On Extremal Additive GF(4) Codes of Length 10 to 18

Christine Bachoc and Philippe Gaborit

Abstract

In this paper we classify the 19 even extremal self-dual additive codes of length 10 and we classify under a restrictive hypothesis 490 even extremal self-dual codes of length 14. Under the same restrictive hypothesis we also give a partial result on the unicity of the even self-dual additive \mathbb{F}_{4} linear $[18,9,8]$ code.

1. Introduction

An additive code C over $G F(4)$ of length n is an additive subgroup of $G F(4)^{n}$. We will denote by C an ($n, 2^{k}$) additive code of length n with 2^{k} codewords. Additive codes over $G F(4)$ were introduced in [4] as a way to describe a subclass of quantum codes. Such codes can also be used to construct modular of level 3 lattices, as it will be discussed in Section 5 .

Let $G F(4)=\{0,1, \omega, \bar{\omega}\}$ where $\bar{\omega}=\omega^{2}=1+\omega$. The trace map $\operatorname{Tr}: G F(4) \rightarrow$ $G F(2)$ is defined by

$$
\operatorname{Tr}(x)=x+x^{2} .
$$

The space $G F(4)^{n}$ is endowed with the trace inner product defined for two vectors $\mathbf{x}=x_{1} x_{2} \cdots x_{n}$ and $\mathbf{y}=y_{1} y_{2} \cdots y_{n}$ in $G F(4)^{n}$ by:

$$
\mathbf{x} . \mathbf{y}=\sum_{i=1}^{n} \operatorname{Tr}\left(x_{i} \overline{y_{i}}\right) .
$$

If C is an additive code, its dual C^{\perp} is defined by $C^{\perp}=\left\{\mathbf{x} \in G F(4)^{n} \mid \mathbf{x} . \mathbf{c}=0\right\}$. If C is an $\left(n, 2^{k}\right)$ code, then C^{\perp} is an $\left(n, 2^{2 n \perp k}\right)$ code. As usual, an additive code C is self-orthogonal if $C \subseteq C^{\perp}$ and self-dual if $C=C^{\perp}$. In particular an hermitian self-dual \mathbb{F}_{4} code is also self-dual for the trace inner product as an additive code.

The weight $w t(\mathbf{c})$ of $\mathbf{c} \in C$ is the usual Hamming weight over $G F(4)$ which counts the number of nonzero components of \mathbf{c} and the minimum weight d of C is the smallest weight of any nonzero codeword in C.

Two additive codes C_{1} and C_{2} are equivalent provided there is a map from $S_{3}^{n} \rtimes S_{n}$ sending C_{1} onto C_{2}, with S_{n} the permutation group of the n coordinates and S_{3} the permutation group on the elements $\{1, \omega, \bar{\omega}\}$. The automorphism group of C, denoted $\operatorname{Aut}(C)$, consists of all the elements of $S_{3}^{n} \rtimes S_{n}$ which stabilize C

An additive self-dual code is Type II if all its codewords have even weight and Type I else. Type II codes are known to exist only in even lengths. A bound

[^0]on the minimum weight of an additive self-dual code was given by Rains in [12, Theorem 33]. If we let d_{I} and $d_{I I}$ be the minimum distance of an additive self-dual Type I or Type II code, then:
\[

$$
\begin{align*}
& d_{I} \leq \begin{cases}2\left\lfloor\frac{n}{6}\right\rfloor+1 & \text { if } n \equiv 0(\bmod 6) \\
2\left\lfloor\frac{n}{6}\right\rfloor+3 & \text { if } n \equiv 5(\bmod 6) \\
2\left\lfloor\frac{n}{6}\right\rfloor+2 & \text { otherwise }\end{cases} \tag{1}\\
& d_{I I} \leq 2\left\lfloor\frac{n}{6}\right\rfloor+2 . \tag{2}
\end{align*}
$$
\]

A code that meets the appropriate bound is called extremal. Type II codes meeting the bound $d_{I I}$ have a uniquely determined weight enumerator.

The classification of self-dual additive codes was done by Hohn in [7] up to length 7 for Type I-II codes and up to length 8 for Type II codes. In [6], Gaborit, Kim, Huffman and Pless pushed the classification of extremal Type I codes to the lengths 8,9 and 11 . They also gave a written proof of the unicity of the extremal Type II code of length 12, the so called dodecacode.

The computation of the mass of Type II codes (see [7]) shows that the number of classes of such codes is greater than 1.7210^{6} for length 14 , greater than 1.0210^{10} for length 16 and greater than 8.910^{16} for length 18 , so that a complete classification is unrealistic.

