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Abstract

The whole flow over a solid body covered by a porous layer is presented. The three
main models used in the literature to compute efficiently the fluid flow are given:
the reduction of the porous layer to a boundary condition, the coupling of Darcy
equation with Navier-Stokes equations and the Brinkman-Navier-Stokes equations
or the penalisation method. Numerical simulations on Cartesian grids using the
latest model give easily accurate solutions of the flow around solid bodies with or
without porous layers. Adding appropriate porous devices to the solid bodies, an
efficient passive control of the two-dimensional incompressible flow is achieved. A
strong regularisation of the flow is observed and a significant reduction of the vortex
induced vibrations or the drag coefficient is obtained.
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1 Introduction

The aim of this paper is to control the two-dimensional incompressible flow around a
solid body by adding porous layers on the surface to change the shear forces in order to
regularise the flow and to reduce the vortex induced vibrations or the drag coefficient.
Modelling the physics of three different solid, porous and fluid media is an important topic
in engineering problems. It needs to describe correctly the boundary conditions between
the three regions and in some cases to solve the equations corresponding to the flow inside
the fluid and the porous medium [34, 7, 31]. This is a priori difficult to handle as the
governing equations are different and the coupling at the interface is not straightforward
[27]. A review of the various models developped these last decades is presented in order to
select the most appropriate model for the high porosity porous medium and the complex
geometries considered in this work.
In the literature several approaches are proposed to study this problem. If the goal is to
solve the fluid flow with a porous interface, one can avoid to solve the porous flow imposing
correct porous-fluid boundary conditions [5]. This approach is widely used to study tur-
bulent flows over permeable walls for instance [20, 23]. However some authors think that
it is necessary to compute the flow in both regions to have a good representation of the
porous flow [21, 31, 7]. Then a coupling between Stokes or Navier-Stokes equations and
Darcy equations is required with a right treatment of the interface. In our opinion, it is
easier to solve this problem by a unique model, namely Brinkman-Navier-Stokes equations
or the penalisation method. This consist in adding a term U/K into the Navier-Stokes



equations where K is a non dimensional permeability coefficient representing the medium.
This method can be seen as a fictitious domain method which is very easy to implement,
robust and efficient. It does need neither to have a mesh fitting the obstacle nor to impose
a boundary condition at the boundary of the solid or an interface condition between the
porous and the fluid media [1, 14, 6, 35]. Let us note that Brinkman equation is valid
only when the porosity of the porous medium is close to one.
The main advantages of passive control is that it is energy free and often easier to im-
plement. Many devices have been proposed in the literature, let us mention compliant
walls like the dolphin skin [38, 17], ribelets or bumps [18, 25, 3], splitter plates [2], wavy
or rough surfaces [40, 39]. An other possibility is to introduce porous or permeable layers
[9]. The main effect of a porous interface between the solid and the fluid is to change the
shear forces. Indeed, the no-slip boundary condition is changed to a quasi slip Fourier
type boundary condition due to the Darcy flow inside the porous layer and so the rate of
vorticity generation is reduced. Therefore the shedding around a bluff body is modified
and the flow behaviour can be drastically regularised as we shall see below. The efficiency
of this passive control is related to the choice of the permeability of the porous medium,
the thickness of the porous layers and their location. So the setup can be different when
the goal is to reduce the vortex induced vibrations of a riser pipe or the drag coefficient of
a ground vehicle. This work is only devoted to two-dimensional numerical simulations; it
appears that two-dimensional studies are relevant for the flow around a riser pipe [4, 26]
or a square back Ahmed body [19] as the flow can be a two-dimensional based flow. In
any cases a qualitative effect of the porous interface can be obtained as many numerical
tests are affordable.
This paper is organised in two main sections: The solid-porous-fluid models including
the physical description, the reduction of the porous layer to a boundary condition, the
coupling of Darcy or Brinkman equations with Stokes or Navier-Stokes equations and the
penalisation method. The numerical simulation and passive flow control including the nu-
merical simulation, the passive control setup and flow regularisation, the control of vortex
induced vibrations around a riser pipe section and the control of the drag coefficient of
ground vehicles.

