Année universitaire 2015-2016 Licence 2 de mathématiques Algèbre 3 - Feuille 3

Exercice 1

- **a.** Soit n un entier ≥ 2 . Soit $\sigma \in \mathcal{S}_n$ d'ordre impair. Vérifier que $\sigma \in \mathcal{A}_n$.
- **b.** Montrer que tout élément de S_6 est d'ordre ≤ 6 .
- c. Prouver que tout élément de A_7 est d'ordre ≤ 7 .

Exercice 2

Soit G un groupe tel que $g^2 = 1$ pour tout $g \in G$. Démontrer que G est abélien.

Exercice 3

On considère l'intervalle $I =]-1, +\infty[$. Pour tout $(x,y) \in I^2$, on pose $x \otimes y = xy + x + y$. Montrer que \otimes est une loi interne sur I, puis que (I, \otimes) est un groupe.

Exercice 4

Soit G un groupe. Soient H et K deux sous-groupes de G. Prouver que : $H \cup K$ est un sous-groupe de G si et seulement si $H \subset K$ ou $K \subset H$.

Exercice 5

Soit G un groupe. Soit H une partie finie non vide de G stable par la loi de groupe. Démontrer que H est un sous-groupe de G.

Qu'en est-il si H est infini?

Exercice 6 : centre d'un groupe

- **a.** Soit G un groupe. On pose $Z(G) = \{x \in G \mid \forall y \in G \ xy = yx\}$. Vérifier que Z(G) est un sous-groupe de G.
 - **b.** Montrer que $Z(S_3)$ est trivial.
 - **c.** Soit n un entier ≥ 3 . Prouver que $Z(S_n)$ est trivial.

Exercice 7

Soient n un entier ≥ 1 et a un entier. Quel est l'ordre de \bar{a} dans le groupe $\mathbb{Z}/n\mathbb{Z}$?

Exercice 8

Considérons l'ensemble $G = \mathrm{SL}_2(\mathbb{Z})$ des matrices $M \in \mathrm{M}_2(\mathbb{Z})$ telles que $\det(M) =$

1. Posons
$$T = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 et $U = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

- a. Vérifier que G muni de la multiplication matricielle est un groupe.
- **b.** Quel est l'ordre de U dans G?

c. Soit
$$M=\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\in G.$$
 Soit $(q,r)\in\mathbb{Z}^2$ tel que $a=cq+r.$ Calculer $UT^{-q}M.$

- **d.** En déduire que $G = \langle T, U \rangle$.
- **e.** Posons $V = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$. Montrer que $G = \langle U, V \rangle$. Quel est l'ordre de V?

Exercice 9 : groupes diédraux

Soient G un groupe et n un entier ≥ 3 . Supposons qu'il existe $r \in G$ d'ordre n et $s \in G$ d'ordre 2 vérifiant : $G = \langle r, s \rangle$ et $sr = r^{-1}s$. Prouver que G est un groupe non abélien d'ordre 2n.

Exercice 10

Soit G un groupe. On suppose que l'ensemble des sous-groupes de G est fini. Démontrer que G est fini.

Exercice 11

Soit G un groupe fini d'ordre pair. Montrer qu'il existe un élément de G d'ordre 2; indication: on pourra regrouper chaque élément avec son inverse.

Exercice 12 : nombres de Mersenne

Soit n un nombre premier impair. Soit p un diviseur premier de $2^n - 1$. Déterminer l'ordre de $\bar{2}$ dans le groupe $(\mathbb{Z}/p\mathbb{Z})^*$. En déduire que 2n divise p - 1.

Exercice 13 : critère de Pépin

Soit *n* un entier naturel; on pose $F_n = 2^{2^n} + 1$.

- **a.** Soit p un facteur premier de F_n . Prouver que 2^{n+1} divise p-1; indication : on pourra considérer l'ordre de $\bar{2}$ dans le groupe $(\mathbb{Z}/p\mathbb{Z})^*$.
- **b.** Supposons qu'il existe un entier a tel que $a^{(F_n-1)/2} \equiv -1 \mod F_n$. En s'inspirant de la question **a**, démontrer que F_n est premier.