In this paper we only consider extremal Type II codes and we extend the classification to length 10 , for which we find 19 inequivalent extremal codes. Under the restrictive hypothesis $s(C)>0$ that we shall explain in Section 2, we find 490 inequivalent extremal codes for length 14 and only one extremal code for length 18 , the unique \mathbb{F}_{4}-linear hermitian $[18,9,8]$ code. We did not consider length 16 since the number of extremal Type II codes should be even bigger than for length 14. Section 2 explains the method we used, Sections 3 and 4 list the numerical results we obtained, eventually we give in the Appendix the complete list of the 19 extremal Type II codes of length 10 and also 5 particular codes of length 14. Section 5 examines the lattices constructed from these codes. All the computations were done with the Magma system [3].

2. The method

In this section, C denotes an extremal, Type II code of length n and minimum weight d. Let u be a codeword of weight d. Let $S=S(u)$ denote the support of u. Two cases arise: either u is the only word in C with support S, or exactly three words in C have S as support. In this last case, we can assume up to equivalence that these three words are $1^{d} 0^{n \perp d}, \omega^{d} 0^{n \perp d}, \bar{\omega}^{d} 0^{n \perp d}$. (This is clear from the following observations: if the code C contains another element v with the same support as u, then the nonzero coordinates of u and v are pairwise different otherwise $u+v$ would be of weight strictly lower that d. And $u+v$ itself is also a weight d codeword with the same support as u and v.) It is worth noticing that, if C is equivalent to a linear code, then the first case never happens since $w u$ and $w^{2} u$ provide codewords with the same support as u. Hence the following invariant of C measures how far the code is to be linear:

$$
\begin{equation*}
s(C):=\operatorname{card}\{S \subset\{1 \ldots n\}| | S \mid=d \text { and } \operatorname{card}\{u: u \in C \mid S(u)=S\}>1\} \tag{3}
\end{equation*}
$$

We shall see later that it is much more difficult to classify the codes with $s(C)=$ 0 . Note that, when the code C is \mathbb{F}_{4} linear, $s(C)=\frac{1}{3} \operatorname{card}\{x \in C \mid w t(x)=d\}$.

Again, let $u \in C$. Let

$$
\begin{equation*}
C_{0}(u):=\{v: v \in C \mid S(v) \cap S(u)=\emptyset\} . \tag{4}
\end{equation*}
$$

This is a subcode of C. The classification of the possible $C_{0}(u)$ for the lengths under consideration will be discussed in next section. We can then describe a general form for a generating matrix of an extremal code.

Lemma 2.1. The extremal code C has got up to equivalence a generating matrix of the form.

1. If $s(C)=0$
$\left[\begin{array}{cccccc}1 & \ldots & & 1 & 0 & \ldots \\ & 0 \\ \hline & 0 & & & & C_{0} \\ \hline 1 & & & 0 & & \\ & \ddots & & \vdots & & s_{1} \\ & & 1 & 0 & \\ \hline \omega & & & \omega & \\ & \ddots & & \vdots & & \\ & & \omega & \omega & & \\ & & \omega & \end{array}\right]$
where C_{0} is an additive code of length $n-d$ and dimension $n-2 d+1$. Here s_{i} denote matrices of size $(d-1) \times(n-d)$.
2. If $s(C)>0$

where C_{0} is an additive code of length $n-d$ and dimension $n-2 d+2$. Here s_{i} denote matrices of size $(d-2) \times(n-d)$.

Proof. See [6].
In order to enumerate the extremal codes, we have then to fullfil two steps: first step is the enumeration of the possibilities for the subcode C_{0}. It is an additive code with parameters $\left(n-d, 2^{n \perp 2 d+1}, d\right)$ if $s(C)=0$, respectively $\left(n-d, 2^{n \perp 2 d+2}, d\right)$ if $s(C)>0$. This is left to next section, where we shall make use of the fact that in some cases ($n=14,18$ and $s(C)>0$), its weight enumerator can be computed. Second step is to run over the possibilities for $\left(s_{1}, s_{2}\right)$. Therefore, we discuss some properties of these matrices.

Let $V:=C_{0}^{\perp} / C_{0}$. This \mathbb{F}_{2}-vector space is endowed with a weight w_{V} defined by

$$
\begin{equation*}
w_{V}(x):=\min \{w t(u): u \in x\} \tag{5}
\end{equation*}
$$

and with a non degenerate binary quadratic form q_{V}

$$
\begin{equation*}
q_{V}(x):=w_{V}(x) \quad(\bmod 2) \tag{6}
\end{equation*}
$$

