On Extremal Additive GF(4) Codes of Length 10 to 18
Christine Bachoc and Philippe Gaborit

ABSTRACT. In this paper we classify the 19 even extremal self-dual additive
codes of length 10 and we classify under a restrictive hypothesis 490 even
extremal self-dual codes of length 14. Under the same restrictive hypothesis
we also give a partial result on the unicity of the even self-dual additive Fy4-
linear [18,9,8] code.

1. Introduction

An additive code C over GF(4) of length n is an additive subgroup of GF(4)™.
We will denote by C' an (n,2*) additive code of length n with 2% codewords. Ad-
ditive codes over GF'(4) were introduced in [4] as a way to describe a subclass
of quantum codes. Such codes can also be used to construct modular of level 3
lattices, as it will be discussed in Section 5.

Let GF(4) = {0,1,w,w} where @ = w? = 1 4+ w. The trace map Tr : GF(4) —
GF(2) is defined by

Tr(z) =z + 2°.

The space GF(4)™ is endowed with the trace inner product defined for two vectors
X=x1%2 T, and y = y1y2 - -y, in GF(4)™ by:

Xy = Z Tr(x;7i).
i=1

If C is an additive code, its dual C* is defined by C+ = {x € GF(4)" | x.c = 0}.
If C is an (n,2*) code, then C* is an (n,2?"1*) code. As usual, an additive code
C is self-orthogonal if C C C* and self-dual if C = C*. In particular an hermitian
self-dual F4 code is also self-dual for the trace inner product as an additive code.

The weight wt(c) of ¢ € C is the usual Hamming weight over GF(4) which
counts the number of nonzero components of ¢ and the minimum weight d of C is
the smallest weight of any nonzero codeword in C.

Two additive codes C; and Cs are equivalent provided there is a map from
SI xS, sending C} onto C5, with S,, the permutation group of the n coordinates
and Ss the permutation group on the elements {1,w,w}. The automorphism group
of C, denoted Aut(C), consists of all the elements of S} x S,, which stabilize C

An additive self-dual code is Type II if all its codewords have even weight and
Type I else. Type II codes are known to exist only in even lengths. A bound
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on the minimum weight of an additive self-dual code was given by Rains in [12,
Theorem 33]. If we let d; and d;; be the minimum distance of an additive self-dual
Type I or Type II code, then:

2[2]+1 ifn=0 (mod 6)
(1) dr < ¢ 2[2]+3 ifn=5 (mod 6)
2|2] +2 otherwise
2) diy < 2 [%J +2

A code that meets the appropriate bound is called extremal. Type II codes meeting
the bound d;; have a uniquely determined weight enumerator.

The classification of self-dual additive codes was done by Hohn in [7] up to
length 7 for Type I-II codes and up to length 8 for Type II codes. In [6], Gaborit,
Kim, Huffman and Pless pushed the classification of extremal Type I codes to the
lengths 8, 9 and 11. They also gave a written proof of the unicity of the extremal
Type II code of length 12, the so called dodecacode.

The computation of the mass of Type II codes (see [7]) shows that the number
of classes of such codes is greater than 1.72 10° for length 14, greater than 1.02 10'°
for length 16 and greater than 8.9 10 for length 18, so that a complete classification
is unrealistic.

In this paper we only consider extremal Type II codes and we extend the
classification to length 10, for which we find 19 inequivalent extremal codes. Under
the restrictive hypothesis s(C) > 0 that we shall explain in Section 2, we find 490
inequivalent extremal codes for length 14 and only one extremal code for length
18, the unique Fy-linear hermitian [18,9,8] code. We did not consider length 16
since the number of extremal Type II codes should be even bigger than for length
14. Section 2 explains the method we used, Sections 3 and 4 list the numerical
results we obtained, eventually we give in the Appendix the complete list of the
19 extremal Type II codes of length 10 and also 5 particular codes of length 14.
Section 5 examines the lattices constructed from these codes. All the computations
were done with the Magma system [3].

