of the problem generaly yields a canonical extension.

1.2. Formai open boundary conditions

Let us dénote ( V, n ) a couple of regular test functions such that *P vanishes
on 7̂ 0 ̂ j FD. Assuming the solution of ( < ĥom ) is smooth enough, we can write
by splitting the convection term

L

vol

3,V.

. 30, n

y/dx+\ ( V . 1

JQ

•h-
Jn

vuo.v

° 7, 1996

dx+ \ Uo
JQ

•Vf/ 0 - \ à\v (i(V,q) .
JQ

V dx - 0 .
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Let us take three arbitrary real numbers a., 1 ̂  i ^ 3. Integrating by part,
we get

dtV.¥dx + \ \ (V.W.iF-V.ViF.V)dx + ^\ V. nV. ¥ dy +
JQ Z JQ Z JrN

+ (a, Uo-W. V ~ (1 -OL{) UQ.VV.V)dx+ (1 - a ,) UQ.nV. Vdy
JQ JrN

+ [ (a1V.VU0.Y-(\-a2)V.VW.UQ)dx+(\-a2)\ V.nU^.Vdy
JQ JrN

+ f ( a 3 t / 0 . V £ / 0 . V y - ( l - a 3 ) f / 0 . V < P . C / 0 ) ^ + ( l - a 3 )
JQ

x U0.nU0. *Fdy+\ a(V, q):V¥dx- a(V, q) . n . 'F dy =  O .

Indeed, we point out to the reader that by symmetry

D(V) : V<P=D(V) :D(V)

and that

ql :

Moreover, we gather some boundary terms to obtain for instance

V.nV. HJdy+ (1 - a, ) | UQ . nV. <F dy =
J

= ( ^ V - « + ( l - a l ) £ / 0 . « ) v . * P û f y= dy .

If /z( V) is a non négative term, we can dérive an a priori  estimate for the
velocity and the pressure as it is shown below. Otherwise, we must vanishe at
least the négative part. Indeed, if we remark that we can write

h(V) =h(V)+ -h{V)~ =2h(V)+ - \h(V)\

it is possible to keep in the weak formulation either h(V)+ or 2 h(V) +.
Further, in the genera! case, an external force F can be applied on FN.
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EFFICIENT BOUNDARY CONDITIONS FOR NAVIER-STOKES EQUATIONS 819

So, the weak formulation reads

| (a, U0.VV. V-( l -a,)t/0.V!P. V) dx

\ (a,V.V{/0.!P-(1-a,)V.V!P.£/0)à
JQ

D(V):D(¥)dx

- <r/div ¥dx + fi ( i V. n + ( 1 - ax ) UQ . n) + V. Vdy

+ fi\ ( ( l - a 2 ) V . W + ( 1 - a 3 ) t / 0 . ^ ) + U0.*Fdy= f F .

7C div 1 / ^ = 0 ,

where /? is a non négative real number.
Under some regularity assumptions on ( V, r/), the weak formulation yields

f)fV+ ( ( ! / + £ / ( ) ) . V ) . ( V + £/0) - d i v ( 7 ( V ) J ?) = 0 in ^ 3x ( 0 , 7)

div V = 0 in Ö x ( 0, T )

V ( X , O ) = V; „ (JC) in Q

( ^ oJ n . , 0 -o on r ( ïurDx(o,7)

- a 2 ) V .#i + ( 1 - a 3 ) £ / „ . n ) + -

- ( ( 1 - a 2 ) V.« + ( l -ots)Ut).n))U{) = F on f , x ( 0 , 7 ).

vol. 30, n° 7, 1996
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To well understand the boundary condition, we point out to the reader that
the nonlinear term V. VV . V in ( «^ ) must be symmetrized to obtain an
energy estimate [10], [13], [14].

On the contrary, for the other contributions of the convection term, we have
the choice to symmetrize them or not. That corresponds to ai = 1/2 or
af = 1. On the other hand, f! taking the values 0, 1 or 2 leads to vanishe
respectively h(V), — h(vy or — \h{ V)|in the above expression. However,
from the mathematical point of view, we need only to assume that /? is a non
négative real number to get a well-posed problem.

As an example, for a, = 1/2 and a2 = a3 = 1, the boundary condition
reduces to

G(V,q).n + \[PUV+U0).n)+ - ( V+ UQ) . n] V = F

on rNx(0, T)

and if we consider only the three values of ƒ? 0, 1/2 or 1, it can be written on
the form

U0).n)V=F on FNx(0, T)

where © is one of the following real functions

0{a)=a, ©(a) =- a or ©(a) = - \a\ .