We denote by b_{V} the associated symplectic form, which is nothing else than the bilinear form induced by the inner product on C_{0}. Note that the isomorphism class of the symplectic space (V, b_{V}) and of the quadratic space (V, q_{V}) are determined by $\operatorname{dim}(V)$ since the quadratic space has index $\operatorname{dim}(V) / 2$ as will be proved in Lemma 2.2. Clearly, the lines of the matrices s_{i} are defined modulo C_{0} and belong to C_{0}^{\perp} since C is assumed to be self-dual. For $i=1,2$, we denote by S_{i} the subspace of V spaned by the lines of s_{i}. These lines are specific vectors of S_{i} and must satisfy certain weight conditions, so that the whole line of the generating matrix has weight at least d. Hence we take the following notations: a set $\left\{e_{1}, \ldots, e_{s}\right\} \subset V$ is said to satisfy condition (C1), respectively (C2), (C3) if

$$
\text { For all } 1 \leq k \leq s / 2, \quad\left\{\begin{array}{l}
w_{v}\left(\sum_{2 k \perp 1} e_{i}\right) \geq \max (d-2 k, 2 k) \tag{C1}\\
w_{v}\left(\sum_{2 k} e_{i}\right) \geq \max (d-2 k, 2 k)
\end{array}\right.
$$

$$
\begin{gather*}
\text { For all } 1 \leq k \leq s, \quad w_{v}\left(\sum_{k} e_{i}\right) \geq \max (d-k, k) \tag{C2}\\
\text { For all } 1 \leq k \leq s / 2, \quad\left\{\begin{array}{l}
w_{v}\left(\sum_{2 k \perp 1} e_{i}\right) \geq d-2 k \\
w_{v}\left(\sum_{2 k} e_{i}\right) \geq d-2 k
\end{array}\right. \tag{C3}
\end{gather*}
$$

where $\sum_{k} e_{i}$ means any sum over k distinct indices i.
We denote by I the unit matrix and by J the matrix

$$
J=\left(\begin{array}{ccccc}
0 & 1 & 1 & \ldots & 1 \tag{7}\\
1 & 0 & 1 & \ldots & 1 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
1 & \ldots & 1 & 0 & 1 \\
1 & \ldots & 1 & 1 & 0
\end{array}\right)
$$

Lemma 2.2. - If $s(C)=0$ and for a generating matrix as in 1. of Lemma 2.1, the quadratic space V has dimension $2(d-1)$; the subspace S_{2} is maximal and totally isotropic for q_{V}, while S_{1} is maximal and totally isotropic for b_{V}. Moreover, $S_{1} \cap S_{2}=\{0\}$, S_{1} has a basis $b_{1}=\left(e_{1}, \ldots, e_{d \perp 1}\right)$ satisfying (C2) and S_{2} has a unique basis $b_{2}=\left(f_{1}, \ldots, f_{d \perp 1}\right)$ such that $\left(b_{V}\left(e_{i}, f_{j}\right)\right)_{i, j}=I$, and both b_{2} and $\left(e_{1}+f_{1}, \ldots, e_{d \perp 1}+f_{d \perp 1}\right)$ satisfy (C3).

- If $s(C)>0$ and for a generating matrix as in 2. of lemma 2.1, the quadratic space V has dimension $2(d-2)$ and the subspaces S_{i} are maximal and totally isotropic for q_{V}. Moreover, $S_{1} \cap S_{2}=\{0\}$ and one can find in S_{1} a basis $b_{1}=\left(e_{1}, \ldots, e_{d \perp 2}\right)$ such that S_{2} has a unique basis $b_{2}=\left(f_{1}, \ldots, f_{d \perp 2}\right)$ with $\left(b_{V}\left(e_{i}, f_{j}\right)\right)_{i, j}=J$, and b_{1}, b_{2} and $\left(e_{1}+f_{1}, \ldots, e_{d \perp 2}+f_{d \perp 2}\right)$ satisfy (C1).

Proof. We assume $s(C)>0$ and we consider a generating matrix as in 2. of lemma 2.1. The dimension of the quadratic space V follows from the dimension of C_{0}. If the sum of some lines of s_{i} was zero, it would give rise to a word in C with support strictly contained in $\{1, \ldots, d\}$ which would contradict the hypothesis. So $\operatorname{dim}\left(S_{i}\right)=d-2$. Clearly the lines of s_{i} are pairwise orthogonal for b_{V} and isotropic for q_{V}, so the S_{i} are maximal totally isotropic subspaces of V. In the same way, a sum of some of the lines of s_{1} or s_{2} cannot be 0 , which means that $S_{1} \cap S_{2}=\{0\}$.

The conditions satisfied by $w_{v}\left(\sum_{k} e_{i}\right)$ derive easily from the fact that d is the minimal weight of C. The computation of $b_{V}\left(e_{i}, f_{j}\right)$ where e_{i} are the lines of s_{1} and f_{i} are the lines of s_{2} follows from the form of the generating matrix. The basis $\left(e_{1}+f_{1}, \ldots, e_{d \perp 2}+f_{d \perp 2}\right)$ correspond to the subcode with matrix

$$
\left[\begin{array}{ccccc}
0 & \bar{\omega} & & & \bar{\omega} \\
\vdots & & \ddots & & \vdots \\
0 & & & \bar{\omega} & \bar{\omega}
\end{array} e_{d \perp 2}+f_{d \perp 2}\right) ~ \vdots
$$

and hence have the same properties has the two others.
The arguments in the case $s(C)=0$ are similar.

