
On Extremal Additive GF(4) Codes of Length 10 to 18Christine Bachoc and Philippe GaboritAbstract. In this paper we classify the 19 even extremal self-dual additivecodes of length 10 and we classify under a restrictive hypothesis 490 evenextremal self-dual codes of length 14. Under the same restrictive hypothesiswe also give a partial result on the unicity of the even self-dual additive F4 -linear [18,9,8] code. 1. IntroductionAn additive code C over GF (4) of length n is an additive subgroup of GF (4)n.We will denote by C an (n; 2k) additive code of length n with 2k codewords. Ad-ditive codes over GF (4) were introduced in [4] as a way to describe a subclassof quantum codes. Such codes can also be used to construct modular of level 3lattices, as it will be discussed in Section 5.Let GF (4) = f0; 1; !; !g where ! = !2 = 1+ !. The trace map Tr : GF (4)!GF (2) is de�ned by Tr(x) = x+ x2:The space GF (4)n is endowed with the trace inner product de�ned for two vectorsx = x1x2 � � �xn and y = y1y2 � � � yn in GF (4)n by:x:y = nXi=1 Tr(xiyi):If C is an additive code, its dual C? is de�ned by C? = fx 2 GF (4)n j x:c = 0g.If C is an (n; 2k) code, then C? is an (n; 22n�k) code. As usual, an additive codeC is self-orthogonal if C � C? and self-dual if C = C?. In particular an hermitianself-dual F4 code is also self-dual for the trace inner product as an additive code.The weight wt(c) of c 2 C is the usual Hamming weight over GF (4) whichcounts the number of nonzero components of c and the minimum weight d of C isthe smallest weight of any nonzero codeword in C.Two additive codes C1 and C2 are equivalent provided there is a map fromSn3 o Sn sending C1 onto C2, with Sn the permutation group of the n coordinatesand S3 the permutation group on the elements f1,!,!g. The automorphism groupof C, denoted Aut(C), consists of all the elements of Sn3 o Sn which stabilize CAn additive self-dual code is Type II if all its codewords have even weight andType I else. Type II codes are known to exist only in even lengths. A bound2000 Mathematics Subject Classi�cation. Primary 94B60, 11H71; Secondary 94B05, 94B25.1



2 C. BACHOC AND P. GABORITon the minimum weight of an additive self-dual code was given by Rains in [12,Theorem 33]. If we let dI and dII be the minimum distance of an additive self-dualType I or Type II code, then:dI � 8<: 2 �n6 �+ 1 if n � 0 (mod 6)2 �n6 �+ 3 if n � 5 (mod 6)2 �n6 �+ 2 otherwise(1) dII � 2 jn6k+ 2:(2)A code that meets the appropriate bound is called extremal. Type II codes meetingthe bound dII have a uniquely determined weight enumerator.The classi�cation of self-dual additive codes was done by Hohn in [7] up tolength 7 for Type I-II codes and up to length 8 for Type II codes. In [6], Gaborit,Kim, Hu�man and Pless pushed the classi�cation of extremal Type I codes to thelengths 8, 9 and 11. They also gave a written proof of the unicity of the extremalType II code of length 12, the so called dodecacode.The computation of the mass of Type II codes (see [7]) shows that the numberof classes of such codes is greater than 1:72 106 for length 14, greater than 1:02 1010for length 16 and greater than 8:9 1016 for length 18, so that a complete classi�cationis unrealistic.In this paper we only consider extremal Type II codes and we extend theclassi�cation to length 10, for which we �nd 19 inequivalent extremal codes. Underthe restrictive hypothesis s(C) > 0 that we shall explain in Section 2, we �nd 490inequivalent extremal codes for length 14 and only one extremal code for length18, the unique F4 -linear hermitian [18,9,8] code. We did not consider length 16since the number of extremal Type II codes should be even bigger than for length14. Section 2 explains the method we used, Sections 3 and 4 list the numericalresults we obtained, eventually we give in the Appendix the complete list of the19 extremal Type II codes of length 10 and also 5 particular codes of length 14.Section 5 examines the lattices constructed from these codes. All the computationswere done with the Magma system [3].2. The methodIn this section, C denotes an extremal, Type II code of length n and minimumweight d. Let u be a codeword of weight d. Let S = S(u) denote the support of u.Two cases arise: either u is the only word in C with support S, or exactly threewords in C have S as support. In this last case, we can assume up to equivalencethat these three words are 1d0n�d, !d0n�d, !d0n�d. (This is clear from the followingobservations: if the code C contains another element v with the same support asu, then the nonzero coordinates of u and v are pairwise di�erent otherwise u + vwould be of weight strictly lower that d. And u+v itself is also a weight d codewordwith the same support as u and v.) It is worth noticing that, if C is equivalent to alinear code, then the �rst case never happens since wu and w2u provide codewordswith the same support as u. Hence the following invariant of C measures how farthe code is to be linear:s(C) := cardfS � f1 : : : ng j jSj = d and cardfu : u 2 C j S(u) = Sg > 1g:(3)



ON EXTREMAL ADDITIVE GF(4) CODES OF LENGTH 10 TO 18 3We shall see later that it is much more di�cult to classify the codes with s(C) =0. Note that, when the code C is F4 linear, s(C) = 13 cardfx 2 Cjwt(x) = dg.Again, let u 2 C. LetC0(u) := fv : v 2 C j S(v) \ S(u) = ;g:(4) This is a subcode of C. The classi�cation of the possible C0(u) for the lengthsunder consideration will be discussed in next section. We can then describe ageneral form for a generating matrix of an extremal code.Lemma 2.1. The extremal code C has got up to equivalence a generating matrixof the form:1. If s(C) = 0 26666666666664
1 : : : 1 0 : : : 00 C01 0. . . ... s11 0! !. . . ... s2! !