Finally the initial problem reads

ÖtU+ (U. V ) . U-di\a(Utp) = 0 in Öx(OJ)

div U=0 in Qx (0, T)

U(x90) = Uhl(x) in Q

(&) U{ . , 0 =0 on rox(O, T)

U(.,t) = GD on FDx(0,T)

(j(U,p).n-j0( U.n+(\ - 2 a ,) UQ.n)( U - UO)-

0 ( (1 - o 2 ) C / , « + ( a2 - a 3 ) l / 0 . n ) Uo = <j(U 0,pQ) .n +F

on rNx ( 0 , 7)

where F is equal to zero on artificial boundaries and a{ is equal to 1/2 or 1.
Let us note that, for Stokes flow, the artificial boundary conditions reduce

to

( 0 ) <j(U tp).n = <T(UOipo).n + F on rN x ( 0, T)
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EFFICIENT BOUNDARY CONDITIONS FOR NAVIER-STOKES EQUATIONS 821

which is the natural condition. Moreover for Navier-Stokes flow, when
OLX — 1/2, ct2 - a3 and U. n 5= 0 on FNx (0, T) we get again this
condition with 0(a)= — a~ . That means that for an outgoing flow, it is
sufficient to impose Stokes boundary conditions.

We point out to the reader that the condition

a(U,p).n = 0 on FNx (0,T)

is not always compatible with a référence flow.

Remark J : If instead of a(U,p)y we use the pseudo tensor

then the boundary conditions read

(j(U9p).n-j0(U.n+(\-2a])UQ.n)(U-UQ)-

-0((l-a2)U.n+(a2-a3)Uo.n) Uo = â(UQt p0) . n + F on

and in the same way they reduce to

&(U,p) = â(U0,p0).n + F on 7^x(0,r)

for Stokes flows.

2. EXISTENCE OF WEAK SOLUTION S

In this section, we prove the existence of weak solutions (V, q) of
and uniqueness in two dimension. We first introducé the following notations

LP(Q) = (Lp(Q))N,p =5 l,provided with the norm | . |/; or | . | forp = 2

H10 = { V E L2(Q) ;d iv V=Q;n = 0onFQKj FD}

\ \ f , s & 0, provided with the norm || . || v

;div ^ =

=  L°°( 0, T ; L2( Q ) ) n L2( 0, T ; H3 (̂ Q ) )

= L°°(0, T;t2(Q))nL2(0, T;Hl
D

vol. 30, n° 7, 1996



822 C.-H. BRUNEAU, P. FABRIE

Then, we write a mixed formulation in order to easily dérive the artificial
boundary conditions in a formai way. For UQ e H~(Q), Vin e Ho and
F e ff l/2(FN)i we seek a couple {V,q) e. V x Q such that we have in
®'(0, T)

7j(V.VV. V - V.V'F. V)dx

+ \ ( a| { / 0 . V V . ¥ ' - ( l - a , ) y0 . V 9 ' . V ) d ) :
J Q

+ [ ( a2 V . V [ / 0 . ! P - ( l - a 7 ) V . V ! P . ( / 0 ) è

+ f (a3U0.VUQ.Y-a-<*3)U0.V9>.U0)dx
JQ

fj\ ( ( I - a 2 ) V . n + ( 1 - a 3 ) [ / 0 . « ) + Uo . <F dy = (F. V) .

Tidiv Vtfa = O V(V,7r) e X x ¥ ,

Remark 2 : To give sense to the equality V( . , 0 ) = V/jt we first take the
test function V7 in Xo.

On one hand, for the bidimensional problem, the solution is regular enough
in the variable V to take *¥ in Vo ; so dt V belongs to L2(0, T ; Hl̂  0( ^ ) ' ) and

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis
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then V is continuous from [0, T] into Hl0. On the other hand, in 3D we can
see that V is continuous from [0, T] into

([10]).

So it is important to take a free divergence initial condition.

2.1. Regularized problem

We approximate the Navier-Stokes équations by the artificial compressibi-
lit y method (see [14]).

