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Abstract – Direct numerical simulations of a two-dimensional channel flow in the presence of a
polymeric fluid are presented. The flow is perturbed by an array of cylinders which generates a
turbulent flow downstream and whose statistical properties are studied in detail. Several features
emerge from this study such as the reduction of turbulent fluctuations at large scales, the reduction
of the energy transfer rate, and the reduction of the fluctuations of the enstrophy and energy
transfer rates. These features are in excellent agreement with previous experimental measurements
and show that despite the possible limitations of the model used to describe the polymeric fluid
(an Oldroyd-B model), the changes observed here and in experiments may be generic to two-
dimensional turbulent flows. An examination of the stress and elongation fields shows that the
stresses are important in strong elongation zones pointing out that the effects due to polymers
may have their origin in the large elongation zones which develop between vortices.

Copyright c© EPLA, 2011

The influence of minute amounts of polymer on turbu-
lent flows can be dramatic [1–3]. The decrease of the turbu-
lent drag in pipes, for example, can reach nearly 80%
upon the addition of a few parts per million by weight
of long-chain flexible polymers. This effect has been stud-
ied in three-dimensional pipes for obvious reasons and has,
more recently, been tackled in quasi–two-dimensional flows
using soap films [4,5]. For the two-dimensional case, an
intriguing effect has been observed experimentally. Indeed,
and for very small amounts of polymer, the statistics of the
velocity fluctuations were affected primarily at the large-
scale end, leaving the small scales almost untouched [4].
It was suggested that the polymers may affect the mech-
anisms leading to the inverse cascade of energy, a special
feature of two-dimensional turbulent flows. This non-
trivial effect has later been confirmed by numerical work
which also suggested that polymers may also affect the
spectrum of Lyapunov exponents of such flows [6]. Exper-
imentally, this latter effect has been attributed to the
reduction in the fluctuations of the enstrophy transfer
rate. The picture so far is that the polymers affect the
energy injection rate from the small to the large scales

and affect the fluctuations in the enstrophy transfer rate.
These features make the two-dimensional case an excellent
test bed for studying the interaction between polymers
and a turbulent flow, an issue of tremendous fundamental
and practical interest [1,7].
We here focus on direct numerical simulations of a

two-dimensional channel flow perturbed by an array of
cylinders for the case of an Oldroyd-B fluid. This type
of non-Newtonian fluid displays no shear thinning and is
therefore a purely elastic fluid. The use of the channel
geometry is similar to that used in experiments so that
our simulations may be compared directly to soap film
experiments in the presence of polymers [4]. It is our aim
here to first test the validity of previous observations but
in a purely two-dimensional case and, further, to measure
quantities difficult to access experimentally such as the
elastic stress and its correlation to flow properties such as
the elongation field, for example.
The dynamics examined here is that of an incompressi-

ble two-dimensional viscoelastic Oldroyd-B constitutive
fluid described by the non-dimensional equations detailed
below. A penalization scheme is used to represent the solid
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Fig. 1: Snapshot of the vorticity fields for different Weissenberg
numbers (from top to bottom: Wi= 0, 2, 3, 4, and 6 for case
2). As Wi increases we note that the appearance of vortical
structures occurs even further from the array of cylinders in
such a way that for Wi= 6, the length of the channel becomes
too small to observe them. They are, however, still visible near
the walls.

bodies (the cylinders) on a Cartesian mesh of the domain
whose length is 4 times its width. Here the coordinate
x denotes the streamwise direction and y denotes the
direction transverse to the flow. The simulated domain
is 0� x� 4 and 0� y� 1. The equations simulated here
read

∇ ·u= 0

∂tu+(u ·∇)u+
u

K
=−∇p+

1

Re

[

(1−β)∆u+
β

Wi
∇ ·σ

]

∂tσ+(u ·∇)σ+
σ

K
+
σ− I

Wi
= (∇u) ·σ+σ · (∇u)T+κ∆σ,

where u is the two-dimensional velocity vector, p is the
pressure, σ is the conformation tensor of polymer mole-
cules, their elongation is measured by its trace. The
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Fig. 2: Kinetic and elastic energy for the two configurations
used vs.Wi at point x= 3.8 and y= 0.4. Note that forWi= 6,
the small value of the fluctuations is due to the fact that
vortical structures have been suppressed even far from the
array.