2. The method

In this section, C' denotes an extremal, Type II code of length n and minimum
weight d. Let u be a codeword of weight d. Let S = S(u) denote the support of u.
Two cases arise: either u is the only word in C' with support S, or exactly three
words in C have S as support. In this last case, we can assume up to equivalence
that these three words are 120"+4, w?0"+4, 4on+4, (This is clear from the following
observations: if the code C' contains another element v with the same support as
u, then the nonzero coordinates of u and v are pairwise different otherwise u + v
would be of weight strictly lower that d. And u+w itself is also a weight d codeword
with the same support as u and v.) It is worth noticing that, if C' is equivalent to a
linear code, then the first case never happens since wu and w?u provide codewords
with the same support as u. Hence the following invariant of C' measures how far
the code is to be linear:

(3) s(C):=card{Sc{l...n}||S|=dand card{u:ue C|S(u)=S}>1}.
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We shall see later that it is much more difficult to classify the codes with s(C) =
0. Note that, when the code C' is Fy linear, s(C) = % card{z € C|wt(z) = d}.
Again, let u € C. Let

(4) Co(u) :={v:veC]|Skw)nS(u) =0}

This is a subcode of C. The classification of the possible Cy(u) for the lengths
under consideration will be discussed in next section. We can then describe a
general form for a generating matrix of an extremal code.

LEMMA 2.1. The extremal code C has got up to equivalence a generating matrizc
of the form:

1. If s(C) =0
1 1 0 ... 0]
0 Co
1 0
S1
1 0
w w
. S2
IR _

where Cy is an additive code of length n —d and dimension n —2d+ 1. Here
s; denote matrices of size (d — 1) x (n — d).

2. If s(C) >0
(1 1 0 07
w w 0 ... 0
0 Co
0 1 1
S1
0 1 1
0 w w
. . . S92
LO w o ow i

where Cy is an additive code of length n — d and dimension n — 2d + 2.
Here s; denote matrices of size (d — 2) x (n —d).

PROOF. See [6]. O

In order to enumerate the extremal codes, we have then to fullfil two steps: first
step is the enumeration of the possibilities for the subcode Cy. It is an additive
code with parameters (n—d, 2724+ d) if s(C) = 0, respectively (n—d, 2"+24+2 d)
if s(C') > 0. This is left to next section, where we shall make use of the fact that
in some cases (n = 14,18 and s(C) > 0), its weight enumerator can be computed.
Second step is to run over the possibilities for (s1,s2). Therefore, we discuss some
properties of these matrices.
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Let V := C&-/CO. This Fy-vector space is endowed with a weight wy defined
by

(5) wy (z) := min{wt(u) : u € 2}

and with a non degenerate binary quadratic form gy

(6) gv(z) = wy(z) (mod 2).

We denote by by the associated symplectic form, which is nothing else than the
bilinear form induced by the inner product on Cy. Note that the isomorphism class
of the symplectic space (V, by ) and of the quadratic space (V, qv) are determined by
dim(V') since the quadratic space has index dim(V")/2 as will be proved in Lemma
2.2. Clearly, the lines of the matrices s; are defined modulo Cy and belong to Cg-
since C' is assumed to be self-dual. For i = 1,2, we denote by S; the subspace of
V' spaned by the lines of s;. These lines are specific vectors of S; and must satisfy
certain weight conditions, so that the whole line of the generating matrix has weight
at least d. Hence we take the following notations: a set {ey,...,es} C V is said to
satisfy condition (C1), respectively (C2), (C3) if

(C1) Forall 1<k <s/2 Wy (Do €i) > max(d — 2k, 2k)
- ’ Wy (D oy €:) > max(d — 2k, 2k)
or a Sk<s, w e;) > max(d — k,
(C2) For all 1<k e (d -k, k)
&
(C3) For all 1<k < s/2, wy(Yoopyq €i) = d—2k
Wy (Yo €i) > d— 2k

where ), e; means any sum over k distinct indices i.
We denote by I the unit matrix and by J the matrix