2 The solid-porous-fluid models

2.1 The physical description

In this section the physical properties of a fluid-porous-solid configuration with a high
porosity (Φ close to 1) medium are described. Indeed, for the passive control a high
porosity material is needed [9]. Modelling such phenomena needs to understand correctly
the flow behaviour in the porous media, especially in the vicinity of the solid and fluid
boundaries. It is also necessary to model correctly the fluid flow in the boundary layer
close to the porous interface. In total there are five different regions of the flow from the
solid body to the open flow in the fluid as illustrated on Figure 1 where for the sake of
simplicity the velocity U = (u, v) is assumed to be parallel to the wall (v = 0):

• the boundary layer in the porous medium close to the solid wall,
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• the homogeneous porous flow with Darcy velocity,

• the porous interface region with the fluid,

• the boundary layer in the fluid close to the porous frontier,

• the main fluid flow.
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Figure 1: Velocity profile in the vicinity of the porous layer.

According to [34], the effects of a solid boundary to a porous medium flow defers from
the conventional fluid-solid boundary layer as the frictional effects are different. As the
convective velocity uD is very low, the boundary-layer growth is significant only over a
short length kuD/νp (where k is the intrinsic permeability of the porous medium and
νp = µp/ρ is the effective kinematic viscosity of the medium with µp the effective dynamic
viscosity and ρ the density of the medium) and the boundary layer thickness is of order
k1/2 for a porosity close to one. This part of the porous flow is not really significant as
there is a Darcy velocity uD in the main region of the porous layer which is essential for
the interface with the fluid flow [37]. This Darcy velocity is the major ingredient of the
passive control as we shall see in the next section.
The interface between the porous and the fluid regions is the most complex part of this
flow. It was the subject of many researches and we can find a lot of papers in the literature
(see for instance [28] and [31] and the references therein). There are two parts, an interface
inside the porous region and a pseudo boundary layer inside the fluid region. It is shown
in the papers above and in [7] that the porous interface thickness scale is about k1/2 and
that the velocity evolves from the Darcy velocity uD to the interface velocity ui with a
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growth of order k1/2. Therefore, the whole porous layer is divided in three parts. Two
parts are very thin and correspond to the neighbourhood of the solid wall and the interface
with the fluid. Nevertheless, the main part of this porous layer is an homogeneous porous
flow with a Darcy velocity (Figure 1).
In the fluid region a boundary layer develops from the interface velocity ui instead of zero
for the conventional one over a solid wall. This layer in the fluid respects the Prandtl
boundary layer theory and the only difference with the solid case is the existence of a
non zero velocity. It means that the boundary layer growth is determined by the velocity
u0 − ui where u0 is the upstream uniform velocity in the fluid. That means that δ

x
is

proportional to (u0−ui)x
ν

where δ is the boundary layer thickness, x is the distance from
the origin and ν is the kinematic viscosity of the fluid. Beyond this boundary layer the
fluid motion is governed by the usual Navier-Stokes equations.
To reproduce the above physical behaviour several approaches are used. When the study
focuses only on the fluid flow, it is possible to solve the Navier-Stokes equations in the
fluid with a convenient boundary condition that approximates the interface velocity ui.
Otherwise, it is necessary to solve the flow in both the porous and the fluid regions. To
achieve this goal, two models are commonly used. The three models are presented in the
next three sections.