That is to seek a couple ( VE, qc) e V x L°°(0, T\ L2(Q) ) such that for a
small fi>0 we have in ®'(0, 7)

d tVc. V+\(VE.VVr. W-
Q ZJQ

f (a^ U0.VVr. ¥ - (\ - a } ) U Q . V V . V v ) dx

| (cL)Vr.VU0.9
f-(\-a2)Vc.W.U0)dx

vu

f (a3U0.VU0.¥-(\-a,)U0.V¥.U0)dx
JQ

-fej D(Vc):D(<F)dx

+ fi\ ( ( l - a 2 ) V e . n + ( l - O 3 ) £ /0 . f i ) + Uo. Y dy = (F. ¥ %, •
J rN

i:  d} qr ndx+\ âïvV€7idx = 0 V(¥
J Q (' J Q

e A x

vol. 30, n° 7, 1996
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Remark 3 : To give sense to the equalities Vc( . , 0 ) = Vin and
qc( . , 0 ) = qin we distinguish the 2D problem from the 3D one.

For the bidimensional problem, when e is fixed, the solution is regular
enough to get dtVv in L ( 0» T ; IHl̂ C Q )') and then Ve is continuous from
[0, T] into i_2(£2). In the same way, we can easily see that qc is also
continuous from [0, T~\ into L2( Q ). For the 3D case, we have the same result
for the pressure but V is only continuous from [0, T] into
[H l

D(Q)7 (Ul
D(Q) n H2(O)X] 1/2 ([10]). We take a free divergence initial

datum Vin to avoid discontinuity at t = 0 for the limit problem.

PROPOSITION 1 : For Uöe H2(O), Vin e Ho, ^.n e L2(O) and
F e H""  1/2(i~'j¥), t/ze problem ( # ^) admits at least one solution which is
unique in the 2D case.

Sketch of proof. By Galerkin method, we can show easily that there exists
at least one couple ( VFi qc ) solution of ( #^ ) which is unique in two
dimension. We refer to [10], [14] for the idea of the proof.

2.2. A priori  estimâtes

In order to pass to the limit when i:  goes to zero, it is convenient to establish
the following a priori  estimâtes independently of c.

PROPOSITION 2 : For each T > 0 , there exist some constants c{Jc2,c3

which depend only on T suc h that

(1) sup |V£ ( r ) |
16 (0.T)

(2) I ' \VV(t)\2dt^c.-2

(3) sup
t e (0, T)

M2 AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numerical Analysis



EFFICIENT BOUNDARY CONDITIONS FOR NAVIER-STOKES EQUATIONS 825

Proof : We first give the proof in 2D. In this case, the solution is regular
ough to take the test functions (¥,71) e V X L°°( 0, T ; L2( Q)) in

#",,)• So, taking ( *F, n ) = ( V€, qc ) and summing both équations, we
get

v^n+{\-a,)Ua.n)+ Vc.Vcdy

|C/0|JVV/J IVJ ^

I03I | t / 0 U | V C / 0 | | V J + | l - a 3

then, by Korn inequality we have ([5])

and by Sobolev embeddings for TV ̂  3 and interpolation inequality [1]

\U0\\2

\UJ2

where c( Q ) dénotes a generic constant. Moreover, by Sobolev embedding and
continuity of the trace operator, we have on FN

vc\\5/6

So, by interpolation inequality

vol. 30, n° 7, 1996
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Thus

1 d
2dt

+ i

+

fl)(

c(S2)

2dt

2 a,

a2\

k,|2

- M

II  I / o H

c

+ ¥e
+ | 1 -

2|w£

-H. BRUNEAU, R FABRI

| W.

«2 D llt/oH 2|VVc |Vt

Kl

+ 0(^,13) l|FL1/2.rJVVj.

Then, using Young inequality for any positive real numbers a, b

where - + - = 1 and S is a positive real number of our choice, we finally
have P q

where c4 and c5 depend only on the data.
Using Gronwall lemma we obtain the inequalities (1 ), (2) and (3) for the 2D

case.
For the 3D case, the proof above is formai. To be rigourous, we need to

dérive first these estimâtes on the finite dimension approximation by Galerkin
method. Then, as all the interpolation inequalities and Sobolev embeddings
used in the 2D proof are valid in 3D, we get the same a priori  estimâtes by
lower semi-continuity of the norm in a reflexive space.

The estimâtes given in proposition 2 are not enough to pass to the limit
when e goes to zero. We need, in addition, an estimate on a fractional
derivative in time of the velocity and an estimate on the pressure. These two
estimâtes are given in the next propositions.