37777777777775where C0 is an additive code of length n�d and dimension n�2d+1. Heresi denote matrices of size (d� 1)� (n� d).2. If s(C) > 0 2666666666666664
1 : : : 1 0 : : : 0! : : : ! 0 : : : 00 C00 1 1... . . . ... s10 1 10 ! !... . . . ... s20 ! !

3777777777777775where C0 is an additive code of length n� d and dimension n� 2d+ 2.Here si denote matrices of size (d� 2)� (n� d).Proof. See [6].In order to enumerate the extremal codes, we have then to full�l two steps: �rststep is the enumeration of the possibilities for the subcode C0. It is an additivecode with parameters (n�d; 2n�2d+1; d) if s(C) = 0, respectively (n�d; 2n�2d+2; d)if s(C) > 0. This is left to next section, where we shall make use of the fact thatin some cases (n = 14; 18 and s(C) > 0), its weight enumerator can be computed.Second step is to run over the possibilities for (s1; s2). Therefore, we discuss someproperties of these matrices.



4 C. BACHOC AND P. GABORITLet V := C?0 =C0. This F2 -vector space is endowed with a weight wV de�nedby wV (x) := minfwt(u) : u 2 xg(5) and with a non degenerate binary quadratic form qVqV (x) := wV (x) (mod 2):(6) We denote by bV the associated symplectic form, which is nothing else than thebilinear form induced by the inner product on C0. Note that the isomorphism classof the symplectic space (V; bV ) and of the quadratic space (V; qV ) are determined bydim(V ) since the quadratic space has index dim(V )=2 as will be proved in Lemma2.2. Clearly, the lines of the matrices si are de�ned modulo C0 and belong to C?0since C is assumed to be self-dual. For i = 1; 2, we denote by Si the subspace ofV spaned by the lines of si. These lines are speci�c vectors of Si and must satisfycertain weight conditions, so that the whole line of the generating matrix has weightat least d. Hence we take the following notations: a set fe1; : : : ; esg � V is said tosatisfy condition (C1), respectively (C2), (C3) ifFor all 1 � k � s=2; (wv(P2k�1 ei) � max(d� 2k; 2k)wv(P2k ei) � max(d� 2k; 2k)(C1) For all 1 � k � s; wv(Xk ei) � max(d� k; k)(C2) For all 1 � k � s=2; (wv(P2k�1 ei) � d� 2kwv(P2k ei) � d� 2k(C3)where Pk ei means any sum over k distinct indices i.We denote by I the unit matrix and by J the matrixJ = 0BBBBB@0 1 1 : : : 11 0 1 : : : 1... . . . . . . . . . ...1 : : : 1 0 11 : : : 1 1 0
1CCCCCA :(7) Lemma 2.2. � If s(C) = 0 and for a generating matrix as in 1. of Lemma2.1, the quadratic space V has dimension 2(d�1); the subspace S2 is maximaland totally isotropic for qV , while S1 is maximal and totally isotropic for bV .Moreover, S1 \ S2 = f0g, S1 has a basis b1 = (e1; : : : ; ed�1) satisfying (C2)and S2 has a unique basis b2 = (f1; : : : ; fd�1) such that (bV (ei; fj))i;j = I,and both b2 and (e1 + f1; : : : ; ed�1 + fd�1) satisfy (C3).� If s(C) > 0 and for a generating matrix as in 2. of lemma 2.1, the quadraticspace V has dimension 2(d�2) and the subspaces Si are maximal and totallyisotropic for qV . Moreover, S1 \ S2 = f0g and one can �nd in S1 a basisb1 = (e1; : : : ; ed�2) such that S2 has a unique basis b2 = (f1; : : : ; fd�2) with(bV (ei; fj))i;j = J , and b1, b2 and (e1 + f1; : : : ; ed�2 + fd�2) satisfy (C1).