2.2 The reduction of the porous layer to a boundary condition

The first approach is based on the pioneer work of Beavers and Joseph [5] in a channel
with one permeable wall. Starting from the one-dimensional Darcy law

uD = −
k

µp

∂p

∂x

where p stands for the pressure, they postulate that in the porous interface the flow
velocity changes rapidly from uD to the slip velocity at the interface ui. Assuming that
the slip velocity for the free fluid is proportional to the shear rate at the permeable
boundary, they relate the flow velocity to the interface velocity by the ad hoc boundary
condition

∂u

∂y
=

α

k1/2
(ui − uD) ; v = 0

where α is the slip coefficient depending on the characteristics of the porous medium.
Then, integrating this equation in the channel with no-slip boundary condition on the
solid wall, they get the velocity profile and deduce the value of ui as a function of ∂p/∂x.
Let us note that this boundary relation was verified by laboratory experiments but can
not be used directly for numerical simulations as ui is unknown. Many authors were
inspired by this idea to derive numerical boundary conditions on permeable walls. For
instance, Hahn et al. [20] rewrite the condition as

∂u

∂y
=

α

k1/2
(u − uD) ; v = 0

and apply it to compute the turbulent flow in a channel with two permeable walls. Stating
that the slip phenomenon is essentially due to the shear stress Jones [24] proposed a
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modification of Beavers and Joseph condition

(
∂v

∂x
+

∂u

∂y
) =

α

k1/2
(ui − uD) ; v = 0

that can be used in the same way.
Another approach consists in considering that the exchange through the porous or per-
meable wall take place by normal transpiration. That means that the slip velocity is zero
and the normal velocity is prescribed as [30]

u = 0 ;
∂v

∂y
= 0.

These boundary conditions are commonly used as above [36] or are rewritten as [23]

u = 0 ; v = −βp′

where β is the porosity coefficient and p′ = p − G(t)x is the instantaneous fluctuation
of the wall pressure with respect to the mean pressure gradient. An other form of such
boundary conditions is proposed in [15] and a mathematical analysis of a similar conditions
is performed in [22].
In some cases it is necessary to compute the flow inside the porous domain and so this
approach is not satisfactory. The next sections show how to deal with both fluid and
porous flows.

2.3 The coupling of Darcy or Brinkman equations with Stokes

or Navier-Stokes equations

Here we want to model both the flow in the porous layer and in the fluid region. As the
fluid is assumed incompressible, the continuity equation

div U = 0

is imposed in the whole domain. This equation must be coupled to the right fluid motion
equation. In many applications the Darcy equation

µp

k
U + ∇p = 0

is used to model the flow inside a porous medium. On the other hand, according to the
flow regime studied, the flow in the free region can be modelled either by the Stokes
equation

∂tU − ν ∆U + ∇p = 0

for laminar flows or by the Navier-Stokes equation

∂tU + (U · ∇) U − ν ∆U + ∇p = 0

for higher flow regimes. This is widely used when the flow in both media must be com-
puted and seems direct and easy to handle. However it is necessary to find out the right
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treatment of the interface between the two media as a boundary condition at the interface
is needed to solve the Stokes or Navier-Stokes equations. One choice is to impose directly
Darcy equation as a boundary condition for the fluid domain at the interface. In [21]
a detail of the implementation is given with a finite elements approximation. A second
choice is to use one of the boundary conditions proposed in the previous section. For
instance some authors use the Jones condition [31, 16].
Another approach is to use Brinkman equation

µp

k
U − µ̃ ∆U + ∇p = 0

where µ̃ is the Brinkman effective viscosity, either to model the flow in a large porosity
region or to represent only the interface with the fluid that can be always considered as
a region with a porosity close to one [28, 29, 32]. The main advantage of this approach is
that similar equations are prescribed on both sides of the interface. A first choice [28] is
to assume that the velocity is continuous and to impose a stress jump at the interface

µp(
∂ui

∂y
)porous − µ(

∂ui

∂y
)fluid =

γ

k1/2
ui

where γ is a dimensionless coefficient of order one. This jump condition is derived in
order to connect Darcy equation to Stokes equation using the Brinkman correction. A
modified version of this condition is given in [7]. A second choice is to apply the Beavers
and Joseph boundary condition to the Brinkman Navier-Stokes interface [33].
We have seen in this section how to couple the models chosen in the fluid and in the
porous medium regions. It is necessary to have a careful treatment of the condition at
the interface between the two and so to have a good representation of the interface as in
the previous section.

