Differences between Galois representations

 in outer-automorphisms of π_{1} and those in automorphisms, implied by topology of moduli spacesMakoto Matsumoto, Hiroshima University
2010/1/25-1/29, at SAKURA workshop, IMB, Univ. Bordeaux 1.
m-mat" at" math.sci.hiroshima-u.ac.jp

This study is supported in part by JSPS Grant-In-Aid \#19204002, and JSPS Core-to-Core Program No. 18005.

- Recall the monodromy representation on π_{1} of curves.
- Galois monodromy often contains geometric monodromy.
- Using this connection, obtain implications from topology to Galois monodromy (or converse).

1. Monodromy on π_{1}.

- K : a field $\subset \bar{K} \subset \mathbb{C}$.
- A family of (g, n)-curves $C \rightarrow B: \stackrel{\text { def }}{\Leftrightarrow}$
B : smooth noetherian geom conn scheme/ K.
$F^{c p t}: C^{c p t} \rightarrow B$: proper smooth family of genus g curves (geom conn).
$s_{i}: B \rightarrow C^{c p t}(1 \leq i \leq n)$ disjoint sections, $F: C \rightarrow B$: complement $C^{c p t} \backslash \cup s_{i}(B) \rightarrow B$.
- We assume hyperbolicity $2 g-2+n>0$.
- $\Pi_{g, n}$: (discrete) fundamental group of n-punctured genus g Riemann surface (referred to as surface group)
- $\Pi_{g, n}^{\wedge}, \Pi_{g, n}^{(\ell)}$: its profinite, resp. pro- ℓ, completion.

$$
\begin{array}{cccc}
\bar{x} & & \\
\downarrow & & \\
C_{\bar{b}} & \rightarrow C \\
\downarrow & \square & \downarrow \\
\bar{b} & \rightarrow B
\end{array}
$$

\bar{b}, \bar{x} : (geometric) base points.
Gives a short exact sequence of arithmetic(=etale) π_{1} :

$$
1 \rightarrow \pi_{1}\left(C_{\bar{b}}, \bar{x}\right) \rightarrow \pi_{1}(C, \bar{x}) \rightarrow \pi_{1}(B, \bar{b}) \rightarrow 1
$$

The short exact sequence

$$
\underset{\substack{1 \\ \Pi_{g, n}^{\wedge}}}{\pi_{1}\left(C_{\bar{b}}, \bar{x}\right) \rightarrow \pi_{1}(C, \bar{x}) \rightarrow \pi_{1}(B, \bar{b}) \rightarrow 1}
$$

gives the pro- ℓ outer monodromy representation:

$$
\begin{array}{rllll}
1 \rightarrow \pi_{1}\left(C_{\bar{b}}, \bar{x}\right) \rightarrow & \pi_{1}(C, \bar{x}) & \rightarrow & \pi_{1}(B, \bar{b}) & \rightarrow 1 \\
\downarrow & & & \\
& \operatorname{Aut}_{g, n}^{(\ell)} & & &
\end{array}
$$

The short exact sequence

$$
\begin{gathered}
1 \rightarrow \pi_{1}\left(C_{\bar{b}}, \bar{x}\right) \rightarrow \pi_{1}(C, \bar{x}) \rightarrow \pi_{1}(B, \bar{b}) \rightarrow 1 \\
\Pi_{g, n}^{\wedge}
\end{gathered}
$$

gives the pro- ℓ outer monodromy representation:

