TORSION POINTS OF ABELIAN VARIETIES OVER FUNCTION FIELDS

MARC HINDRY \& AMÍLCAR PACHECO

Sketch, notations and ideas for the content of the lectures:
Let \mathcal{C} be a smooth projective geometrically connected curve defined over a finite field $k=\mathbb{F}_{q}$ of characteristic $p, K=k(\mathcal{C})$ its function field of genus g and A / K a non-constant abelian variety of dimension d. Let $\phi: \mathcal{A} \rightarrow \mathcal{C}$ be a Néron model of A over \mathcal{C}. The ultimate goal is to show that if the Kodaira-Spencer map of ϕ is non-zero and $p>2 d+1$, then there exists a bound for the order of the torsion subgroup of $A(K)$ depending only on d and g (which alas is not explicit). The proof requires several steps.

1. The differential height and the group of connected components

Denote by $e_{\mathcal{A} / \mathcal{C}}$ the neutral section of ϕ and $\omega_{\mathcal{A} / \mathcal{C}}=e_{\mathcal{A} / \mathcal{C}}^{*}\left(\Omega_{\mathcal{A} / \mathcal{C}}^{1}\right)$. Given a vector bundle \mathcal{E} in \mathcal{C}, let $\wedge^{\max } \mathcal{E}$ be its maximal exterior power and $\operatorname{deg}(\mathcal{E})=\operatorname{deg}\left(\wedge^{\max } \mathcal{E}\right)$. The differential height of A / K is defined by $h_{A / K}=\operatorname{deg}\left(\omega_{\mathcal{A} / \mathcal{C}}\right)$. For each place v of K denote by $c_{v}(A / K)$ the cardinality of the group of connected components of the special fiber of the Néron model of A / K at v which are defined over the residue field κ_{v} of v. After having taken a finite extension of K we will assume that A / K has everywhere semi-abelian reduction. Let S be the finite set of places of K where A has bad reduction and $s=\# S$. The goal of this section is to present the scheme of proof of the following inequality

$$
\sum_{v \in S} c_{v}(A / K)^{1 / d} \operatorname{deg}(v) \ll h_{A / K}
$$

We observe that if $p>2 d+1$ the hypothesis of everywhere semi-abelian reduction is no longer necessary.

2. An $a b c$ THEOREM FOR SEMI-ABELIAN SCHEMES

This result is an extension of Szpiro's discriminant theorem from elliptic curves with semi-stable reduction to semi-abelian schemes in positive characteristic. Let (τ, B) be the K / k-trace of A and $d_{0}=\operatorname{dim}(B)$. Denote by $\mathfrak{F}_{A / K} \in \operatorname{Div}(\mathcal{C})$ the conductor of A / K and let $f_{A / K}=\operatorname{deg}\left(\mathfrak{F}_{A / K}\right)$. We will sketch the proof of the following inequality : if $\operatorname{Kod}(\phi) \neq 0$ and $p>2 d+1$, then

$$
h_{A / K} \leq \frac{1}{2}\left(d-d_{0}\right)(2 g-2+s)
$$

[^0]Here $\operatorname{Kod}(\phi)$ stands for the Kodaira-Spencer map. In the case where $\operatorname{Kod}(\phi)=0$, if p^{e} denotes the inseparable degree of the j-map induced by ϕ on the moduli of abelian varieties, then we have to multiply the right hand side of the inequality by p^{e}. The method of the proof involves on the one hand the compactification of the moduli space of principally polarized abelian varieties with a level structure and on the other hand the notion of the nilpotence of the Gauss-Manin connection on the de Rham cohomology (through the use of p-curvature of a vector bundle).

3. Rigid geometric uniformization and the order of points

We suppose that A / K has everywhere semi-abelian reduction and that it is principally polarized via a symmetric ample line bundle \mathcal{L}, then using Raynaud's uniformization of $A\left(K_{v}\right)$ for a place v where A has bad reduction, there exists a Fourier-Jacobi expansion of theta functions (this is contained in Chai's lecture notes on moduli spaces of abelian varieties, essentially these are linear combinations of non-archimedian versions of the usual complex theta functions with integral coefficients).

Denote by $h_{\Theta, A / K}$ the height of A with respect to the theta embedding, $\mathfrak{F}_{A / K, r}$ the reduced conductor of A, i.e., where all multiplicities are equal to 1 , and $f_{A / K, r}=$ $\operatorname{deg}\left(\mathfrak{F}_{A / K, r}\right)$. Denote $\rho_{A / K}=h_{\Theta, A / K} / f_{A / K, r}, \sigma_{A / K}=h_{A / K} / f_{A / K}$ and observe (confer the previous section) that there exists a constant c depending only on d such that $\rho_{A / K} \leq c \sigma_{A / K}$.

We propose a strategy to prove an analogue of Lang's conjecture for function fields over finite fields, namely, if P is a point of $A(K)$ of infinite order modulo every sub-abelian variety of A, then its Néron-Tate height is bounded below by some constant depending on d, g and the ratio $\rho_{A / K}$ multiplied by $\max \left\{1, h_{\Theta, A / K}\right\}$.

Actually, we aim at more : achieving to prove that if the Néron-Tate height of P is bounded from above by such an expression, then P is a point of finite order and its order is bounded from above by a constant depending on d and on $\rho_{A / K}$, a fortiori just on d and $\sigma_{A / K}$. Whence, from the last section, in fact this upper bound will depend just on d and g.

The approach used is an extension of the strategy implemented in David's paper [Minorations de hauteurs de variétés abéliennes, BSMF 1993] in the complex context. In this lecture we will present a sketch of this strategy of the proof of this result.

Would it be possible to obtain a bound depending on the k-gonality of \mathcal{C} (as Poonen does for elliptic curves)?

4. Methods from transcendence theory

Since A is principally polarized every point of A can be identified with a group extension of A by \mathbb{G}_{m}. Similarly, any extension G of A by a multplicative torus \mathbb{G}_{m}^{m} is associated to a point of A^{m}. One also has natural compactification of G (à la Serre) related to \mathcal{L} and a natural ample line bundle \mathcal{M}.

On such a multiplicative torus, associated to a k-tuple related to P, and assuming that the Néron-Tate height of P is small enough and constructs a global section of a suitable power $\mathcal{M}^{\otimes n}$ of \mathcal{M} vanishing at the origin with a suitable multiplicity.

One then uses the local uniformizations at each place of bad reduction and analytic tools to prove that such a section must be very small v-adically at a higher
multiplicity at the origin at each and every place v of bad reduction of A. A simple one variable Schwarz lemma on an annulus is enough for this purpose.

Putting all the places together, one deduces by the product formula, using the assumption that the Néron-Tate height of P is small that our original section must actually vanish at a higher multiplicity at the origin. For these steps, one notices that the height of the group G itself encodes the height of P.

Classical Philippon zero estimates then ensure that P must be of finite order modulo some sub-abelian variety of A, and even conveniently provide for a bound for that order.

[^0]: Date: November 26, 2009.
 SAKURA WORKSHOP "TORSION OF ABELIAN SCHEMES AND RATIONAL POINTS ON MODULI SPACES", INSTITUT DE MATHÉMATIQUES DE BORDEAUX, JAN. 25-29, 2010