2.4 The penalisation method

As we have seen in the previous section, it is possible to set similar equations in both
regions taking Brinkman model in the porous medium. This is valid only when the
porosity Φ of the porous medium is close to one. Starting from the Forchheiner-Navier-
Stokes equations

ρ ∂tU + ρ (U · ∇) U + ∇p = −
µ

k
ΦU + µ̃Φ∆U

where ρ is the density of the fluid, we have shown in [9] that we get the Brinkman-Navier-
Stokes or penalised Navier-Stokes equations that are valid in the fluid, the porous and
the solid regions

∂tU + (U · ∇)U −
1

Re
∆U +

U

K
+ ∇p = 0

where K = kΦU
νH

is the non dimensional coefficient of permeability of the medium, Re = UH
ν

is the Reynolds number based on the mean velocity U and the height of the domain H .
These equations can be specified also in the solid region as shown in [1] and [14]. In the
fluid region the permeability coefficient goes to infinity, the penalisation term vanishes
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and we recover the non dimensional Navier-Stokes equations. In the solid region the
permeability coefficient goes to zero and it is then equivalent to solve Darcy equation [1].
For numerical applications we set respectively K = 1016 and K = 10−8 in the two regions.
When the thickness of the porous layer between the fluid and the solid goes to zero, it
is shown in [14] that it is equivalent to solve Navier-Stokes equations in the fluid with a
Robin boundary condition instead of the usual no-slip one. That gives a mathematical
relevance of the Beavers and Joseph type boundary conditions seen above.
In the literature the same Brinkman Navier-Stokes equations can be found with U

ReK ′
or

U
ReDaK ′′

instead of U
K

where Da is the non dimensional Darcy number. In any cases there is
a penalisation term with a non dimensional coefficient, in the present work the coefficient
K is taken in the range 10−3 < K < 10. A parametric study has shown (see [9]) that an
optimal value of this parameter for the passive control is K = 10−1 as we shall see in the
next sections. When the fluid is water and U , H are of order one, this value corresponds
to a porous medium of intrinsic permeability k of order 10−7 in addition to a porosity
close to one. In [6, 35] the authors use the penalisation term U

ReK ′
with K ′ in the range

10−7 < K ′ < 10−4 to represent a porous medium made of textiles composite materials.
That means, as the two permeability coefficients are related to each other by K ′ = νK,
that the porous media considered have similar characteristics.
The main advantage of this formulation is that it is necessary to impose neither a boundary
condition nor a coupling procedure at the interface between the fluid and the porous
regions. Moreover, it is not necessary to fit the interface with the mesh. This method can
be seen also as an immersed boundary or a fictitious domain method. It is possible to
compute the flow around a body with or without porous parts embedded on a Cartesian
grid. The only task to fulfil is to define the coefficient K on the points where the unknowns
are defined. When such a point is inside the fluid, the porous or the solid regions, the
value of K is set respectively to 1016, 10−1 and 10−8. Then the same equations are solved
in the three media.

3 Numerical simulation and passive flow control

3.1 Numerical simulation

Using the penalisation method, we have to solve in the time interval (0, T )

∂tU + (U · ∇) U −
1

Re
∆U +

U

K
+ ∇p = 0 in ΩT = Ω × (0, T )

div U = 0 in ΩT

U(x, 0) = U0(x) in Ω
U = G on Γ0 × (0, T )