ON EXTREMAL ADDITIVE GF(4) CODES OF LENGTH 10 TO 18 5Proof. We assume s(C) > 0 and we consider a generating matrix as in 2. oflemma 2.1. The dimension of the quadratic space V follows from the dimension ofC0. If the sum of some lines of si was zero, it would give rise to a word in C withsupport strictly contained in f1; : : : ; dg which would contradict the hypothesis. Sodim(Si) = d�2. Clearly the lines of si are pairwise orthogonal for bV and isotropicfor qV , so the Si are maximal totally isotropic subspaces of V . In the same way, asum of some of the lines of s1 or s2 cannot be 0, which means that S1 \ S2 = f0g.The conditions satis�ed by wv(Pk ei) derive easily from the fact that d is theminimal weight of C. The computation of bV (ei; fj) where ei are the lines of s1and fi are the lines of s2 follows from the form of the generating matrix. The basis(e1 + f1; : : : ; ed�2 + fd�2) correspond to the subcode with matrix2640 ! ! e1 + f1... . . . ... ...0 ! ! ed�2 + fd�2 375and hence have the same properties has the two others.The arguments in the case s(C) = 0 are similar.Let us assume that s(C) > 0. The method that we have followed to classifythe extremal codes goes through the following algorithmic steps:Step 1: List the possible C0. There are few possibilities in each case; see nextsection for the explicit list of possibilities for n = 10; 14; 18.Step 2: Fix C0. List the maximal totally isotropic subspaces in V . This can beeasily done by applying the orthogonal group of the quadratic form to a speci�cone, as long as the number of such spaces is not to big. Compute the orbits of thisset under the action of Aut(C0).Step 3: List the subset S1 of the representants of these orbits which contain atleast one basis satisfying (C1). For all S1 2 S1, list the set B(S1) of the basis ofS1 satisfying (C1). Therefore, we make use of the joint action of the symmetricgroup on the d �rst coordinates and of the stabilizer of S1 in Aut(C0) on the set ofordered basis of S1.Step 4: For each S1 2 S1, compute the set S2 = fS2 j S2 \ S1 = f0gg whereS2 is maximal totally isotropic for qV . For each basis (e1; : : : ; ed�2) 2 B(S1),compute the unique basis (f1; : : : ; fd�2) of S2 such that (bV (ei; fj))i;j = J . Test if(f1; : : : ; fd�2) and (e1 + f1; : : : ; ed�2 + fd�2) satisfy (C1). If so, keep the matrix2666666666666664
1 : : : 1 0 : : : 0! : : : ! 0 : : : 00 C00 1 1 e1... . . . ... ...0 1 1 ed�20 ! ! f1... . . . ... ...0 ! ! fd�2

3777777777777775 :



6 C. BACHOC AND P. GABORITTable 1. The number of totally isotropic spacesdim(V ) orthogonal geometry of index dim(V )=2 symplectic geometry46 30 1358 270 229510 4590 7573512 151470 492277514 9845550 635037975Step 5: Test equivalence between the codes with generating matrices stored inStep 4.In the case when s(C) = 0, the modi�cations are :Step 2: Note that, the dimension of V is increased by 2. Moreover, we need to listthe larger set of maximal totally isotropic subspaces for bV .Step 3: Replace condition (C1) by (C2).Step 4: Replace J by I and condition (C1) by (C3).Remark 2.3. One of the limits of the method is that it requires the exhaustivelist of all the maximal totally isotropic subspaces of V for respectively the quadraticform or the symplectic form. We give in Table 1 their number as a function ofdim(V ); it explains why we have limited our search to the case s(C) > 0 for n = 18.3. The subcode C0In this section, we discuss the classi�cation of the subcode C0. We �rst assumethat C0 = C0(u) where u is a minimal weight word in C, of the second type, i.e. suchthat its support S(u) is shared by two other codewords. Then, C0 has parameters(n� d; 2n�2d+2; d). In the case n = 18, the weight enumerator of C0 has the formWC0 = x10 + (15 � k)x2y8 + ky10; applying MacWilliams transform to it showsthat k = 0. In the case n = 14, the same argument shows that WC0 = x8 + (15�k)x2y6+ky8 with k = 1; 3. The computations on the harmonic weight enumeratorsof C worked out in [1] show that k = 3 is the only possibility. In the case n = 10,we have again WC0 = x6 + (15� k)x2y4 + ky6 with k = 0; 2; 4; 6. When s(C) = 0,there is no support of minimal weight word shared by two other codewords. Wethen consider a code C0 of the �rst type with parameters (n� d; 2n�2d+1; d). Bothcases have to be considered to make a complete classi�cation.Proposition 3.1. � Let C0 be an even (6; 24) quaternary additive codewith minimum weight 4. Then C0 is equivalent to one of the seven followingcodes:24 1 1 0 0 ! !! 0 0 1 ! 10 ! ! ! 0 !0 0 1 1 ! ! 35 ;24 1 1 0 0 ! !! ! 0 ! 0 !0 0 1 1 ! !0 0 ! ! ! ! 35 ;24 1 1 0 0 ! !! 0 ! 1 1 00 ! 0 ! ! !0 0 1 1 ! ! 35 ;24 1 1 0 0 ! !! 1 0 1 0 !0 0 1 1 ! !0 0 ! ! ! ! 35 ;