Let us assume that $s(C)>0$. The method that we have followed to classify the extremal codes goes through the following algorithmic steps:
Step 1: List the possible C_{0}. There are few possibilities in each case; see next section for the explicit list of possibilities for $n=10,14,18$.
Step 2: Fix C_{0}. List the maximal totally isotropic subspaces in V. This can be easily done by applying the orthogonal group of the quadratic form to a specific one, as long as the number of such spaces is not to big. Compute the orbits of this set under the action of $\operatorname{Aut}\left(C_{0}\right)$.
Step 3: List the subset \mathcal{S}_{1} of the representants of these orbits which contain at least one basis satisfying (C1). For all $S_{1} \in \mathcal{S}_{1}$, list the set $B\left(S_{1}\right)$ of the basis of S_{1} satisfying (C1). Therefore, we make use of the joint action of the symmetric group on the d first coordinates and of the stabilizer of S_{1} in $\operatorname{Aut}\left(C_{0}\right)$ on the set of ordered basis of S_{1}.
Step 4: For each $S_{1} \in \mathcal{S}_{1}$, compute the set $\mathcal{S}_{2}=\left\{S_{2} \mid S_{2} \cap S_{1}=\{0\}\right\}$ where S_{2} is maximal totally isotropic for q_{V}. For each basis $\left(e_{1}, \ldots, e_{d \perp 2}\right) \in B\left(S_{1}\right)$, compute the unique basis $\left(f_{1}, \ldots, f_{d \perp 2}\right)$ of S_{2} such that $\left(b_{V}\left(e_{i}, f_{j}\right)\right)_{i, j}=J$. Test if $\left(f_{1}, \ldots, f_{d \perp 2}\right)$ and $\left(e_{1}+f_{1}, \ldots, e_{d \perp 2}+f_{d \perp 2}\right)$ satisfy (C1). If so, keep the matrix

$$
\left[\begin{array}{ccccccc}
1 & \ldots & & 1 & 0 & \ldots & 0 \\
\omega & & \ldots & & \omega & 0 & \ldots \\
\hline & 0 & & & C_{0} & \\
\hline & & & & 1 & & e_{1} \\
\hline 0 & 1 & & & \vdots & & \vdots \\
\vdots & & \ddots & & \\
0 & & & 1 & 1 & e_{d \perp 2} \\
\hline 0 & \omega & & & \omega & f_{1} \\
\vdots & & \ddots & & \vdots & \vdots \\
0 & & & \omega & \omega & f_{d \perp 2}
\end{array}\right] .
$$

Table 1. The number of totally isotropic spaces

$\operatorname{dim}(V)$	orthogonal geometry of index $\operatorname{dim}(V) / 2$	symplectic geometry
4		135
6	30	2295
8	270	75735
10	4590	4922775
12	151470	635037975
14	9845550	

Step 5: Test equivalence between the codes with generating matrices stored in Step 4.

In the case when $s(C)=0$, the modifications are :
Step 2: Note that, the dimension of V is increased by 2 . Moreover, we need to list the larger set of maximal totally isotropic subspaces for b_{V}.
Step 3: Replace condition (C1) by (C2).
Step 4: Replace J by I and condition (C1) by (C3).
REmark 2.3. One of the limits of the method is that it requires the exhaustive list of all the maximal totally isotropic subspaces of V for respectively the quadratic form or the symplectic form. We give in Table 1 their number as a function of $\operatorname{dim}(V)$; it explains why we have limited our search to the case $s(C)>0$ for $n=18$.

3. The subcode C_{0}

In this section, we discuss the classification of the subcode C_{0}. We first assume that $C_{0}=C_{0}(u)$ where u is a minimal weight word in C, of the second type, i.e. such that its support $S(u)$ is shared by two other codewords. Then, C_{0} has parameters $\left(n-d, 2^{n \perp 2 d+2}, d\right)$. In the case $n=18$, the weight enumerator of C_{0} has the form $W_{C_{0}}=x^{10}+(15-k) x^{2} y^{8}+k y^{10}$; applying MacWilliams transform to it shows that $k=0$. In the case $n=14$, the same argument shows that $W_{C_{0}}=x^{8}+(15-$ $k) x^{2} y^{6}+k y^{8}$ with $k=1,3$. The computations on the harmonic weight enumerators of C worked out in [1] show that $k=3$ is the only possibility. In the case $n=10$, we have again $W_{C_{0}}=x^{6}+(15-k) x^{2} y^{4}+k y^{6}$ with $k=0,2,4,6$. When $s(C)=0$, there is no support of minimal weight word shared by two other codewords. We then consider a code C_{0} of the first type with parameters $\left(n-d, 2^{n \perp 2 d+1}, d\right)$. Both cases have to be considered to make a complete classification.