σ(U, p) n +
1

2
(U · n)−(U − Uref) = σ(Uref , pref) on Γ1 × (0, T )

where Ω is the whole computational domain including the solid and porous regions, U0(x)
is the initial datum, G is the Dirichlet boundary condition (for instance G = (1, 0) at the
entrance section of an open domain) imposed on the part Γ0 of the boundary ∂Ω, σ is the
stress tensor, n is the unit normal vector pointing outside of the domain, (Uref , pref) is a
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reference flow and with the notation a = a+−a−. The last boundary condition is imposed
on the artificial frontiers Γ1 in order to convey the solution without any reflections (see
[8] for more details) and avoids the use of buffer zones.
The evolution equations are discretized in time by a second order Gear scheme with an
implicit treatment of the linear terms and an explicit treatment of convection term. The
primitive unknowns velocity-pressure are set on staggered grids as illustrated on figure(2).
The spatial approximation is performed using second-order centred finite differences for

vi,j+ 1

2

ui− 1

2
,j pi,j ui+ 1

2
,j

vi,j− 1

2

Figure 2: A staggered cell

the linear terms and a third-order upwind scheme for the convection term ([12]). The
location of the unknowns enforce the divergence-free equation which is discretized on the
pressure points. The whole problem is solved using a multigrid method and on each grid
the solution is obtained by means of a cell by cell Gauss-Seidel iterative procedure. As
an example, the set of grids varies from the coarsest 25 × 10 uniform grid to the finest
3200× 1280 uniform grid to compute the flow around a pipe. The choice of uniform grids
is necessary to maintain the accuracy of the finite differences schemes.

3.2 Passive control setup and flow regularisation

The aim of this work is to control the flow around a solid body using porous layers on
convenient parts of the surface. That means that according to the problem we want to
reduce the vortex generation, the vortex induced vibrations (VIV) or the drag forces.
These three phenomena are characterised by the enstrophy Z, the root mean-square of
the lift coefficient CLrms and the drag coefficient CD defined by

Z =
1

2

∫

Ω
|ω|2dx ; CLrms =

√

1

T

∫ T

0
CL dt ; CD =

2FD

ρU2
∞

H

where ω is the vorticity, U∞ is the upstream flow. The forces are computed thanks to the
penalisation method by

FD =
∫

body

u

K
dx ; FL =

∫

body

v

K
dx

and the lift coefficient CL is defined as CD replacing FD by FL. The computation of
FD and FL by integration on the body volume is equivalent to the usual computation
integrating the pressure and shear forces on the body surface [13]. The CLrms is directly
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linked to the regularity of the flow and gives a relevant measure of the VIV.
The first numerical test concerns the flow around a rectangular body of size L = 0.2 in
the stream-wise direction and H = 0.16 in the normal direction. This body is immersed
in a computational domain Ω = (0, 5) × (0, 2). The real Reynolds number based on the
height of the body is ReH = 300. The boundary conditions are U = (1, 0) at the entrance
section Γ0 on the left and free boundary conditions on the rest of the boundary Γ1. The
passive control is achieved adding a porous layer on the top and on the bottom sides of
the rectangle.
We first perform a parametric study on the value of the permeability coefficient K and
on the thickness of the porous layer h [9]. The two main criteria for this study are the
decrease of Z and CLrms. When the value of K is too large (K > 1) the flow in the porous
medium is close to the fluid flow and the control is not efficient; conversely when K is too
small (K < 10−3) the porous medium behaves almost like a solid body. The optimal value
is obtained for K = 10−1. For the thickness of the layer it appears that if the thickness
is too low (h/H < 5%) the darcy flow can not be established inside the porous layer and
the control is thus inefficient. In all the simulations we shall take h/H = 10%.
In figure 3 we see that the controlled flow is much more regular than the uncontrolled
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1

v
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u
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Figure 3: Comparison of vorticity fields and phase portraits at monitoring point
(4.0625,0.75) for ReH = 300 without (top) and with (middle) control in an open do-
main. The figures at the bottom concern an uncontrolled flow at ReH = 250.
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one. Indeed, adding the porous layers we recover the Karman street and the solution is
really periodic as shown by the phase portrait. To recover such a regular solution without
the porous layers, it is necessary to decrease the Reynolds number from ReH = 300 to
ReH = 250. The regularisation obtained with this passive control is more impressive for
higher Reynolds numbers as shown on table 1 as the decrease of Z and CLrms becomes
larger. This is due to the fact that Darcy flow on both sides of the rectangle stabilises
the vortex shedding.