ON EXTREMAL ADDITIVE GF(4) CODES OF LENGTH 10 TO 18 724 1 0 0 ! 1 !0 1 0 ! ! 10 0 1 1 ! !0 0 ! ! ! ! 35 ;24 1 1 0 0 ! !! ! 0 0 ! !0 0 1 1 ! !0 0 ! ! 1 1 35 ;24 1 1 1 1 0 0! ! ! ! 0 00 1 ! ! 1 00 ! ! 1 ! 035 :The automorphism groups of these codes are of order respectively 12, 96, 72,16, 64, 288, 2160 and the last two are the only ones which are equivalent toF4 -linear codes.� Let C0 be an even (6; 23) quaternary additive code with minimum weight 4.Then C0 is equivalent to one of the seven following codes:" 1 ! 1 0 0 !! ! ! ! ! !0 ! 0 1 1 ! # ;" 1 ! 1 0 0 !0 ! 0 1 1 !0 0 ! ! ! ! # ;" 1 1 1 1 1 1! ! 1 ! ! 10 0 ! ! ! ! # ;" 1 1 0 ! ! 00 0 1 ! ! 10 0 ! ! ! ! # ;" 1 0 0 ! ! 10 1 1 ! ! 00 0 ! ! ! ! # ;" 1 1 1 1 0 01 1 0 0 1 11 0 1 0 ! ! # ;" 1 1 1 1 0 0! ! ! ! 0 00 1 ! ! 1 0# :The automorphism groups of these codes are of order respectively 48, 24,192, 128, 32, 768, 288, and since these codes have 23 codewords, they arenot F4 -linear.Proof: The codes were obtained by exhaustive search.Proposition 3.2. � Let C0 be an even quaternary additive code with weightenumerator WC0 = x8 + 12x2y6 + 3y8. Then C0 is equivalent to one of the�ve following codes:24 1 1 1 1 1 1 1 1! ! ! ! ! ! ! !1 1 ! ! ! ! 0 0! ! 0 0 ! ! 1 1 35 ;24 1 1 1 1 1 1 1 1! ! ! ! ! ! ! !1 1 ! ! ! ! 0 0! ! 0 ! 0 ! 1 1 35 ;24 1 1 1 1 1 1 1 1! ! ! ! ! ! ! !1 1 ! ! ! ! 0 00 ! ! 1 0 ! ! 1 35 ;24 1 1 1 1 1 1 1 11 1 ! ! ! ! ! !! ! 1 1 ! ! ! !! 0 1 ! ! 1 ! 0 35 ;24 1 1 1 1 1 1 1 11 1 ! ! ! ! ! !! ! 1 1 ! ! ! !1 ! ! 0 0 1 ! ! 35The automorphism groups of these codes are of order respectively 1152, 72,48, 4, 24 and the �rst one is the only one which is equivalent to a F4 -linearone.� Let C0 be an even quaternary additive code with weight enumerator WC0 =x10 + 15x2y8. Then C0 is equivalent to one of the �ve following codes:24 1 1 1 1 1 1 1 1 0 0! ! ! ! ! ! ! ! 0 0! ! ! ! 0 0 1 1 1 !! ! 1 1 0 0 ! ! ! ! 35 ;24 1 1 1 1 1 1 1 1 0 01 1 ! ! ! ! 0 0 1 1! ! 1 ! ! ! 0 ! 0 !1 0 1 ! 0 ! ! ! ! ! 35 ;24 1 1 1 1 1 1 1 1 0 01 1 ! ! ! ! 0 0 1 1! ! 1 ! ! ! 0 ! 0 !0 ! 0 ! 1 ! ! 1 ! ! 35 ;



8 C. BACHOC AND P. GABORIT24 1 1 1 1 1 1 1 1 0 01 1 ! ! ! ! 0 0 1 1! ! 1 ! ! ! 0 ! 0 !0 0 ! ! 1 1 ! ! ! ! 35 ;24 1 1 1 1 1 1 1 1 0 01 1 ! ! ! ! 0 0 1 1! ! 1 ! ! ! 0 ! 0 !! 1 ! ! 0 0 ! 1 ! ! 35The automorphism groups of these codes are of order respectively 11520, 24,120, 288, 96. The �rst one is the only one which is equivalent to a F4 -linearone.Proof: The codes were obtained by exhaustive search.Remark 3.3. It is worth noticing that the four last codes of length 10 thatappear in previous proposition are non linear non equivalent constant weight codes.Hence Bonisoli result [2] on constant weight codes over �elds does not hold forquaternary additive codes. 4. Numerical results4.1. Length 10. Here d = 4 and the extremal even self-dual codes have weightenumerator WC(x; y) = x10 + 30x6y4 + 300x4y6 + 585x2y8 + 108y10:(8) Applying the algorithm described in Section 2, for the two possible types ofC0, we obtain:Proposition 4.1. There are exactly 19 non equivalent even self-dual, extremalquaternary additive codes C of length 10.Two of these codes (QC 10r and QC 10s) are linear and were already classi�edas F4 linear self-dual hermitian codes in [9] and �ve non-linear codes (QC 10a, b,c, d, e) were found in [6], the 12 others are new. Table 2 lists the 19 codes withtheir automorphism group orders and the value of s(C). The generator matrices ofthe codes are listed in the appendix.4.2. Length 14. Here d = 6 and the extremal even self-dual codes have weightenumeratorWC(x; y) = x14 + 273x8y6 + 2457x6y8 + 7098x4y10 + 6006x2y12 + 549y14:(9) Applying the algorithm described in Section 2, we obtain:Proposition 4.2. There are exactly 490 non equivalent even self-dual, ex-tremal quaternary additive codes C of length 14 with s(C) > 0.Only one of them is equivalent to a F4 -linear one, as was previously knownfrom [9]. It has an automorphism group of order 6552.Because of the huge number of codes found in this case, we have not exploredthe other case s(C) = 0, although it should be possible to do it (see Table 1).We give in Table 3 the number of codes found with the corresponding number ofautomorphisms, and in Table 4 the number of codes found with the correspondingvalue for the invariant s(C). Matrices for the �ve new codes which are characterizedby the number of their automorphisms (respectively 18, 28, 36, 48, 84) are given inthe Appendix. The others can be found at http://www.math.u-bordeaux.fr/ bachoc.