PROPOSITION 3 : For each T > 0 there exists a constant c6 which dépends
only on T such that

\D; Vr(t)\
2 dt ̂  c6 Vy< l /4 .
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Proof : For the sake of simplicity we only give here the proof in 2D using
3D valid Sobolev embeddings. For the 3D case the resuit cornes via Galerkin
approximation as it is pointed out in the previous proof.

We follow the ideas developed in [10] and [14]. Let V be the extension of
V by zero outside of (0, 7), we note 1F( V) its Fourier transform in time and
introducé the space

= {Ve L 2(0, T;H]
D(Q)) ; D; V e L 2 ( 0, T ; L2(Q)

where D] V(t) = ^~ \ (ir  )' &( V ) ( r ) ){t )

We take *F e Hl
D(Q) in ( J ^J and remark that

Then we apply the Fourier transform in time

ix f
JQ

(a2#'(V(.)<8>¥': Vt/ 0-( l - a9 ) ^ (V r

f ( a , I / 0 .V£ /0 . !P ' - ( l - a3 )£ /0 .VV . I /

ixe\ &(qe)ndx+\ n div ( ^ ( Vr)

T). ye-
 hT dx

(2 K)' **  JQ

vol. 30, n° 7, 1996
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where V (g> W dénotes the second order tensor whose components are given by

( v ® wo,..= v;.v..
Taking ( W, n) = ( #*( Vc) ) ( T ) ,

cubic terms

L Ve. VVC) .

, we give an estimate of the

From estimâtes (1) and (2) and by interpolation, Vc is bounded in
2AL2A( IR ; Hs{ Q)) for any 0 ^ s ^ 1.
So, by Sobolev embeddings, Ve. V V; is bounded in L4/3( R ; L^ ( f2 ) ) and

^ V) | d 4([R) \W()\Vc. VV c)|6/5 is bounded in L4([R). In the same way
2

is
bounded in L2(R).

For the second term, we take Vt: bounded in Lm(R, HVA(Q)) and conse-
quently \^( Vc<8>  VF)\ is bounded in L4(U) and \VW(VC)\ is bounded in
L2(R).

4/3(Finally, there exists a bounded function g  ̂ in L4/3(U) such that

^. r in I
Using the same technique and assuming Uö e M2(Q), we can show that

there exist g2 e L](R), g3 e Ll(R) and g4 e L2(R) such that

1 t/0 V,) : ^ ( VVe) - - ax ) t/0

g2(z)for a.e. x in

( « 2
a

g3(x)for a.e. r in I

y o •

.e. x in
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Now, by continuity of the trace operator and from estimâtes (1) and (2),

we remark that f -= Ve. n + ( 1 - ax ) X[0 T\ ̂ O • n ) ^e *s bounded in

L'(R \L2(FN)) ; so there exists a function g5 in L2(R) such that

f
a.e. T in

and, in the same way, as ( ( 1 - a2) V£. n + ( 1 - a3) x 0̂ r ]

bounded in L2(iR ; L2(FN))y there exists gr6 in L ^ R) such that
IS

f ^(((l-a2)Ve.n+(l-a3)X[ö,T]U0.n)+)U0.^(Ve)dy

.e. r m

Moreover, the Dirac terms and the second member are bounded by
g7 e L2(R). Thus, summing the équations and taking the imaginary part we
obtain

( 4 ) ) + h3(z)

for a.e. T in

4 / 3 (), /Z2 G L2([R) and h3 G L4/3([R).where hx e
To conclude, we frrst remark that there exist two constants dx and d2 such

taht for every 0 ^ a ^ 1

so the inequality (4) gives

f

d
f f AI(T) f h2(r) C hJr) 1
[ J K I + I T I 1 7 Ja? 1 H- |T | C T U \ + \ T \ " J

vol. 30, n° 7, 1996
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which is bounded independently of e as soon as 1/2 < er ^ 1.
Let us dénote B the bounded operator defined by

; V(T) = 0}

\q(T) = 0}

V e X ^ B(V) = div V<E Y .

Following [6], we prove that B is an onto operator and so its adjoint ' B is of
closed range. First we observe that, as the time t is a parameter, we only need
to show that B is an onto operator from 0-0 (̂̂ 2) to L2(Q).