Proposition 3.1. - Let C_{0} be an even $\left(6,2^{4}\right)$ quaternary additive code with minimum weight 4 . Then C_{0} is equivalent to one of the seven following codes:

$$
\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & \bar{\omega} & \bar{\omega} \\
\omega & 0 & 1 & \frac{\omega}{\omega} & 1 \\
0 & \omega & \omega & \omega & 0 & \omega \\
0 & 0 & 1 & 1 & \omega & \omega
\end{array}\right],\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & \bar{\omega} & \bar{\omega} \\
\omega & \omega & 0 & \frac{\omega}{\omega} & 0 & \frac{\omega}{\omega} \\
0 & 0 & \frac{1}{1} & \frac{1}{\omega} & \frac{\omega}{\omega} \\
0 & 0 & \bar{\omega} & \frac{\omega}{\omega} & \bar{\omega}
\end{array}\right],\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & \bar{\omega} & \bar{\omega} \\
0 & \bar{\omega} & 1 & 1 & 0 \\
0 & \bar{\omega} & 0 & \omega & \omega & \bar{\omega} \\
0 & 0 & 1 & 1 & \omega & \omega
\end{array}\right],\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & \bar{\omega} & \bar{\omega} \\
\hline & 1 & 0 & 1 & 0 & \omega \\
0 & 0 & 1 & 1 & \omega & \omega \\
0 & 0 & \omega & \omega & \frac{\omega}{\omega} & \bar{\omega}
\end{array}\right],
$$

$$
\left[\begin{array}{llllll}
1 & 0 & 0 & \bar{\omega} & 1 & \omega \\
0 & 1 & 0 & \bar{\omega} & \omega & 1 \\
0 & 0 & 1 & 1 & \omega & \omega \\
0 & 0 & \bar{\omega} & \frac{\omega}{\omega} & \frac{\omega}{\omega}
\end{array}\right],\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & \bar{\omega} & \bar{\omega} \\
\omega & \omega & 0 & 0 & \omega & \omega \\
0 & 0 & 1 & 1 & \omega & \omega \\
0 & 0 & \omega & \omega & 1 & 1
\end{array}\right],\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 0 & 0 \\
\omega & \omega & \omega & \omega & 0 & 0 \\
0 & 1 & \omega & \bar{\omega} & 1 & 0 \\
0 & \omega & \bar{\omega} & 1 & \omega & 0
\end{array}\right]
$$

The automorphism groups of these codes are of order respectively 12, 96, 72, 16, 64, 288, 2160 and the last two are the only ones which are equivalent to \mathbb{F}_{4}-linear codes.

- Let C_{0} be an even $\left(6,2^{3}\right)$ quaternary additive code with minimum weight 4. Then C_{0} is equivalent to one of the seven following codes:

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & \omega & \bar{\omega} & 1 \\
0 & 1 & 1 & \omega & \frac{\omega}{\omega} & 0 \\
0 & 0 & \frac{\omega}{\omega} & \bar{\omega} & \frac{0}{\omega}
\end{array}\right],\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & \omega & \bar{\omega}
\end{array}\right],\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 0 & 0 \\
\omega & \omega & \omega & \omega & 0 & 0 \\
0 & 1 & \omega & \omega & 1 & 0
\end{array}\right] .
$$

The automorphism groups of these codes are of order respectively 48, 24, 192, 128, 32, 768, 288, and since these codes have 2^{3} codewords, they are not \mathbb{F}_{4}-linear.

Proof: The codes were obtained by exhaustive search.
Proposition 3.2. - Let C_{0} be an even quaternary additive code with weight enumerator $W_{C_{0}}=x^{8}+12 x^{2} y^{6}+3 y^{8}$. Then C_{0} is equivalent to one of the five following codes:

$$
\begin{gathered}
{\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\omega & \omega \\
1 & 1 & \omega & \omega & \bar{\omega} & \bar{\omega} & 0 & 0 \\
\omega & \omega & 0 & 0 & \bar{\omega} & \omega & 1 & 1
\end{array}\right],\left[\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\omega & \omega \\
1 & 1 & \omega & \omega & \omega & \omega & \omega & 0 \\
\omega & \omega & 0 & \omega & 0 & \omega & 1 & 1
\end{array}\right],\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\omega & \omega \\
1 & 1 & \omega & \omega & \omega & \omega & 0 & 0 \\
0 & \omega & \omega & 1 & 0 & \bar{\omega} & \omega & 1
\end{array}\right],} \\
{\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \omega & \omega & \omega & \omega & \omega & \omega \\
\frac{\omega}{\omega} & \omega & 1 & 1 & \omega & \omega & \bar{\omega} & \bar{\omega} \\
\hline
\end{array}\right],\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & \omega & \omega & \omega & \omega & \omega & \omega \\
\omega & \omega & 1 & 1 & \omega & \omega & \bar{\omega} & \frac{\omega}{\omega} \\
1 & \bar{\omega} & \omega & 0 & 0 & 1 & \omega & \frac{\omega}{\omega}
\end{array}\right]}
\end{gathered}
$$

The automorphism groups of these codes are of order respectively 1152, 72, 48, 4, 24 and the first one is the only one which is equivalent to a \mathbb{F}_{4}-linear one.

- Let C_{0} be an even quaternary additive code with weight enumerator $W_{C_{0}}=$ $x^{10}+15 x^{2} y^{8}$. Then C_{0} is equivalent to one of the five following codes:

$$
\left[\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
\omega & 0 & 0 \\
\frac{\omega}{\omega} & \frac{\omega}{\omega} & \omega & \omega & 0 & 0 & 1 & 1 & 1 & \omega \\
\omega & 1 & 0 & 0 & \omega & \omega & \omega & \omega
\end{array}\right]
$$

$$
\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & \omega & \omega & \omega & \omega & 0 & 0 & 1 & 1 \\
\omega & \omega & 1 & \omega & \omega & \omega & 0 & \omega & 0 & \omega \\
1 & 0 & 1 & \omega & 0 & \omega & \omega & \omega & \omega & \bar{\omega}
\end{array}\right],\left[\begin{array}{llllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & \omega & \omega & \omega & \omega & 0 & 0 & 1 & 1 \\
\omega & \omega & 1 & \omega & \omega & \bar{\omega} & 0 & \omega & 0 & \omega \\
0 & \omega & 0 & \omega & 1 & \omega & \omega & 1 & \omega & \omega
\end{array}\right],
$$

$$
\left[\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & \omega & \omega & \omega & \omega & 0 & 0 & 1 & 1 \\
\omega & \omega & 1 & \omega & \bar{\omega} & \bar{\omega} & 0 & \omega & 0 & \omega \\
0 & 0 & \omega & \omega & 1 & 1 & \omega & \bar{\omega} & \omega & \omega
\end{array}\right],\left[\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & \omega & \omega & \omega & \omega & 0 & 0 & 1 & 1 \\
\omega & \omega & 1 & \omega & \omega & \omega & 0 & \omega & 0 & \omega \\
\omega & 1 & \omega & \omega & 0 & 0 & \omega & 1 & \omega & \omega
\end{array}\right]
$$

The automorphism groups of these codes are of order respectively 11520, 24, $120,288,96$. The first one is the only one which is equivalent to a \mathbb{F}_{4}-linear one.

Proof: The codes were obtained by exhaustive search.
Remark 3.3. It is worth noticing that the four last codes of length 10 that appear in previous proposition are non linear non equivalent constant weight codes. Hence Bonisoli result [2] on constant weight codes over fields does not hold for quaternary additive codes.

4. Numerical results

4.1. Length 10 . Here $d=4$ and the extremal even self-dual codes have weight enumerator

$$
\begin{equation*}
W_{C}(x, y)=x^{10}+30 x^{6} y^{4}+300 x^{4} y^{6}+585 x^{2} y^{8}+108 y^{10} . \tag{8}
\end{equation*}
$$

Applying the algorithm described in Section 2, for the two possible types of C_{0}, we obtain:

Proposition 4.1. There are exactly 19 non equivalent even self-dual, extremal quaternary additive codes C of length 10 .

Two of these codes ($Q C _10 r$ and $Q C _10 s$) are linear and were already classified as \mathbb{F}_{4} linear self-dual hermitian codes in $[\mathbf{9}]$ and five non-linear codes ($Q C _10 a, b$, $c, d, e)$ were found in [6], the 12 others are new. Table 2 lists the 19 codes with their automorphism group orders and the value of $s(C)$. The generator matrices of the codes are listed in the appendix.
4.2. Length 14. Here $d=6$ and the extremal even self-dual codes have weight enumerator
(9) $\quad W_{C}(x, y)=x^{14}+273 x^{8} y^{6}+2457 x^{6} y^{8}+7098 x^{4} y^{10}+6006 x^{2} y^{12}+549 y^{14}$.

Applying the algorithm described in Section 2, we obtain:
Proposition 4.2. There are exactly 490 non equivalent even self-dual, extremal quaternary additive codes C of length 14 with $s(C)>0$.