ON EXTREMAL ADDITIVE GF(4) CODES OF LENGTH 10 TO 18 9Code n d jAut(C)j s(C)QC 10a 10 4 48 0QC 10b 10 4 32 0QC 10c 10 4 1440 0QC 10d 10 4 256 2QC 10e 10 4 18 0QC 10f 10 4 48 1QC 10g 10 4 48 1QC 10h 10 4 144 1QC 10i 10 4 64 2QC 10j 10 4 20 0QC 10k 10 4 720 0QC 10l 10 4 16 0QC 10m 10 4 768 2QC 10n 10 4 320 0QC 10o 10 4 12 0QC 10p 10 4 1152 4QC 10q 10 4 240 0QC 10r 10 4 11520 10QC 10s 10 4 43200 10Table 2. Extremal Type II codes of length 10Table 3. The number of codes C of length 14 with cardAut(C) = kcardAut(C) 1 2 3 4 6 8 12 18 24 28 36 48 84 6552C 273 133 10 25 17 9 5 1 12 1 1 1 1 1Table 4. The number of codes C of length 14 with s(C) = ks(C) 1 2 3 4 5 6 7 8 9 10 11 12 14 15 17 21 91C 274 115 42 18 21 4 2 3 3 1 1 1 1 1 1 1 14.3. Length 18. Here d = 8 and the extremal even self-dual codes have weightenumeratorWC(x; y) = x18 + 2754x10y8 + 18360x8y10 + 77112x6y12 + 110160x4y14 + 50949x2y16 + 2808y18:(10)There is up to equivalence only one extremal F4 -linear hermitian code [8],denoted by S18. Our search seems to indicate that it is also unique as a quaternaryadditive code, but we could not handle the case s(C) = 0 because of the hugenumber of totally isotropic spaces in dimension 14 (see Table 1).Applying the algorithm described in Section 2, we obtain:



10 C. BACHOC AND P. GABORITProposition 4.3. The code S18 is the unique up to equivalence even self-dual,extremal quaternary additive code C of length 18 with s(C) > 0.5. From codes to latticeIn this section, we discuss the lattices that can be constructed from the codespreviously studied. Let A2 denote as usual the 2-dimensional hexagonal lattice. Thequadratic space (A2=2A2; q) where q(x) := (x:x)=2 and x:x denotes the inner prod-uct of the underlying Euclidean space, is clearly isomorphic to (GF (4); T r(x�y)).Hence the GF (4)-additive codes of length n can be lifted into An2 ; this constructionis usually called \Construction A" from [5]. The lattice A2 is modular of level3 in the sense of [11], which means that there exists � : A2 ! A�2 a similarityof rate 1=p3 between A2 and its dual. Hence, even self-dual codes give rise to2n-dimensional lattices which are also modular of level 3. We explicit this con-struction in the next proposition. We again denote by � : An2 ! (A�2)n the map(x1; : : : ; xn)! (�(x1); : : : ; �(xn)).Proposition 5.1. Let C be a GF (4)-additive code of length n, with C � C?and C even. Let LC be the lattice de�ned byLC := f(x1; : : : ; xn) 2 An2 j (x1; : : : ; xn) mod 2A2 2 Cg:(11)Then, (LC ; 1=2Pni=1 xi:yi) is an even lattice of dimension 2n. Its dual latticeis (LC)� = �(LC?). In particular, if C is a self-dual code, then LC is modular oflevel 3. As a consequence, its determinant is equal to 3n. Its minimum is given bymin(LC) = min(4; wt(C)):(12). Proof. The formula (LC)� = �(LC?) is clear from the fact that the innerproduct on GF (4) is the one induced by the scalar product on A2. The computationof the minimum follows from the two observations: min((2A2)n; 1=2Pni=1 xi:yi) = 4and min((x1; : : : ; xn) + (2A2)n; 1=2Pni=1 xi:yi) = wt(u) where u is the image of(x1; : : : ; xn) in A2=2A2 identi�ed with GF (4). This last property follows from thefact that the roots of A2, i.e. the vectors x with x:x = 2 are representants of thenon zero classes of A2 modulo 2A2.The study of the theta series of modular lattices of level 3 leads in [11] to thede�nition of extremal lattices. These are the lattices meeting the boundmin(L) � 2[dim(L)=12] + 2:(13)See [13] for a survey on the notion of extremal lattices. From Proposition 5.1,the lattices LC are extremal only up to the dimension 20 (i.e. length 10 for thecodes). For the higher dimensions, it is usual to proceed to Kneser neighborings toget ride of the norm 4 vectors arising from the sublattice ((2A2)n; 1=2Pni=1 xi:yi).Clearly two neighborings are necessary to do so; however, this procedure fails toproduce an extremal lattice from the dodecacode of length 12. However, it is knownthat such a lattice exists since a 24-dimensional lattice, extremal and modular oflevel 3 is constructed in [10] from matrix groups. The genus of modular lattices of