Table 1: Mean value of Z and asymptotic value of CLrms for various Reynolds numbers.

ReH = 300 ReH = 3000 ReH = 30000
Z CLrms Z CLrms Z CLrms

with control 107 0.094 410 0.221 821 0.344
without control 115 0.096 487 0.263 1012 0.375

3.3 Control of vortex induced vibrations around a riser pipe

section

In the vicinity of bluff bodies, the shedding of vortices can induce unsteady forces of small
amplitude with excitation close to a structural resonant frequency that provoke structural
failures. Therefore, the study and the control of vortex shedding has a crucial importance
in engineering applications like offshore oil industry. In this case, the VIV can affect the
risers. As the environmental conditions are given and can not be changed, the only way
to reduce the VIV is to use an efficient control technique adapted to the riser framework.
In the present section, we consider a two-dimensional, unsteady and incompressible flow
around a fixed circular cylinder of diameter D = 0.16 immersed in an open computa-
tional domain Ω = (0, 5) × (0, 2) with U = (1, 0) at the entrance section. This cylinder
corresponds to a section of a three-dimensional riser pipe. Such a study with an appro-
priate choice of the Reynolds number, can give significant informations on the real flow
behaviour even if a responding body should be closer to the reality. A parametric study
is performed to choose the best K and h values of a uniform porous sheath added around
the pipe (figure 4). The tests, for a real Reynolds number ReD = 2400 based on the di-

Figure 4: The cylinder with a uniform porous sheath.
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ameter of the cylinder, show again that an efficient control is obtained for K = 10−1 and
h = 0.02. In addition, it is shown that for such a Reynolds number, the grid convergence
is achieved with an uniform grid of 1600× 640 cells. Therefore the results of this section
are presented on that grid for the above Reynolds number and on the grid 3200 × 1280
for higher Reynolds numbers [10].
The addition of the porous sheath has a tremendous effect on the flow in the vicinity and
in the far wake of the pipe. this can be illustrated comparing the velocity signals obtained
at monitoring points located behind the cylinder. As an example, these signals are shown
on figure 5 at a monitoring point located in the far wake fifteen diameters downstream
and one diameter above the symmetry axis. In the uncontrolled case, there are some
interactions between the vortices in the wake giving a perturbed signal whereas in the
controlled case a pure Karman street is observed yielding a periodic signal with a lower
mean value.
A test at a higher Reynolds number ReD = 24000 is even more impressive as the chaotic

10 20 30
time

0.5

1

1.5

u

without control
with control

Figure 5: Horizontal velocity histories at monitoring point (4.0625,0.75) at ReD = 2400.

flow in the wake is regularised towards almost a Karman street (see figure 6). In the first
case there are many interactions between the vortices that create more complex dipole or
tripole structures advected in all the directions. With the porous sheath, the shear forces
are strongly decreased and the quasi slip boundary condition at the porous layer surface
induces a much more regular shedding. This is confirmed by plotting the enstrophy his-
tory in both cases as on figure 7. The time function corresponding to the uncontrolled
case presents huge variations in the amplitude whereas the function corresponding to the
controlled case is almost constant because there is no vortex interactions. Moreover we
see on table 2 that there is a tremendous change of the mean value. The regularisation
of the flow can be directly read on the values of the CLrms which is divided by a factor
3.6. This means that the VIV are drastically reduced, therefore the life time of the riser
pipe is significantly increased. Finally it appears that the control is more efficient when
the Reynolds number increases as can be seen for the two Reynolds numbers considered
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Figure 6: Vorticity field without (top) and with (bottom) control for the same time at ReD =
24000.

(see table 2).

0 5 10 15 20
time

0

500

1000

1500

2000

Z

with control
without control

Figure 7: Enstrophy histories at ReD = 24000.