Let ƒ be a given function in L2(Q), we build p in H2(ü) solution of

Ap = ƒ in Q ,

p = 0 on rN,

ènp = O on FOKJFD,

and g defined by g = 0 on F0^J FD, g =Vp on FN. Then we set
h = g — Vp on dü that belongs to Hm(dQ) by construction and checks

ndy =

Then we find W = Wo + Vp in Hl
D( Q ) where Wo satisfies [6]

div Wo = 0 , Wo = h on dQ .

PROPOSITION 4 : There exists a constant c7 independent of e such that
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Proof : Let us integrate in time the first équation of (^* E) for *F in X

- I I  VedtYdxdt + %\T\ (Ve.VVe.Y-Ve.V9'.V
Jo JQ Z JO JQ

+ N (a, U0.VV£. ! P - (1 - a ,) U0.VW .Ve) dx dt
Jo JQ

+  M (a2Ve.Vt/o.y-(l-a2)V ï.V!P.l/o)<fc<fr

(a3U0.VU0.<F-(l-a3)U0.V<F.U0)dxdt

o Jr

= \T(F,V)rNdt+ f V0
Jo JQ

\
o JQ

JTJ (±Ve.n+(l-ai)U0.ny Ve<Fdydt

r \ ( ( l - a£ ) V £ . « + ( l - a3 ) C / 0 . « )+ Vdydt
J

V(0)dx.

Using estimâtes (1) and (2) and Hölder inequality, it cornes

\{'Bqt,V)\ *£c7imi

where c7 is a positive constant independent of e.

2.3. Convergence

Let us recall that the embedding from the space

JTy(0, T;Ul
D(Q) ; L 2 ( ^ ) )

-{ V E L2(0,T\Hl
D(Q));Dy

tVe L2(0,T;l2(Q))}

vol. 30, n° 7, 1996
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into L2(0, T\ 12(Q)) is compact ([10], [14]).
From propositions 2 and 3 we know that VE is bounded in

so we can extract a séquence en such that

(5) V€) -^V L~( 0, T ; L2( & ) )

(6) V£i -» V L2( 0, 7 ; Hl̂ ( f2 ) )

(7) V£ -> V L2( 0, T ; L2( *2 ) )

On the other hand, by proposition 2

(8) enqeû >0 L~(0,T-i

and by proposition 4, as * B has a closed range,

(9) ' B ^  ̂ 'BqX'weak.

Now, let us remark that by interpolation we deduce from (6) and (7) that

(10) V£] -> V L2( 0, T ; H\ Q ) ) strongfor any 0 < s < 1

and for s = 3/4 we get

V£i -^V L\0,T;L\Ü)) strong ;

then

i lJ 0 J Q
~ V. .VÎP. V

\T\ (V.VV.*F-V.VtF.V)dxdt.

For 5 = 5/6 in (10) and using the continuity of the trace operator in
Hm(FN) we obtain

(\v.n+(\-a^U0.nY V . ÎPdy dt,
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in the same way we get convergence for the other boundary term.
Finally, as the other terms are linear, there are no difficulties to pass to the

limit .
Now, integrating in time the second équation of ( ̂ ~e ) for n in Y

~ e M $elï7dxdt+ M 7idivV£dxdt = e\ qQn(0)dx
Jo JQ

 ai Jo JQ JQ

so according to (3), we get at the limit

M ndivVdxdt = O.
Jo JQ

In conclusion, we have shown
THEOREM 1 : Let Q be a connected bounded domain in UN (N ̂  3 ) with

smooth boundaries, thenfor Uo in H2( Q ), Vin in HQ and F in H" 1/2( FN), there
exists at least one solution ( V, q ) in V x Q of ( #" ).

2.4. Uniqueness in 2D

As it is well-known, the uniqueness resuit is related to the regularity of
dt V. For *F e Xo, we get from ( ̂  )

f d,V. *F+t(V.VV. ¥- V.V*F.V)dx
JQ Z

+ | (a}UQ.VV.9'-(l-al)U0.V9'.V)dx
JQ

+ [ (a2V.Vtf 0. 5P-(1 -a2)V.V*F.Uö)dx
JQ

+ f (aiUo.VUo.r-(l-a3)Uo.V'F.Uo)dx
JQ

((l-a2)V.n+(l-a3)Uo.n)+ UQ. >Fdy = (F,
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Then we define the following operators from HX
D ö(ü) into Hl

D 0(Q)' by :

(04 U0.VV. *F- (1 -ax) Uö.V¥.V)
Ja

1 (a2V.Vt/ 0. !F- (1 -a2) V. VÏF. E/o)

V.Wdy

/ o . n )+ U0.Vdy,

V), !P>= f (a3t/ 0.Vl/ 0.ÎP-(l-a 3)£/0.V!P.I/ 0)dr-<F,!P> r
Jr3

Then we write :

v + j^ v + #( v, y) + 5̂ ( v) + ̂ ( y) = o.