ON EXTREMAL ADDITIVE GF(4) CODES OF LENGTH 10 TO 18 11level 3 is completely classi�ed up to dimension 16. Computations in the Magmasystem allow us to prove the following:Proposition 5.2. The 19 extremal type II codes of length 10 give rise to 19non isometric 20-dimensional extremal modular of level 3 lattices.Proof. Direct veri�cation. Among these lattices, 13 are generated by theirminimal vectors, for one of them the minimal vectors span a sublattice of index2 and for �ve others the index is 4. The automorphism groups have non equalorders, except for the lattices obtained from the codes QC 10f and QC 10g. Thetwo codes have an automorphism group of order 48 and the two lattices have anautomorphism group of order 214:32 but are not isometric.6. APPENDIX� The 19 extremal Type II codes of length 10.
QC 10a = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 ! 1 ! 0 00 1 0 0 0 ! 1 0 ! 00 0 1 0 0 0 1 0 ! !! 0 0 ! 0 0 0 ! 0 !0 ! 0 ! 0 ! ! 1 0 10 0 ! ! 0 0 ! 1 ! 1
37777777775 ; QC 10b = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 0 ! 0 ! 10 1 0 0 0 ! ! 1 ! !0 0 1 0 0 0 ! 0 ! 1! 0 0 ! 0 ! 0 ! ! !0 ! 0 ! 0 ! 0 ! 0 00 0 ! ! 0 ! 0 0 ! 0
37777777775

QC 10c = 26666666664
1 1 1 1 0 0 0 0 0 00 0 0 0 1 1 1 1 1 10 0 0 0 ! ! 1 ! ! 10 0 0 0 0 0 ! ! ! !1 0 0 0 0 1 1 1 0 00 1 0 0 0 1 0 0 1 10 0 1 0 0 1 1 0 1 0! 0 0 ! 0 ! 0 0 ! 00 ! 0 ! 0 ! 0 ! ! !0 0 ! ! 0 0 0 0 ! !

37777777775 ; QC 10d = 26666666664
1 1 1 1 0 0 0 0 0 00 0 0 0 1 1 1 1 1 10 0 0 0 ! ! 1 ! ! 10 0 0 0 0 0 ! ! ! !1 0 0 0 0 0 0 ! 1 !0 1 0 0 0 0 0 1 ! !0 0 1 0 0 ! 1 1 1 !! 0 0 ! 0 1 0 ! ! 10 ! 0 ! 0 1 0 ! ! 10 0 ! ! 0 0 1 1 1 1

37777777775
QC 10e = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 ! 0 ! 1 00 1 0 0 0 ! ! 1 ! !0 0 1 0 0 ! ! 0 0 1! 0 0 ! 0 ! 0 0 ! 00 ! 0 ! 0 0 0 ! ! 00 0 ! ! 0 ! 0 ! ! !
37777777775 ; QC 10f = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 ! ! 0 0 10 1 0 0 0 ! ! 1 1 10 0 1 0 0 0 ! 1 0 !! 0 0 ! 0 0 0 ! 0 !0 ! 0 ! 0 ! 0 0 ! 00 0 ! ! 0 0 0 ! ! 0
37777777775



12 C. BACHOC AND P. GABORIT
QC 10g = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 0 0 ! 1 !0 1 0 0 0 ! ! ! ! 10 0 1 0 0 0 ! 1 0 !! 0 0 ! 0 ! 0 ! ! !0 ! 0 ! 0 0 1 1 ! !0 0 ! ! 0 ! 1 1 ! 0
37777777775 ; QC 10h = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 0 1 ! ! 00 1 0 0 0 ! ! ! 1 !0 0 1 0 0 0 ! ! 0 1! 0 0 ! 0 ! 0 ! ! !0 ! 0 ! 0 0 0 ! 0 !0 0 ! ! 0 ! 0 ! 0 0
37777777775

QC 10i = 26666666664
1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 0 0 ! 1 !0 1 0 0 0 ! 1 ! ! !0 0 1 0 0 0 1 ! ! 0! 0 0 ! 0 ! 0 1 1 !0 ! 0 ! 0 0 ! ! 1 10 0 ! ! 0 ! ! 0 ! !