3.4 Control of the drag coefficient of ground vehicles

In this section we want to control the flow around a ground vehicle. This is a very
important feature as the goal is to reduce the oil consumption and then the atmospheric
pollution. Although it is not yet spread enough, the passive control is very well adapted
to car industry as it does not need extra energy. Here the car is represented by a two-
dimensional cut of the well known Ahmed body and numerical tests are performed for
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Table 2: Mean value of Z and asymptotic value of CLrms.

ReD Grid Simulation Enstrophy CLrms

2400 1600 × 640 with control 190 0.125
without control 428 0.274

24000 3200 × 1280 with control 291 0.081
without control 810 0.293

geometries with or without a rear window (see figure 8). Porous devices are included

Ω

Γ0

Γ

Γ

With a rear window

α

With a square back

0

1

Figure 8: Computational domain including Ahmed body without or with a rear window.

inside the geometry to change the shear forces in order to reduce the drag forces. Indeed,
in the car industry the most important aerodynamic parameter is the drag coefficient CD.
A large number of simulations, with different porous layer locations, were performed to
verify how far this passive control technique can contribute to the drag reduction [11].
In the following, only the most significant results are presented starting with the square
back geometry. This case corresponds more to a truck for which the flow in the vicinity
of the body is mainly two-dimensional. The non dimensional length and height of the
Ahmed body are respectively L = 3.625 and H = 1. The computational domain is
Ω = (0, 12) × (0, 5) with the body located at the distance d = 1 from the road and the
numerical simulations are performed at real Reynolds number ReL = 30000 on a uniform
Cartesian grid of 1536 × 640 cells to have a significant number of points in the porous
layers of width h = 0.1. The boundary conditions are of two types, on the entrance
section and on the road the constant flow U = (1, 0) is imposed and on the two other
frontiers the non reflecting boundary condition is used. On figure 9 are shown the two
porous devices that give the most interesting results. In the following, the uncontrolled
case will be referred as case 0 and the two controlled cases as case 1 and case 2.
The results are presented on figure 10 where the static pressure coefficient (Cp = 2(p −

p0)/(ρ|U |2) with p0 the inlet static pressure) isolines are plotted. We see that the pressure
gradient in the immediate wake is much lower with the passive control as seen on table
3. This is mainly due to the fact that in the porous layers there is a low speed (less than
10% of the incoming flow velocity) laminar flow that is expelled at the back in the near
wake inducing a weak horizontal jet. The shear forces between the body and the fluid
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2 4

Figure 9: Porous devices for cases 1 (left) and 2 (right) for a square back Ahmed body.

are modified and the horizontal jet at the back decreases the velocity and increases the
negative mean pressure significantly (see table 3). Consequently the drag at the back
(down drag) is drastically reduced as shown on table 4. In case 1 the porous layer on top
of the body increases the flow rate in the upper part of the domain and thus decreases the
flow rate under the car. So the mean velocity under the car is lower and the aerodynamic
power dissipated by the floor of the car is slightly decreased [19] and so the drag of the
front part of the body (up drag). In case 2 with porous layers on both sides of the body,
the flow rate is the same than in the uncontrolled case. Besides the detached flow is larger
at the bottom side of the body, the pressure forces are increased with the resistance to the
flow and the up drag is also increased. Consequently, the reduction of the drag coefficient
in the second case is weaker despite the very strong reduction at the back. In summary
Z and CLrms are reduced from 23% to 35% adding porous layers (case 2 is better than
case 1) and CD is decreased by more than 30% (case 1 is better than case 2).

Figure 10: Static pressure coefficient isolines for the flow around the square back Ahmed
body on top of a road at ReL = 30000. Cases 0 (left) and 2 (right).

Pmin value in the wake Pmin location

case 0 -1.636 (10.11 , 1.53)
case 1 -0.678 (10.22 , 1.39)
case 2 -0.540 (10.89 , 1.34)

Table 3: The value and the location of the minimum pressure in the close wake of the
square back Ahmed body on top of a road at ReL = 30000.