Only one of them is equivalent to a \mathbb{F}_{4}-linear one, as was previously known from [9]. It has an automorphism group of order 6552.

Because of the huge number of codes found in this case, we have not explored the other case $s(C)=0$, although it should be possible to do it (see Table 1).

We give in Table 3 the number of codes found with the corresponding number of automorphisms, and in Table 4 the number of codes found with the corresponding value for the invariant $s(C)$. Matrices for the five new codes which are characterized by the number of their automorphisms (respectively $18,28,36,48,84$) are given in the Appendix. The others can be found at http://www.math.u-bordeaux.fr / bachoc

Code	n	d	$\mid \mathrm{Aut}(C)$	$\mathrm{s}(\mathrm{C})$
$Q C _10 a$	10	4	48	0
$Q C _10 b$	10	4	32	0
$Q C _10 c$	10	4	1440	0
$Q C _10 d$	10	4	256	2
$Q C _10 e$	10	4	18	0
$Q C _10 f$	10	4	48	1
$Q C _10 g$	10	4	48	1
$Q C _10 h$	10	4	144	1
$Q C _10 i$	10	4	64	2
$Q C _10 j$	10	4	20	0
$Q C _10 k$	10	4	720	0
$Q C _10 l$	10	4	16	0
$Q C _10 m$	10	4	768	2
$Q C _10 n$	10	4	320	0
$Q C _10 o$	10	4	12	0
$Q C _10 p$	10	4	1152	4
$Q C _10 q$	10	4	240	0
$Q C _10 r$	10	4	11520	10
$Q C _10 s$	10	4	43200	10

Table 2. Extremal Type II codes of length 10

Table 3. The number of codes C of length 14 with $\operatorname{card} \operatorname{Aut}(C)=k$

$\operatorname{card} A u t(C)$	1	2	3	4	6	8	12	18	24	28	36	48	84	6552
C	273	133	10	25	17	9	5	1	12	1	1	1	1	1

Table 4. The number of codes C of length 14 with $s(C)=k$

$s(C)$	1	2	3	4	5	6	7	8	9	10	11	12	14	15	17	21	91
C	274	115	42	18	21	4	2	3	3	1	1	1	1	1	1	1	1

4.3. Length 18. Here $d=8$ and the extremal even self-dual codes have weight enumerator
(10)
$W_{C}(x, y)=x^{18}+2754 x^{10} y^{8}+18360 x^{8} y^{10}+77112 x^{6} y^{12}+110160 x^{4} y^{14}+50949 x^{2} y^{16}+2808 y^{18}$.
There is up to equivalence only one extremal \mathbb{F}_{4}-linear hermitian code [8], denoted by S_{18}. Our search seems to indicate that it is also unique as a quaternary additive code, but we could not handle the case $s(C)=0$ because of the huge number of totally isotropic spaces in dimension 14 (see Table 1).

Applying the algorithm described in Section 2, we obtain:

Proposition 4.3. The code S_{18} is the unique up to equivalence even self-dual, extremal quaternary additive code C of length 18 with $s(C)>0$.

5. From codes to lattice

In this section, we discuss the lattices that can be constructed from the codes previously studied. Let A_{2} denote as usual the 2-dimensional hexagonal lattice. The quadratic space $\left(A_{2} / 2 A_{2}, q\right)$ where $q(x):=(x . x) / 2$ and $x . x$ denotes the inner product of the underlying Euclidean space, is clearly isomorphic to $(G F(4), \operatorname{Tr}(x \bar{y}))$. Hence the $G F(4)$-additive codes of length n can be lifted into A_{2}^{n}; this construction is usually called "Construction A" from [5]. The lattice A_{2} is modular of level 3 in the sense of [11], which means that there exists $\sigma: A_{2} \rightarrow A_{2}^{*}$ a similarity of rate $1 / \sqrt{3}$ between A_{2} and its dual. Hence, even self-dual codes give rise to $2 n$-dimensional lattices which are also modular of level 3 . We explicit this construction in the next proposition. We again denote by $\sigma: A_{2}^{n} \rightarrow\left(A_{2}^{*}\right)^{n}$ the map $\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right)$.