0 1 1 1
1 0 1 1
(7 J =
1 1 0 1
1 1 1 0
LEMMA 2.2. o If s(C) =0 and for a generating matriz as in 1. of Lemma

2.1, the quadratic space V has dimension 2(d—1); the subspace S is mazimal
and totally isotropic for qv, while Sy is mazimal and totally isotropic for by .
Moreover, Sy N Sy = {0}, S1 has a basis by = (e1,...,eq11) satisfying (C2)
and Sy has a unique basis by = (f1,..., fa11) such that (byv (e, fj))i; = I,
and both by and (e1 + fi1,...,eq11 + far1) satisfy (C3).

e Ifs(C) > 0 and for a generating matriz as in 2. of lemma 2.1, the quadratic
space V' has dimension 2(d—2) and the subspaces S; are mazimal and totally
isotropic for qy. Moreover, S; NSy = {0} and one can find in S a basis
by = (e1,...,eq12) such that So has a unique basis bo = (f1,..., fa12) with
(bv (es, f5))i,j = J, and by, by and (e1 + f1,...,ea12 + fa12) satisfy (C1).
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ProOOF. We assume s(C) > 0 and we consider a generating matrix as in 2. of
lemma 2.1. The dimension of the quadratic space V follows from the dimension of
Cp. If the sum of some lines of s; was zero, it would give rise to a word in C' with
support strictly contained in {1,...,d} which would contradict the hypothesis. So
dim(S;) = d—2. Clearly the lines of s; are pairwise orthogonal for by and isotropic
for qv, so the S; are maximal totally isotropic subspaces of V. In the same way, a
sum of some of the lines of s; or sy cannot be 0, which means that S; NS, = {0}.

The conditions satisfied by w, (3", e;) derive easily from the fact that d is the
minimal weight of C. The computation of by (e;, f;) where e; are the lines of s
and f; are the lines of s, follows from the form of the generating matrix. The basis

(e1 + f1,...,€d12 + fa12) correspond to the subcode with matrix
0 w w e1+ f1
0 W ow eal2+ faio

and hence have the same properties has the two others.
The arguments in the case s(C) = 0 are similar.
O

Let us assume that s(C) > 0. The method that we have followed to classify
the extremal codes goes through the following algorithmic steps:

Step 1: List the possible Cy. There are few possibilities in each case; see next
section for the explicit list of possibilities for n = 10, 14, 18.

Step 2: Fix Cy. List the maximal totally isotropic subspaces in V. This can be
easily done by applying the orthogonal group of the quadratic form to a specific
one, as long as the number of such spaces is not to big. Compute the orbits of this
set under the action of Aut(Cp).

Step 3: List the subset S; of the representants of these orbits which contain at
least one basis satisfying (C1). For all S; € Sy, list the set B(S;) of the basis of
Sy satisfying (C1). Therefore, we make use of the joint action of the symmetric
group on the d first coordinates and of the stabilizer of S; in Aut(Cy) on the set of
ordered basis of Sj.

Step 4: For each S; € S;, compute the set Sy = {Sa | S NSy = {0}} where
Sy is maximal totally isotropic for ¢y. For each basis (e1,...,eq12) € B(S1),
compute the unique basis (f1,..., far2) of S such that (by(e;, fj))i; = J. Test if

(fis-.-, far2) and (e1 + f1,...,eq12 + fai2) satisfy (C1). If so, keep the matrix

(1 1 0 ... 0]

w w 0 ... 0
0 Co

0 1 1 €1

0 1 1 €dl12

0 w w fi

LU w o ow farz
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TABLE 1. The number of totally isotropic spaces

dim(V) | orthogonal geometry of index dim(V)/2 | symplectic geometry
4
6 30 135
8 270 2295
10 4590 75735
12 151470 4922775
14 9845550 635037975

Step 5: Test equivalence between the codes with generating matrices stored in
Step 4.