37777777775 ; QC 10j = 26666666664
1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 ! ! ! 1 !0 1 0 0 0 ! 1 0 ! 00 0 1 0 0 ! ! ! 1 !! 0 0 ! 0 ! 0 ! 0 00 ! 0 ! 0 0 0 0 ! !0 0 ! ! 0 0 0 ! 0 !

37777777775
QC 10k = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 ! ! 1 ! !0 1 0 0 0 ! ! ! 1 !0 0 1 0 0 0 ! ! 0 1! 0 0 ! 0 ! ! 0 ! !0 ! 0 ! 0 0 ! ! ! !0 0 ! ! 0 0 ! ! ! !
37777777775 ; QC 10l = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 0 ! 0 ! 10 1 0 0 0 ! ! 1 ! !0 0 1 0 0 0 ! 0 ! 1! 0 0 ! 0 ! 0 ! ! !0 ! 0 ! 0 ! 0 ! 0 00 0 ! ! 0 ! 0 0 ! 0
37777777775

QC 10m = 26666666664
1 1 1 1 0 0 0 0 0 00 0 0 0 1 1 1 1 1 10 0 0 0 ! ! 1 ! ! 10 0 0 0 0 0 ! ! ! !1 0 0 0 0 ! 1 ! ! !0 1 0 0 0 ! 1 ! 1 10 0 1 0 0 ! 1 1 ! 1! 0 0 ! 0 0 1 0 0 10 ! 0 ! 0 1 1 ! ! 00 0 ! ! 0 ! 0 ! 1 1

37777777775 ; QC 10n = 26666666664
1 1 1 1 0 0 0 0 0 00 0 0 0 1 1 1 1 1 10 0 0 0 ! ! 1 ! ! 10 0 0 0 0 0 ! ! ! !1 0 0 0 0 ! 0 1 ! 00 1 0 0 0 ! 1 ! 1 10 0 1 0 0 ! 1 1 ! 1! 0 0 ! 0 0 0 ! 0 !0 ! 0 ! 0 1 1 ! ! 00 0 ! ! 0 1 0 1 ! !

37777777775
QC 10o = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 ! 1 0 0 !0 0 0 0 ! ! ! ! ! !0 0 0 0 0 ! 0 1 1 !1 0 0 0 0 0 ! 0 ! 10 1 0 0 0 0 ! 1 0 !0 0 1 0 0 0 1 ! ! 0! 0 0 ! 0 0 0 ! 0 !0 ! 0 ! 0 ! 0 ! 0 00 0 ! ! 0 ! 0 0 ! 0
37777777775 ; QC 10p = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 1 0 ! ! 00 0 0 0 0 0 1 ! ! 10 0 0 0 0 0 ! ! ! !1 0 0 0 ! ! 0 1 ! !0 1 0 0 ! ! 0 ! 1 !0 0 1 0 0 1 0 1 1 0! 0 0 ! 0 ! 0 ! 1 10 ! 0 ! ! 0 0 ! ! !0 0 ! ! ! ! 0 0 0 0
37777777775



ON EXTREMAL ADDITIVE GF(4) CODES OF LENGTH 10 TO 18 13
QC 10q = 26666666664

1 1 1 1 0 0 0 0 0 00 0 0 0 1 0 0 ! ! 10 0 0 0 0 1 1 ! ! 00 0 0 0 0 0 ! ! ! !1 0 0 0 0 ! 0 1 ! 00 1 0 0 ! 0 0 ! 1 00 0 1 0 0 ! 1 ! ! !! 0 0 ! 0 ! 1 0 1 !0 ! 0 ! ! ! 1 ! 1 !0 0 ! ! ! 0 0 0 0 !
37777777775 ; QC 10r = 26666666664

1 1 1 1 0 0 0 0 0 0! ! ! ! 0 0 0 0 0 00 0 0 0 1 1 0 0 ! !0 0 0 0 ! ! 0 0 ! !0 0 0 0 0 0 1 1 ! !0 0 0 0 0 0 ! ! 1 10 1 0 1 0 ! 0 ! ! !0 0 1 1 0 0 0 0 1 10 ! 0 ! 0 1 0 ! 1 !0 0 ! ! 0 0 0 0 ! !
37777777775

QC 10s = 26666666664
1 1 1 1 0 0 0 0 0 0! ! ! ! 0 0 0 0 0 00 0 0 0 1 0 ! ! 1 00 0 0 0 ! 0 ! 1 ! 00 0 0 0 0 1 ! ! 1 00 0 0 0 0 ! 1 ! ! 00 1 0 1 0 0 1 1 1 !0 0 1 1 0 0 ! ! ! 10 ! 0 ! 0 0 ! ! ! 10 0 ! ! 0 0 1 1 1 !