From existence theorem and regularity properties on V we deduce that for 2D
dimension space, all these terms belong to L2(0, T ; H^ 0( £?)'), and then
d, V belongs to L2( 0, T ; H^ 0( Q )'). Then we can prove the following result :

THEOREM 2 : Ler (V,q) e V xQ be a solution of ( ̂  ). Tjf r/ï
dimension is equal to two, then V is unique.
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Proof : Let (V p qx) and ( V2, q2) be two solutions of ( ^ ) , we set
y - V2 - vx and q — q2 - qv Then ( V, q ) satisfies

. VV, . S7- V2. V!?. V- V. V W-

f ( t t l £/0.VV . ÎP - (1 -

f (a2 V.V*7 0. <P-(1 - a2 ) V.VW.UQ)dx
in

[/O.VÎP.

\ (\v2.n -ax)Uo.n)+ V .V dy

{ ( ( l - a 2 ) V 2 . n + ( l - a3 ) C / 0 . n ) +

Then, for *P =V, we get the following inequality

+ /î(l - a2 ) IVU r | [ /J, r
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as the function a —» a+ is a one-lipschitz function.
By Sobolev embeddings and interpolation [1] we have

Then using in addition the continuity of the trace operator we get

\V\q^rN =e o || V\\a FN ^ c'\\V\\ff+m ^ c"\V\m~a \WV\a+m with o

So we have the following estimate

- 2

|Vf/ 0|) |V| |VV| |f/0|4) |V|1/2 |VV|3/2

4/3

Now, as V belongs to Vo and using Young inequality, we show that there
exists a function h4(t) belonging to L{(0y T) such that

The proof follows using Gronwall lemma.

3. PRACTICA L EXAMPL E

To show the robustness and accuracy of our boundary conditions, we apply
them to compute the flow behind a cylinder in a channel (see^zg. 2).

L *,

Figure 2. — Domain Q for  the channel.
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In this case, the flow is set equal to Poiseuille flow ( Upjpp) upstream and
we can take (Uo>pQ) = (Up,pp) and <r(U 0,p0) = a(Up,pp) downstream.
Indeed, this is true if FN is far enough from the obstacle and numerical tests
show that this is still valid when FN is closer.

So the problem ( S? ) reads

dtU+(U.V).U~dïva(U,p) = O in Qx(09T)

div U = 0 in Qx (0,7)

U(x,0) = 0 in Q

(0>) U( . , 0 = 0 on r0x(0, T)

U(.,t) = Up on rDx(0,T)

a(U,p).n-^G(U.n+(l - 2 a ,) Up.n)(U- Up) -

- O((l - a2) U .n+ (a2- a3) Up.n) Up = a(Up,Pp) .n

onFNx (0, T) .

For numerical tests, we set ctx — 1/2, a2 = a3 = 1, 6(a) = — a~ and
pp - 0 on T"7^ (see [3] for more details). On figure 3, we see that the solution
obtained on a troncated domain is very closed to the one obtained on a larger
one at the same time. Moreover, these conditions are truly robust as we can
compute chaotic solutions at high Reynolds numbers (fig. 4), which is not the
case with the linear condition (0) that produces strong reflections for the same
time step discrétisation (fig. 5).

CONCLUSIONS

We have established a new family of open boundary conditions that lead to
a well-posed problem for incompressible Navier-Stokes équations. These
conditions are applied to compute the flow behind a cylinder in a channel.
Numerical tests show that they are very robust and accurate as they do not
induce any reflections downstream even when strong vortices cross the
artificial boundary. Finally, these conditions are suitable to simulate the
transition to turbulence in an open domain.

Acknowledgements. The authors thank the référées for their fruitful com-
ments that enable them to improve significantly the understanding of this
paper.
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Figure 3. — Stream lines and vorticit y lines at Re = 1 000.

Figure 4. — Chaotic solution at Re = 10 000.
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Figure 5. — Comparison of the linear (top) and the full condition (bottom) at Re = 10 000.
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