The second geometry studied is an Ahmed body with an α = 250 rear window (see
figure 8). For that geometry the flow is not two dimensional any more, there are strong
longitudinal vortical structures on both sides of the rear window that interact with the
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CLrms Enstrophy Up drag Down drag Drag coefficient

case 0 0.517 827 0.173 0.343 0.526
case 1 0.396 (-23%) 592 (-28%) 0.156 0.166 0.332 (-37%)
case 2 0.381 (-26%) 541 (-35%) 0.213 0.139 0.362 (-31%)

Table 4: Asymptotic value of CLrms and mean values of the enstrophy and the drag
coefficient for the square back Ahmed body on top of a road at ReL = 30000.

vortices coming from the shedding at the angle with the roof. However, it is also interesting
to see how the shedding is modified by the passive control on the symmetric plane. Of
course, a two-dimensional simulation can not give a quantitative measure of the control of
the global flow but it permits to get for instance a trend of the evolution of the pressure
gradient of the back. With the rear window, the porous devices must stop at the end of
the roof and so the effect of the weak horizontal jet, on top of the back, is not beneficial
as it increases the size of the recirculation zone on the rear window. It is then necessary
to add a porous device on the bottom. But, as we have seen above, the effect on the front
is not good, so we modify the porous device to diminish the lower detached zone. The
location of the passive control layers are presented, for two different porous devices, on
figure 11.

Figure 11: Porous devices for cases 1 (left) and 2 (right) for an Ahmed body with a rear
window.

Figure 12: Mean pressure isolines for the flow around Ahmed body with a rear window
on top of a road at ReL = 30000. Cases 0 (left) and 2 (right).

As the table 5 shows, due to the increase of the recirculation zone on the rear window,
the minimum of the pressure in the wake Pmin for case 1 is lower than for the uncontrolled
case. Thus the drag coefficient is higher as shown on table 6. Nevertheless, we observe
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once again that the porous layer has regularised the whole flow as Z and CLrms are well
decreased. To get an improvement of the drag control procedure a porous layer is needed
at the bottom. The same effect of the weak horizontal jet as for the square back body
is observed at the bottom part in the back. The gradient of pressure is much lower (see
figure 12) and thus the drag coefficient (table 6) is decreased as well, as the minimum
pressure is increased (table 5). In this case, the main improvement on the drag reduction
comes from the down drag, related to the square part of the body. Let us note that if
this case is quite efficient for drag reduction, it has no significant regularising effect.

Cpmin
value in the wake Pmin location

case 0 -0.813 ( 9.92 , 1.36)
case 1 -1.021 (10.06 , 1.36)
case 2 -0.543 (10.13 , 1.50)

Table 5: The value and the location of the minimum pressure in the close wake of Ahmed
body with a rear window on top of a road at ReL = 30000.

CLrms Enstrophy Up drag Down drag Drag coefficient

case 0 0.817 726 0.099 0.176 0.282
case 1 0.600 (-27%) 605 (-17%) 0.100 0.190 0.300 (+ 6%)
case 2 0.801 (- 2%) 670 (- 8%) 0.093 0.124 0.224 (- 21%)

Table 6: Asymptotic values of CLrms and mean values of the enstrophy and the drag
coefficient for Ahmed body with a rear window on top of a road at ReL = 30000.

4 Conclusions

A unique model called the penalisation method is used to simulate the flow inside fluid
and porous regions around obstacles. This method is very easy to implement and does not
require either a specific treatment of the interface or a body fitting. It is used successfully
to introduce a new passive control strategy, which consists in implementing a porous layer
between a bluff-body and a fluid, in order to change the boundary layer characteristics.
This passive control method yields a drastic regularisation of the flow, especially for high
Reynolds numbers. Adding a porous ring around a riser pipe section, the vortex induced
vibrations can be devided by more than three. Moreover, with a good choice of the
location of the porous layers, the drag coefficient of the square back Ahmed body can be
decreased up to 40%.
On the Ahmed body with a rear window, the results are less significant and a mixed
strategy coupling active and passive techniques could be beneficial.
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