The short exact sequence

$$
\begin{gathered}
1 \rightarrow \pi_{1}\left(C_{\bar{b}}, \bar{x}\right) \rightarrow \pi_{1}(C, \bar{x}) \rightarrow \pi_{1}(B, \bar{b}) \rightarrow 1 \\
\prod_{g, n}^{\wedge}
\end{gathered}
$$

gives the pro- ℓ outer monodromy representation:

$$
\begin{array}{rllll}
1 \rightarrow \pi_{1}\left(C_{\bar{b}}, \bar{x}\right) & \rightarrow & \pi_{1}(C, \bar{x}) & \rightarrow & \pi_{1}(B, \bar{b}) \\
\downarrow & & \rightarrow 1 \\
\downarrow \rho_{A, C, x} & & \downarrow \rho_{O, C} & \\
1 & \rightarrow \operatorname{Inn} \Pi_{g, n}^{(\ell)} & \rightarrow & \operatorname{Aut} \Pi_{g, n}^{(\ell)} & \rightarrow
\end{array}{\operatorname{Out} \Pi_{g, n}^{(\ell)}}^{l} \rightarrow 1
$$

The short exact sequence

$$
\begin{gathered}
1 \rightarrow \pi_{1}\left(C_{\bar{b}}, \bar{x}\right) \rightarrow \pi_{1}(C, \bar{x}) \rightarrow \pi_{1}(B, \bar{b}) \rightarrow 1 \\
\prod_{g, n}^{\wedge}
\end{gathered}
$$

gives the pro- ℓ outer monodromy representation:

$$
\begin{array}{rccc}
1 \rightarrow \pi_{1}\left(C_{\bar{b}}, \bar{x}\right) \rightarrow & \pi_{1}(C, \bar{x}) & \rightarrow & \pi_{1}(B, \bar{b}) \\
\downarrow & \downarrow \rho_{A, C, x} & & \downarrow \rho_{O, C}
\end{array}
$$

$$
1 \rightarrow \operatorname{Inn} \Pi_{g, n}^{(\ell)} \rightarrow \quad \operatorname{Aut} \Pi_{g, n}^{(\ell)} \quad \rightarrow \quad \operatorname{Out} \Pi_{g, n}^{(\ell)} \rightarrow 1
$$

(If $B=\operatorname{Spec} K$, we have $\rho_{O, C}: G_{K}=\pi_{1}(B) \rightarrow \operatorname{Out} \Pi_{g, n}^{(\ell)}$.)

2. Universal monodromy.

- $\mathcal{M}_{g, n}$: the moduli stack of (g, n)-curves over \mathbb{Q}.
- $\mathcal{C}_{g, n} \rightarrow \mathcal{M}_{g, n}$ be the universal family of (g, n)-curves.

Applying the previous construction, we have:

$$
\begin{aligned}
& 1 \rightarrow \pi_{1}\left(C_{\bar{b}}, \bar{x}\right) \rightarrow \quad \pi_{1}\left(\mathcal{C}_{g, n}, \bar{x}\right) \quad \rightarrow \quad \pi_{1}\left(\mathcal{M}_{g, n}, \bar{b}\right) \quad \rightarrow 1 \\
& \downarrow \rho_{A, \text { univ, } \bar{x}} \quad \downarrow \rho_{O, \text { univ }} \\
& 1 \rightarrow \operatorname{Inn} \Pi_{g, n}^{(\ell)} \rightarrow \quad \text { Aut } \Pi_{g, n}^{(\ell)} \quad \rightarrow \quad \text { Out } \Pi_{g, n}^{(\ell)} \quad \rightarrow 1
\end{aligned}
$$

This representation is universal, since any (g, n)-family $C \rightarrow B$ has classifying morphism (\Downarrow), adding one more row at the top:

$$
\begin{gathered}
C_{\bar{b}} \rightarrow C \rightarrow \mathcal{C}_{g, n} \\
\downarrow \square \downarrow \square \quad \downarrow \\
\bar{b} \rightarrow B \rightarrow \mathcal{M}_{g, n},
\end{gathered}
$$

