M1MI2016 Codes et Cryptologie

7 Mars 2012, durée 1h20

Documents interdits, calculatrices autorisées

Le sujet n'est pas long, et est proche de ce qui a été fait en TD. En contrepartie on attend de vous une rédaction soignée.

- 1 L'entier 583 est-il inversible modulo 679? Si oui, calculez son inverse.
- $\boxed{2}$ Soit $n \leq m$ deux entiers positifs. Montrez que 2^n est inversible modulo 2^m-1 et calculez son inverse.
- 3 Résoudre les équations suivantes :

$$2x + 3 = 5 \mod 11$$

$$3x + 7 = 5 \mod 9$$

$$6x - 4 = 8 \mod 9$$

- 4 Le but de cet exercice est de montrer qu'il n'existe pas d'entiers x, y tels que $x^2 2y^6 = 17$.
 - 1. Complétez le tableau suivant, dont les entrées sont des éléments de $\mathbb{Z}/7\mathbb{Z}$:

\overline{a}	0	1	2	3	4	5	6	$\mod 7$
a^2								
a^6								

- 2. Déduire de la question précédente que, si x, y éléments de \mathbb{Z} sont tels que $x^2 2y^6 = 17$, alors $x^2 = 3 \mod 7$, ou bien $x^2 = 5 \mod 7$.
- 3. En utilisant à nouveau le tableau de la question 1., montrez qu'il n'existe pas d'entiers $x,y\in\mathbb{Z}$ tels que $x^2-2y^6=17$.