In the case when s(C') = 0, the modifications are :

Step 2: Note that, the dimension of V' is increased by 2. Moreover, we need to list
the larger set of maximal totally isotropic subspaces for by .

Step 3: Replace condition (C1) by (C2).
Step 4: Replace J by I and condition (C1) by (C3).

REMARK 2.3. One of the limits of the method is that it requires the exhaustive
list of all the mazimal totally isotropic subspaces of V' for respectively the quadratic
form or the symplectic form. We give in Table 1 their number as a function of
dim(V'); it explains why we have limited our search to the case s(C) > 0 for n = 18.

3. The subcode C)

In this section, we discuss the classification of the subcode Cy. We first assume
that Cy = Cp(u) where u is a minimal weight word in C, of the second type, i.e. such
that its support S(u) is shared by two other codewords. Then, Cy has parameters
(n —d,2"+24+2 d). In the case n = 18, the weight enumerator of Cy has the form
We, = 210 + (15 — k)22y® + ky'%; applying MacWilliams transform to it shows
that k = 0. In the case n = 14, the same argument shows that We, = 2% + (15 —
k)z%y% + ky® with k = 1,3. The computations on the harmonic weight enumerators
of C' worked out in [1] show that ¥ = 3 is the only possibility. In the case n = 10,
we have again W¢, = 2% + (15 — k)z%y* + ky® with k = 0,2,4,6. When s(C) = 0,
there is no support of minimal weight word shared by two other codewords. We
then consider a code Cy of the first type with parameters (n — d,2"+2?+1 d). Both
cases have to be considered to make a complete classification.

ProPoOSITION 3.1. e Let Cy be an even (6,2%) quaternary additive code
with minimum weight 4. Then Cy is equivalent to one of the seven following
codes:

1100w0w 1100ww 1100ww 1100ww
w001w1 wwlwlOw w0wl10 wl1010w
Owwwlw|’|0011Tww|'"|0lwww 0011lwuw
0011 ww O0wwww 0011 ww O0wwww
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The automorphism groups of these codes are of order respectively 12, 96, 72,
16, 64, 288, 2160 and the last two are the only ones which are equivalent to
F4 -linear codes.

o Let Cy be an even (6,2°) quaternary additive code with minimum weight 4.
Then Cy is equivalent to one of the seven following codes:

111100 111100
110011, |wwww00].
1010w 0lwwlo

The automorphism groups of these codes are of order respectively 48, 24,
192, 128, 32, 768, 288, and since these codes have 2° codewords, they are
not Fy -linear.

Proof: The codes were obtained by exhaustive search. O

PROPOSITION 3.2. o Let Cy be an even quaternary additive code with weight
enumerator We, = o8 + 122%y% + 3y®. Then Cy is equivalent to one of the
five following codes:

11111111 11111111 11111111
WWwWwwwwww WWWwwwwww WWWwwwwww
llwwwwdl|'|11lwwwwO0O | |11lwwwwOO]°
wwlOlOwwll vwlwlwll lwwllOwwl
11111111 11111111
llwwwwww llwwwwww
wwllwwoww|'|lvwwllwwww
w0lwwlwo lowlO00lww

The automorphism groups of these codes are of order respectively 1152, 72,
48, 4, 24 and the first one is the only one which is equivalent to a Fy-linear
one.

o Let Cy be an even quaternary additive code with weight enumerator We, =
210 + 1522y8. Then Cy is equivalent to one of the five following codes:

1111111100
wwwwwwwwdO
wwww00111w]|>
vwlll0O0wwww
1111111100 1111111100
llwwww0011 llwwwwO0011
wwlwowllwlw|'|lwwlwwwlwlwl|:
101w 0wwwww Dwlwlwwlww
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1111111100 1111111100
llwwww0O0011 llwwwwO0011
wwlwowwlwlw wwlwwwlwlw
O0wwllwwww wWlwwlOll0wlww

The automorphism groups of these codes are of order respectively 11520, 24,
120, 288, 96. The first one is the only one which is equivalent to a Fy-linear
one.