$$
\begin{aligned}
& \begin{array}{rcccc}
1 \rightarrow \pi_{1}\left(C_{\bar{b}}, \bar{x}\right) & \rightarrow & \pi_{1}(C, \bar{x}) & \rightarrow & \pi_{1}(B, \bar{b}) \\
\| & \downarrow & & \rightarrow 1 \\
1 \rightarrow \pi_{1}\left(C_{\bar{b}}, \bar{x}\right) & \rightarrow & \pi_{1}\left(\mathcal{C}_{g, n}, \bar{x}\right) & \rightarrow & \pi_{1}\left(\mathcal{M}_{g, n}, \bar{b}\right) \\
\downarrow & \downarrow \rho_{A, \text { univ, } \bar{x}} & & \downarrow 1 \\
& \downarrow \rho_{O, \text { univ }} &
\end{array} \\
& 1 \rightarrow \operatorname{Inn} \Pi_{g, n}^{(\ell)} \rightarrow \quad \operatorname{Aut} \Pi_{g, n}^{(\ell)} \quad \rightarrow \quad \text { Out } \Pi_{g, n}^{(\ell)} \quad \rightarrow 1
\end{aligned}
$$

where the vertical composition is $\rho_{A, C, x}$ (middle), $\rho_{O, C}$ (right).
In particular, if $C \rightarrow B=b=\operatorname{Spec} K$, we have

$$
\rho_{O, C}: G_{K}=\pi_{1}(b, \bar{b}) \rightarrow \pi_{1}\left(\mathcal{M}_{g, n} / K, \bar{b}\right) \xrightarrow{\rho_{O, u n i v}} \operatorname{Out} \Pi_{g, n}^{(\ell)}
$$

and hence

$$
\rho_{O, C}\left(G_{K}\right) \subset \rho_{O, u n i v}\left(\pi_{1}\left(\mathcal{M}_{g, n} / K\right)\right) \subset \operatorname{Out} \Pi_{g, n}^{(\ell)}
$$

Definition If the equality holds for the left inclusion, the curve $C \rightarrow b$ is called monodromically full.

Theorem (Tamagawa-M, 2000) The set of closed points in $\mathcal{M}_{g, n}$ corresponding to monodromically full curves is infinite, and dense in $\mathcal{M}_{g, n}(\mathbb{C})$ with respect to the complex topology.

Remark As usual, the π_{1} of $\mathcal{M}_{g, n}$ is an extension

$$
1 \rightarrow \pi_{1}\left(\mathcal{M}_{g, n} \otimes \overline{\mathbb{Q}}\right) \rightarrow \pi_{1}\left(\mathcal{M}_{g, n}\right) \rightarrow G_{\mathbb{Q}} \rightarrow 1
$$

The left hand side is isomorphic to the profinite completion of the mapping class group $\Gamma_{g, n}$. (Topologists studied a lot.)
Monodromically full \Leftrightarrow Galois image contains $\Gamma_{g, n}$.

Scketch of Proof of Theorem

Hilbert's irreducibility + almost pro- ℓ ness.

Proposition If P is a finitely generated pro- ℓ group, then take $H:=[P, P] P^{\ell} \triangleleft P$. Then P / H is a finite group (flattini quotient).
If a morphism of profinite groups $\Gamma \rightarrow P$ is surjective modulo H, namely

$$
\Gamma \rightarrow P \rightarrow P / H
$$

is surjective, then $\Gamma \rightarrow P$ is surjective.
Definition A profinite group G is almost pro- ℓ if it has a pro- ℓ open subgroup P.

Corollary Suppose in addition G is finitely generated.
Put $H:=[P, P] P^{\ell}$. Then $[G: H]<\infty$.
If $\Gamma \rightarrow G \rightarrow G / H$ is surjective, so is $\Gamma \rightarrow G$.

Claim $C \rightarrow B$ be a family of (g, n)-curves over a smooth variety B over a NF K. Then the image of

$$
\pi_{1}(B) \rightarrow \operatorname{Out} \Pi_{g, n}^{(\ell)}
$$

is a finitely generated almost pro- ℓ group.