parameter K is the non-dimensional permeability coeffi-
cient used in the penalization term; it is set to 1016 in the
fluid zone to recover the genuine equations and to 10−7

in the solid cylinders to enforce u and σ to vanish [8].
Penalizing the tensor is not necessary but it appears that
doing so leads to better numerical stability. The quan-
tity (1−β) denotes the ratio of the solvent viscosity to
the viscosity of the polymer solution, it is set to 0.99 in
our simulations. The term κ∆σ is an artificial diffusive
term to prevent numerical instabilities, κ is taken small
enough (10−3) to not affect the solution significantly in
this study [9]. The Reynolds number Re and the Weis-
senberg number Wi are non-dimensionalized by the same
referenced velocity and length. In our results, Re and Wi
are defined by Re=UR/η and Wi= τU/R, respectively,
where U is the mean velocity of the inlet Poiseuille flow,
R= 0.025 is the radius of the cylinders used and which
are located as an array in the transverse direction of the
channel at one width from the entrance. Here η and τ are,
respectively, the viscosity and the relaxation time of the
polymer solutions. The numerical simulations are carried
out by a multigrid method with a 2048× 512 fine grid
and a finite differences approximation [10]. This numer-
ical scheme has been shown to give excellent agreement
with experimental measurements of two-dimensional flows
in the turbulent state [11]. It should be noted that the
choice of the Oldroyd-B model is dictated by its simplic-
ity despite the fact that it has limitations [12]. This model
has also been shown to display several features observed
in experiments such as drag reduction and elastic turbu-
lence [13]. A more recent study of ours [14] showed impor-
tant modifications of the wake behind a cylinder: the drag
on a single cylinder can exhibit both enhancement and
reduction, as seen in experiments [15,16], and the phase
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Fig. 3: (Color online) Energy density spectra (calculated from a spatial velocity field) for different Weissenberg numbers and
the two configurations used. (a: case 1, b: case 2) For the domain located at 3� x� 4 and 0� y� 1. The insets show the spectra
of the longitudinal stress.
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Fig. 4: (Color online) Second and third moment of velocity differences with and without the presence of the polymers at point
x= 3.8, y= 0.4.

diagram for the different behaviors in the parameter space
described by Re and Wi was obtained.
For these simulations, we have examined a large range

of Weissenberg numbers. The Reynolds numbers exam-
ined ranged from 500 to 10000. This range is close to
that usually used in experiments. Two different config-
urations for the array of cylinders were examined. The
first case uses an array of 5 cylinders (denoted case 1)
and the second uses an array of 10 cylinders (denoted
case 2), increasing the blockage. Most of the analy-
sis presented here focuses on the subdomain 3� x� 4
for which entrance effects due to the proximity of the
cylinders are minimal.
Snapshots of the vorticity field in the channel used are

shown in fig. 1 for different Wi. Note that for increasing

Wi, the wake behind the cylinders has a larger length
than for Wi= 0 [14]. Such an increase in length retards
the onset of turbulent flow much farther downstream.
Note also that the vortex cores are less well defined in
the presence of the polymer. A notable feature can be
noted forWi= 6 for which the onset of vortical structures
behind the cylinders is so retarded that the existence
of vortical structures and turbulence is not observed in
the flow domain used. We are not aware of other studies
showing that high-Wi flows at high Re may actually
become almost laminar. Another notable feature of these
simulations can be appreciated from the variation of the
kinetic energy of the velocity fluctuations around the mean
( 1
2
u′2). This energy decreases as the Weissenberg number

increases. The mean velocity remains roughly the same
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Fig. 5: (Color online) Probability density functions (pdfs) of δu3(r) and δu(r)δω2(r) for differentWi at Re= 5000 for a separation
r=R. The pdfs were calculated in a spatial window for 3<x< 4 and 0.25< y < 0.75 and for 50 different snapshots of the flow.

for all Wi and is near 1.2. The reduction of the velocity
fluctuations and therefore of the turbulent intensity is
shared by the two configurations used as seen in fig. 2.
This reduction is, however, much more pronounced for
the case with ten cylinders for which the fluctuations are
very important near the grid. At the highest Wi used,
the fluctuations become very small due to the fact that
the onset of turbulence is retarded and probably occurs
much farther downstream that the channel length used
here is insufficient (see fig. 1). Also shown in fig. 2 is the
elastic energy (= 0.5βσii/(ReWi)). As the kinetic energy
of the fluctuations decreases, the elastic energy increases
clearly indicating the importance of elastic stresses as Wi
increases at the expense of velocity fluctuations.
The second aspect is revealed by the spectral prop-

erties of the fluctuations. Note that in fig. 3(a), the
energy density spectra, displayed for different Weissenberg
numbers for a Reynolds number of 5000 (case 1), keep
roughly the same shape as Wi increases but that the
amplitude at the low wavenumber end or large scales
decreases as Wi increases. This finding mimics experi-
mental results obtained in soap films upon the addition