Proof: The codes were obtained by exhaustive search. [l

REMARK 3.3. It is worth noticing that the four last codes of length 10 that
appear in previous proposition are non linear non equivalent constant weight codes.
Hence Bonisoli result [2] on constant weight codes over fields does not hold for
quaternary additive codes.

4. Numerical results

4.1. Length 10. Here d = 4 and the extremal even self-dual codes have weight
enumerator

(8) Wel(z,y) = 2'% 4+ 3025y 4+ 3002%y°® + 58522y8 + 108y'°.

Applying the algorithm described in Section 2, for the two possible types of
Cy, we obtain:

PROPOSITION 4.1. There are exactly 19 non equivalent even self-dual, extremal
quaternary additive codes C of length 10.

Two of these codes (QC_10r and QC_10s) are linear and were already classified
as Fy linear self-dual hermitian codes in [9] and five non-linear codes (QC_-10a, b,
¢, d, e) were found in [6], the 12 others are new. Table 2 lists the 19 codes with
their automorphism group orders and the value of s(C'). The generator matrices of
the codes are listed in the appendix.

4.2. Length 14. Here d = 6 and the extremal even self-dual codes have weight
enumerator

(9) Wel(z,y) = 2™ + 273285 4 245725® + 70982190 + 600622y'? + 549y,
Applying the algorithm described in Section 2, we obtain:

PROPOSITION 4.2. There are exactly 490 non equivalent even self-dual, ez-
tremal quaternary additive codes C' of length 14 with s(C) > 0.

Only one of them is equivalent to a Fy-linear one, as was previously known
from [9]. It has an automorphism group of order 6552.

Because of the huge number of codes found in this case, we have not explored
the other case s(C') = 0, although it should be possible to do it (see Table 1).

We give in Table 3 the number of codes found with the corresponding number of
automorphisms, and in Table 4 the number of codes found with the corresponding
value for the invariant s(C'). Matrices for the five new codes which are characterized
by the number of their automorphisms (respectively 18, 28, 36, 48, 84) are given in
the Appendix. The others can be found at http://www.math.u-bordeaux.fr/ bachoc
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Code |n|d||Aut(C)|[s(C)
QC_10a [10(4| 48 0
Qc_1ob|10l4) 32 | o
QC_10c (10]|4| 1440 0
QC_10d|10|4| 256 2
QC_10e |10(4 18 0
QC_10f[10]4| 48 1
QC10g|10/4| 48 1
QC_10h|10|4| 144 1
QC_10:¢ |10|4 64 2
QC_107 [10(4 20 0
QC_10k|10|4] 720 0
Qc-1ol (1014 16 | 0
QC_10m|10(4| 768 2
QC_10n (10(4| 320 0
QC-100 (1014 12 | 0
QC_10p|10(4| 1152 4
QC_10g |10|4| 240 0
QC_10r |10(4| 11520 | 10
QC_10s|10(4| 43200 | 10

TABLE 2. Extremal Type II codes of length 10

TABLE 3. The number of codes C' of length 14 with card Aut(C) = k

card Aut(C) | 1 2 3 4 6 8 12 18 24 28 36 48 84 6552
C 273 133 10 25 17 9 5 1 12 1 1 1 1 1

TABLE 4. The number of codes C' of length 14 with s(C) =k

s 1 2 3 4 5

6 10 11 12 14 15 17 21 91
C 274 115 42 18 21 4

11 1 1 1 1 1 1

7 8 9
2 3 3

4.3. Length 18. Here d = 8 and the extremal even self-dual codes have weight
enumerator

(10)
Wel(z,y) = 28 + 2754208 + 1836028y'0 4 7711225912 + 11016021y** + 509492296 + 2808y'5.