- Out(fin.gen.pro- ℓ) is almost pro- ℓ.
- a closed subgroup of almost pro- ℓ group is again so.
- finitely generatedness: $\pi_{1}(B \otimes \bar{K})$ is finitely generated. G_{K} not. But take $L \supset K$ so that $C(L) \neq \emptyset$ and $G_{L} \rightarrow \operatorname{Out} \Pi^{(\ell)}$ has pro- ℓ image. Only finite number of places of O_{L} ramifies, and class field theory tells that $\operatorname{Im}\left(G_{L}\right)$ has finite flattini quotient.

Corollary Take the above H for the image of $\pi_{1}(B)$. H^{\prime} the inverse image in $\pi_{1}(B)$. Let $B^{\prime} \rightarrow B$ be the etale cover corresponding to H^{\prime}. If $b \in B$ has a connected fiber (i.e. one point) in B^{\prime}, Then the composition

$$
G_{k(b)} \rightarrow \operatorname{Im}\left(\pi_{1}(B)\right) \rightarrow \operatorname{Im}\left(\pi_{1}(B)\right) / H
$$

is surjective, hence the left arrow is surjective.

Last Claim

Existence of many such b follows from Hilbertian property:
Take a quasi finite dominating ratl. map $B \rightarrow \mathbb{P}_{K}^{\operatorname{dim}} B$.
Apply Hilbertian property to $B^{\prime} \rightarrow B \rightarrow \mathbb{P}_{K}^{\operatorname{dim}} B^{K}$.
3. Aut and Out. Again consider $C \rightarrow b=\operatorname{Spec} K$. Take a closed point x in C, and \bar{x} a geometric point. This yields

$$
\begin{aligned}
& \begin{array}{cccc}
G_{k(x)} \\
& & & \\
\downarrow x_{*} \\
\\
\downarrow & & & \\
\pi_{1}\left(C_{\bar{b}}, \bar{x}\right) & \rightarrow \pi_{1}(C, \bar{x}) & \rightarrow & G_{K}
\end{array} \rightarrow 1 \\
& 1 \rightarrow \operatorname{Inn} \Pi_{g, n}^{(\ell)} \rightarrow \operatorname{Aut} \Pi_{g, n}^{(\ell)} \rightarrow \operatorname{Out} \Pi_{g, n}^{(\ell)} \rightarrow 1 .
\end{aligned}
$$

Vertical composition gives

$$
\begin{array}{rlr}
\rho_{A, x}: G_{k(x)} & \rightarrow \operatorname{Aut} \Pi_{g, n}^{(\ell)} \\
\cap & \downarrow \\
\rho_{O}: \quad G_{K} & \rightarrow \operatorname{Out}_{\Pi_{g, n}^{(\ell)}}^{(\ell)}
\end{array}
$$

Question: Is the map $A O(C, x): \rho_{A, x}\left(G_{k(x)}\right) \rightarrow \rho_{O}\left(G_{K}\right)$ injective? (Do we lose information in Aut \rightarrow Out?)

Definition

$I(C, x):=$ the statement " $A O(C, x)$ is injective."
Remark If $C=\mathbb{P}-\{0,1, \infty\} / \mathbb{Q}$ and x is a canonical tangential base point, then $A O(C, x)$ is an isom (hence $I(C, x)$ holds: Belyi, Ihara, Deligne, 80's).

Main Theorem (M, 2009) Suppose $g \geq 3$ and ℓ divides $2 g-2$. Let $C \rightarrow$ Spec K be a monodromically full $(g, 0)$-curve $([K: \mathbb{Q}]<\infty)$.
Then, for every closed point x in C such that $\ell \chi[k(x): K]$, $I(C, x)$ does not hold.
In this case, the kernel of $A O(C, x)$ is infinite.

A topological result.