37777777775� The 5 extremal Type II codes of length 14 with the highest automorphismgroup orders among the 490 found (respectively 28; 36; 48; 84 and 6552).
QC 14a =

26666666666666664
1 1 1 1 1 1 0 0 0 0 0 0 0 0! ! ! ! ! ! 0 0 0 0 0 0 0 00 0 0 0 0 0 1 1 0 0 ! ! ! !0 0 0 0 0 0 ! ! 0 0 1 1 ! !0 0 0 0 0 0 0 0 1 1 ! ! ! !0 0 0 0 0 0 0 0 ! ! ! ! 1 10 1 0 0 0 1 0 0 0 ! 1 ! 1 00 0 1 0 0 1 0 ! 0 ! ! ! ! !0 0 0 1 0 1 0 0 0 1 ! 0 1 !0 0 0 0 1 1 0 ! 0 0 0 1 ! 10 ! 0 0 0 ! 0 ! 0 ! ! 1 ! 10 0 ! 0 0 ! 0 1 0 ! 1 ! ! !0 0 0 ! 0 ! 0 ! 0 ! ! 1 ! 10 0 0 0 ! ! 0 1 0 0 0 ! 1 !

37777777777777775 ; QC 14b =
26666666666666664
1 1 1 1 1 1 0 0 0 0 0 0 0 0! ! ! ! ! ! 0 0 0 0 0 0 0 00 0 0 0 0 0 1 1 0 0 ! ! ! !0 0 0 0 0 0 ! ! 0 0 1 1 ! !0 0 0 0 0 0 0 0 1 1 ! ! ! !0 0 0 0 0 0 0 0 ! ! ! ! 1 10 1 0 0 0 1 0 1 0 0 ! 0 ! 10 0 1 0 0 1 0 ! 0 0 1 0 1 !0 0 0 1 0 1 0 ! 0 1 ! ! ! 10 0 0 0 1 1 0 ! 0 ! ! ! 0 00 ! 0 0 0 ! 0 1 0 ! 1 ! ! !0 0 ! 0 0 ! 0 ! 0 1 ! 1 1 10 0 0 ! 0 ! 0 1 0 ! 1 1 1 !0 0 0 0 ! ! 0 0 0 ! 0 ! ! !

37777777777777775
QC 14c =

26666666666666664
1 1 1 1 1 1 0 0 0 0 0 0 0 0! ! ! ! ! ! 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 1 ! 0 ! ! !0 0 0 0 0 0 ! ! 0 0 1 1 ! !0 0 0 0 0 0 0 1 0 ! 1 ! ! !0 0 0 0 0 0 0 0 ! ! ! ! 1 10 1 0 0 0 1 0 0 1 ! 0 1 ! 00 0 1 0 0 1 0 ! 0 ! ! 0 0 !0 0 0 1 0 1 0 0 1 0 1 0 ! !0 0 0 0 1 1 0 0 1 1 ! 0 ! 00 ! 0 0 0 ! 0 ! 1 1 1 ! 0 10 0 ! 0 0 ! 0 ! 0 1 ! ! ! 10 0 0 ! 0 ! 0 0 1 ! ! 1 ! !0 0 0 0 ! ! 0 ! 0 ! ! ! 1 1

37777777777777775 ; QC 14d =
26666666666666664
1 1 1 1 1 1 0 0 0 0 0 0 0 0! ! ! ! ! ! 0 0 0 0 0 0 0 00 0 0 0 0 0 1 ! 1 ! ! ! 0 00 0 0 0 0 0 ! ! 0 0 ! ! ! !0 0 0 0 0 0 0 ! 0 ! ! ! 1 10 0 0 0 0 0 0 0 ! ! ! ! ! !0 1 0 0 0 1 0 ! 0 1 ! ! 1 !0 0 1 0 0 1 0 0 1 1 0 1 0 10 0 0 1 0 1 0 0 0 ! ! 0 ! !0 0 0 0 1 1 0 0 1 0 1 ! 0 !0 ! 0 0 0 ! 0 ! 1 0 1 1 1 !0 0 ! 0 0 ! 0 ! 1 ! ! 1 0 !0 0 0 ! 0 ! 0 ! 0 1 0 1 0 !0 0 0 0 ! ! 0 0 1 ! 1 1 ! 1

37777777777777775



14 C. BACHOC AND P. GABORIT
QC 14e =

26666666666666664
1 1 1 1 1 1 0 0 0 0 0 0 0 0! ! ! ! ! ! 0 0 0 0 0 0 0 00 0 0 0 0 0 1 1 0 0 ! ! ! !0 0 0 0 0 0 ! ! 0 0 1 1 ! !0 0 0 0 0 0 0 0 1 1 ! ! ! !0 0 0 0 0 0 0 0 ! ! ! ! 1 10 1 0 0 0 1 0 ! 0 ! 1 ! ! 10 0 1 0 0 1 0 ! 0 ! ! ! ! !0 0 0 1 0 1 0 0 0 ! ! ! 0 !0 0 0 0 1 1 0 1 0 0 ! 1 0 !0 ! 0 0 0 ! 0 ! 0 ! ! 1 1 !0 0 ! 0 0 ! 0 ! 0 1 ! 1 ! !0 0 0 ! 0 ! 0 0 0 ! ! 1 0 10 0 0 0 ! ! 0 ! 0 0 1 ! 0 1
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