There is up to equivalence only one extremal Fy-linear hermitian code [8],
denoted by Syg. Our search seems to indicate that it is also unique as a quaternary
additive code, but we could not handle the case s(C) = 0 because of the huge
number of totally isotropic spaces in dimension 14 (see Table 1).

Applying the algorithm described in Section 2, we obtain:
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PROPOSITION 4.3. The code Sis is the unique up to equivalence even self-dual,
extremal quaternary additive code C of length 18 with s(C') > 0.

5. From codes to lattice

In this section, we discuss the lattices that can be constructed from the codes
previously studied. Let A5 denote as usual the 2-dimensional hexagonal lattice. The
quadratic space (A2/2As, q) where ¢(x) := (z.2)/2 and z.z denotes the inner prod-
uct of the underlying Euclidean space, is clearly isomorphic to (GF(4), Tr(zg)).
Hence the GF(4)-additive codes of length n can be lifted into AZ; this construction
is usually called “Construction A” from [5]. The lattice Ay is modular of level
3 in the sense of [11], which means that there exists o : A — A} a similarity
of rate 1/\/3 between A, and its dual. Hence, even self-dual codes give rise to
2n-dimensional lattices which are also modular of level 3. We explicit this con-
struction in the next proposition. We again denote by o : A} — (A3)™ the map
(1, 2n) = (0(x1),...,0(xn))-

PROPOSITION 5.1. Let C be a GF(4)-additive code of length n, with C C C*
and C even. Let Lo be the lattice defined by

(11) Lo :={(z1,...,2n) € AY | (21,...,2,) mod 245 € C}.

Then, (Le,1/2% 0 25.y:) is an even lattice of dimension 2n. Its dual lattice
is (Lo)* = o(Ley). In particular, if C is a self-dual code, then Lo is modular of
level 3. As a consequence, its determinant is equal to 3". Its minimum is given by

(12) min(L¢) = min(4, wt(C)).

ProOF. The formula (Lo)* = o(Lgy) is clear from the fact that the inner
product on GF'(4) is the one induced by the scalar product on A5. The computation
of the minimum follows from the two observations: min((24,)",1/2%"" | z;.y;) = 4
and min((z1,...,z,) + (242)",1/23°" | z;.y;) = wt(u) where u is the image of
(1,...,2n) in Ay /24, identified with GF'(4). This last property follows from the
fact that the roots of As, i.e. the vectors x with .z = 2 are representants of the
non zero classes of 4> modulo 2A4,. O

The study of the theta series of modular lattices of level 3 leads in [11] to the
definition of extremal lattices. These are the lattices meeting the bound

(13) min(L) < 2[dim(L)/12] + 2.

See [13] for a survey on the notion of extremal lattices. From Proposition 5.1,
the lattices Lo are extremal only up to the dimension 20 (i.e. length 10 for the
codes). For the higher dimensions, it is usual to proceed to Kneser neighborings to
get ride of the norm 4 vectors arising from the sublattice ((242)™,1/23°" | z;.y;).
Clearly two neighborings are necessary to do so; however, this procedure fails to
produce an extremal lattice from the dodecacode of length 12. However, it is known
that such a lattice exists since a 24-dimensional lattice, extremal and modular of
level 3 is constructed in [10] from matrix groups. The genus of modular lattices of
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level 3 is completely classified up to dimension 16. Computations in the Magma
system allow us to prove the following;:

PROPOSITION 5.2. The 19 extremal type II codes of length 10 give rise to 19
non isometric 20-dimensional extremal modular of level 3 lattices.