of polymers in the dilute limit and shows a reduction
of the turbulent fluctuations at large scales accompa-
nied by a comparatively smaller reduction at small scales.
Figure 3(b) compares spectra for configuration 2 at differ-
ent Wi. The first effect noted is a slight reduction of the
fluctuations at all scales, somewhat more pronounced than
for case 1. By further increasing Wi, the reduction of the
fluctuations is more pronounced at the large-scale end (see
fig. 3(b), case 2, Re= 5000). Case 1 and case 2 differ some-
what in their suppression of the fluctuations as seen in
fig. 2 but for high enough Wi, the suppression of fluctu-
ations is pronounced at large scales for both cases. The
insets of these figures display the corresponding spectra of
the elastic stresses. It should be noted that an increase of
Wi results in a reduction of the elastic stresses at small
scales but in an increase of these stresses at large scales.
To further examine the effects of the non-Newtonian
fluid on the properties of the turbulence, we have examined
the second- and third-order structure functions of the
longitudinal component of the velocity. The second-order
structure function shown in fig. 4(a) shows a similar effect
as the energy spectra with a reduction of the amplitude
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Fig. 6: (Color online) (a) Superposition of elongation (positive
elongation is red while negative elongation is blue) and stress
contours. Note that the stress increases at locations where the
elongation is positive. The domain corresponds to 3� x� 4 and
0� y� 1 (b), the elongation stress cross-correlation functions
for a single point in the domain x= 3.8, y= 0.4. Wi= 1.5.

at all scales first followed by a reduction at large scales
for higher Wi shown here for case 2 at Re= 5000. The
third moment is a measure of the energy transfer rate
in 2D and 3D turbulence. Figure 4(b) shows that the
third moment for the case presented above is positive for
the Newtonian case for scales greater than the injection
scale which we take to be near the cylinder radius
(R= 0.025). This moment has a negative dip at smaller
scales (near the cylinder radius). Third moments measured

experimentally in turbulent soap films show analogous
behavior [4,11,17]. For the non-Newtonian case, the third
moment becomes much smaller signaling a reduction in the
energy transfer rate as observed experimentally [4]. Since
energy is transferred to large scales in 2D turbulence, a
reduction of the transfer rate is in agreement with the fact
that the energy density of the large scales is smaller than
in the Newtonian case. This reduction, however, seems
gradual since it is smaller for the intermediate Wi (= 1)
than for the higher one (= 3).
Besides these features, we have examined the proba-
bility density functions (pdfs) of δu3(r) and δu(r)δω2(r),
where u and ω are the longitudinal velocity and the vortic-
ity, respectively. Since in two dimensions, the average of
these two quantities is proportional to the spatial scale r
and to the energy transfer rate and the enstrophy trans-
fer rate, respectively [4,18], an examination of the pdfs of
these quantities amounts to an examination of the fluctu-
ations of the transfer rates. It turns out that these fluc-
tuations are much less important for the non-Newtonian
case. The addition of polymer reduces these fluctuations,
as has been found in experiments [4]. One can argue that
a reduction of such fluctuations is a sign that elongation
rates in turbulence are reduced upon the addition of poly-
mers. In fact, and as fig. 5 shows for representative exam-
ples of these pdfs for a separation r of 1 cylinder radius,
both pdfs show a large reduction of large fluctuations. The
pdfs of elongation rates confirm directly that large elon-
gations are suppressed upon the addition of polymer as
found experimentally.
Now, can these simulations shed more light on this
phenomenon? One direct cause of such reduction is the
interaction between vortices. In this case the elongation
rate ǫ=du/dx, and the normal stress σxx are shown
in fig. 6. The first thing that should be noted is that
elongation is strongly positive in regions between vortices
or just at the edges of vortices. In any case in the
region between vortices the flow develops either strong
elongation or contraction. The second observation comes
from a superposition of the normal stress contours (σxx is
chosen for illustration) and the elongation shown in color
in fig. 6(a). Note that the regions of positive elongation
are strongly correlated to regions of large normal stresses.
Elongation and high stresses therefore coexist at the same
locations pointing out that the large positive elongation
rates are at the heart of the interaction between the
complex fluid and the turbulent flow. Since the large
elongations are reduced, one may conclude that the large
increase in stresses at locations of high elongation is at
the origin of this decrease. In fact, a close examination
of the correlation between elongation and normal stresses
is shown in fig. 6(b). Here, from a time trace of both
signals at a chosen location, it turns out that a large
positive peak is obtained for the cross-correlation function
〈ε(t+ δt)σxx(t)〉. The position of the peak is at a negative
time increment δt indicating that elongation increases first
before an increase in stress follows. The increase in stress
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then must force the elongation to decrease as indicated by
the decrease in the correlation function to values near zero
and to even negative values showing that the elongation
has been turned off to become a contraction.
To conclude, our numerical simulations reproduce

several features observed experimentally in two-
dimensional turbulence in the presence of polymers.
Perhaps the most conspicuous feature is the reduction of
large-scale fluctuations associated with the suppression
of energy transfers upscale. Besides these observations,
the simulations allow for an examination of the stresses
in the turbulent flow and the possible links with strong
elongations. It turns out that large stresses are present
primarily in regions of positive elongation and that when
elongation increases in a particular location, the stress
starts to increase but with a small lag time. This increase
in stress then regulates the increase in elongation. This is
one of the keys to the interaction between the polymeric
fluid and the flow field. Near the walls of the channel we
have also noted a large increase of stresses which may
indicate the presence of an elastic layer but this feature
needs additional work with higher spatial resolutions near
the channel walls. This feature is, however, essential in
the understanding of frictional losses in turbulent channel
flows.
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