Proof reduces to a topological result.
$\Gamma_{g, n}:=\pi_{1}^{o r b}\left(\mathcal{M}_{g, n}^{a n}\right)$.
$\Gamma_{g}:=\Gamma_{g, 0}, \Pi_{g, 0}=\Pi_{g}$.
Topological version of universal family yields

$$
1 \rightarrow \Pi_{g} \rightarrow \Gamma_{g, 1} \rightarrow \Gamma_{g} \rightarrow 1
$$

and by putting $H:=\Pi_{g}^{a b}$

$$
1 \rightarrow H \rightarrow \Gamma_{g, 1} / \Pi_{g}^{\prime} \rightarrow \Gamma_{g} \rightarrow 1
$$

Theorem (S. Morita 98, Hain-Reed 00). Let $g \geq 3$. The cohomology class of the above extension

$$
[e] \in H^{2}\left(\Gamma_{g}, H\right)
$$

has the order $2 g-2$.

Proof of Main Theorem. Suppose $\ell \mid(2 g-2), x \in C$ with $\ell \quad \chi[k(x): K]$. Suppose $I(C, x)$, namely the image of $G_{k(x)}$ in the middle

$$
G_{k(x)} \rightarrow \operatorname{Aut} \Pi_{g}^{(\ell)} \rightarrow \operatorname{Out} \Pi_{g}^{(\ell)}
$$

is same with the image in the third. Let S be this image. This gives a restricted section from S to the middle group:

$$
\begin{array}{ccc}
1 \rightarrow \operatorname{Inn} \Pi_{g}^{(\ell)} & \rightarrow & {\operatorname{Aut} \Pi_{g}^{(\ell)}}^{l n} \\
& \rightarrow & \operatorname{Out}_{g}^{(\ell)}
\end{array} \rightarrow 1
$$

By taking the quotient by the commutator $\Pi_{g}^{(\ell)^{\prime}}$, we have the top short exact sequence in the following:

The middle row is the pullback along $\Gamma_{g} \rightarrow \operatorname{Im}\left(\rho_{O, \text { univ }}\right)$.
The bottom row is the topological one.
Let $\left[e_{u n i v}\right] \mapsto\left[e_{\ell}\right] \leftarrow[e]$ be the corresponding elements in

$$
H^{2}\left(\operatorname{Im} \rho_{O, u n i v}, H^{(\ell)}\right) \rightarrow H^{2}\left(\Gamma_{g}, H^{(\ell)}\right) \leftarrow H^{2}\left(\Gamma_{g}, H\right)
$$

order: (a multiple of ℓ^{ν}), $\ell^{\nu}, 2 g-2$, resp., where $\ell^{\nu} \| 2 g-2$.

By assuming $I(C, x)$, a section restricted to S exists for

$$
1 \rightarrow H^{(\ell)} \rightarrow \operatorname{sim} \rho_{A, u n i v, x} / \Pi^{(\ell) \prime} \rightarrow \operatorname{Im} \rho_{O, \text { univ }} \rightarrow 1
$$

Now monodrmically fullness implies

$$
\operatorname{Im} \rho_{O, u n i v}=\rho_{O, C}\left(G_{K}\right)
$$

and $S=\rho_{O, C}\left(G_{k(x)}\right)$ is a finite index subgroup with index dividing $[k(x): K]$, hence coprime to ℓ. This implies that the restriction of $\left[e_{\text {univ }}\right]$ by

$$
H^{2}\left(\operatorname{Im} \rho_{O, u n i v}, H^{(\ell)}\right) \rightarrow H^{2}\left(S, H^{(\ell)}\right)
$$

does not vanish, hence there should be no restricted section from S, a contradiction.

Remarks Recently Yuichiro Hoshi proved

- For any (g, n)-curve C over number field, $\exists \infty$-many closed points x such that $I(C, x)$ does not hold.
- There are examples where $I(C, x)$ holds for (not tangential, usual) closed point x.

THIS IS THE END : Thank you for listening