PRrROOF. Direct verification. Among these lattices, 13 are generated by their
minimal vectors, for one of them the minimal vectors span a sublattice of index
2 and for five others the index is 4. The automorphism groups have non equal
orders, except for the lattices obtained from the codes QC_10f and QC_10g. The
two codes have an automorphism group of order 48 and the two lattices have an
automorphism group of order 2'4.32 but are not isometric. O

6. APPENDIX
e The 19 extremal Type II codes of length 10.

11110000007 11110000007
00001w100w 00001w100w

000 0wwwwww 000 0wwwwww
100005008 1000080057

w w w w

QC10a= 0100001 0w0 | QCI0=107000w01l0w
00100010wwm 001000w0wl
w00w000w0w w0 0w 0w 0w
OwlwOww 101 0wlw0w0w0 0
boww005151J 00ww 05000 |
11110000007 11110000007
(0000111111 (0000111111

000 0wwlwwl 000 0wwlwwl
10000395766 1000006570

w w

QO10c= 10100010011 QC10d=10617000001wam
0010011010 00100w111w

w0 0wO0Ow0O00wO w0 O0w0O0l0wwl
DwlwlOlwllwww OwlDwlO0lO0wwl

Lo 0ww0000DF] LOOcuw()Ol 111
11110000007 11110000007
00001w100w 000015100

000 0wwwwww 000 Q0wwwwww
10000500518 1000052009

w w w w

QCA0e=101000wwlow| Q0 f=101000mwlll
001000w001 001000w10w
w00w0w00w0 w00w000w0w
0wlw000w®0 0wlw0w00w0

|0 0ww w0 www | |0 0ww 000ww 0|
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12

SRI33IO I—RIRO
OO IO 3OO
oo 3313 3131313
o |30—|3|3coo
SIR33 3232323
o |3cccoocoo
—OoOoOO0OOCO 333
—Ooo0oCoCOoO—HOO 3
—_OoOo0oOoO—OO 30O

—OOo0O—HOO 30O

,QC_10h

S3I3 3 3 32IRIB
COoOIR—— IHO|RO
CoOl3— 303133
O30 3~ |3CcCcO
S3I33I3BIRIBeS
o—|3cccoococo
—OoOOoO0OOCO 333
—oocoCoco—HOO 3
—Oo00Oo—HOO 3O

—_O0O0O—HOO 3OO
L 1

oR33 3~ 3I—3oO
co3—3I13 313213
colRHOo—O|}IRO
O—H3O 3RO
SRIRICIBROIBIBIB
0150000000
—oooococo 333
—_OoOOOOoOOoO—OO 3
—HOOOO—OO 3O

—OoOOoOOoO—HOO 3OO
L 1

,QC10j

o33 3I3— 313132
col3——I32 31313
O3 3 3~ I
o300 |3 RO ——
SRIIICIZCIRDIB
o—3ococococoo
—o0o0o0ooo 333
—o000COoO—~OO 3
—_—o0o0O0O—OO 3O

—OOoOO—HOO 300
L 1

o313 31313213~ 3
OO} 3 3~ 3
So3— 3313132
O—H[3ocOo—~—O|3]|3
c3I3 32323213
o—|3cccoococo
—OoOoO0OOoO 333
—oocococo—HOO 3
—Oo00Oo—HOO 3O
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—OoOOoO—HOO 30O

r 1
O |3 Irdrd = O
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O YA A A = — O
©o— 3231313c— 3
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oco— |30 3o—O
oo~ RoCcocoCOO
— 30000 —— 3 3
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— 30000 —O 3O
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oI333IBRI—IB——O
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OO |30 ———O
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—_—OoOoOoO—OO 30O

—OOoCO—OO 30O
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r
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ool333—— 313
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— 30000 OoO—HO 3
— 30000 —HO 3O
— 300000000

QC_10s

e The 5 extremal Type II codes of length 14 with the highest automorphism

group orders among the 490 found (respectively 28, 36,48, 84 and 6552).
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(

|
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— 30000 ———— 3333
tl=l=lelolelelel tloleleRe]
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3OCOOHOOD 3COO
300000 OO

rt1111
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