Proposition 5.1. Let C be a $G F(4)$-additive code of length n, with $C \subset C^{\perp}$ and C even. Let L_{C} be the lattice defined by

$$
\begin{equation*}
L_{C}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in A_{2}^{n} \mid\left(x_{1}, \ldots, x_{n}\right) \quad \bmod 2 A_{2} \in C\right\} \tag{11}
\end{equation*}
$$

Then, $\left(L_{C}, 1 / 2 \sum_{i=1}^{n} x_{i} . y_{i}\right)$ is an even lattice of dimension $2 n$. Its dual lattice is $\left(L_{C}\right)^{*}=\sigma\left(L_{C^{\perp}}\right)$. In particular, if C is a self-dual code, then L_{C} is modular of level 3. As a consequence, its determinant is equal to 3^{n}. Its minimum is given by

$$
\begin{equation*}
\min \left(L_{C}\right)=\min (4, w t(C)) \tag{12}
\end{equation*}
$$

Proof. The formula $\left(L_{C}\right)^{*}=\sigma\left(L_{C^{\perp}}\right)$ is clear from the fact that the inner product on $G F(4)$ is the one induced by the scalar product on A_{2}. The computation of the minimum follows from the two observations: $\min \left(\left(2 A_{2}\right)^{n}, 1 / 2 \sum_{i=1}^{n} x_{i} . y_{i}\right)=4$ and $\min \left(\left(x_{1}, \ldots, x_{n}\right)+\left(2 A_{2}\right)^{n}, 1 / 2 \sum_{i=1}^{n} x_{i} . y_{i}\right)=w t(u)$ where u is the image of $\left(x_{1}, \ldots, x_{n}\right)$ in $A_{2} / 2 A_{2}$ identified with $G F(4)$. This last property follows from the fact that the roots of A_{2}, i.e. the vectors x with $x . x=2$ are representants of the non zero classes of A_{2} modulo $2 A_{2}$.

The study of the theta series of modular lattices of level 3 leads in [11] to the definition of extremal lattices. These are the lattices meeting the bound

$$
\begin{equation*}
\min (L) \leq 2[\operatorname{dim}(L) / 12]+2 \tag{13}
\end{equation*}
$$

See $[\mathbf{1 3}]$ for a survey on the notion of extremal lattices. From Proposition 5.1, the lattices L_{C} are extremal only up to the dimension 20 (i.e. length 10 for the codes). For the higher dimensions, it is usual to proceed to Kneser neighborings to get ride of the norm 4 vectors arising from the sublattice $\left(\left(2 A_{2}\right)^{n}, 1 / 2 \sum_{i=1}^{n} x_{i} . y_{i}\right)$. Clearly two neighborings are necessary to do so; however, this procedure fails to produce an extremal lattice from the dodecacode of length 12. However, it is known that such a lattice exists since a 24 -dimensional lattice, extremal and modular of level 3 is constructed in [10] from matrix groups. The genus of modular lattices of
level 3 is completely classified up to dimension 16. Computations in the Magma system allow us to prove the following:

Proposition 5.2. The 19 extremal type II codes of length 10 give rise to 19 non isometric 20-dimensional extremal modular of level 3 lattices.

Proof. Direct verification. Among these lattices, 13 are generated by their minimal vectors, for one of them the minimal vectors span a sublattice of index 2 and for five others the index is 4 . The automorphism groups have non equal orders, except for the lattices obtained from the codes $Q C _10 f$ and $Q C _10 g$. The two codes have an automorphism group of order 48 and the two lattices have an automorphism group of order $2^{14} .3^{2}$ but are not isometric.

6. APPENDIX

- The 19 extremal Type II codes of length 10.

$$
Q C _10 s=\left[\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\omega & \omega & \omega & \omega & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & \omega & \omega & 1 & 0 \\
0 & 0 & 0 & 0 & \omega & 0 & \omega & 1 & \omega & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & \omega & \omega & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & \omega & 1 & \omega & \omega & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & \omega \\
0 & 0 & 1 & 1 & 0 & 0 & \omega & \omega & \omega & 1 \\
0 & \omega & 0 & \omega & 0 & 0 & \omega & \omega & \omega & 1 \\
0 & 0 & \omega & \omega & 0 & 0 & 1 & 1 & 1 & \frac{\omega}{\omega}
\end{array}\right]
$$

- The 5 extremal Type II codes of length 14 with the highest automorphism group orders among the 490 found (respectively $28,36,48,84$ and 6552).

$$
Q C-14 e=\left[\begin{array}{llllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\omega & \omega & \omega & \omega & \omega & \omega & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & \omega & \omega & \omega & \frac{0}{\omega} \\
0 & 0 & 0 & 0 & 0 & 0 & \omega & \omega & 0 & 0 & 1 & 1 & \omega & \omega \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & \omega & \omega & \omega & \omega \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \omega & \omega & \omega & \omega & \omega & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & \bar{\omega} & 0 & \omega & 1 & \omega & \omega & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & \omega & 0 & \omega & \omega & \omega & \frac{\omega}{\omega} & \frac{1}{\omega} \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & \omega & \omega & \omega & \omega & \omega \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & \omega & 1 & 0 & \omega \\
0 & \omega & 0 & 0 & 0 & \omega & 0 & \omega & 0 & \omega & \omega & 1 & 1 & \omega \\
0 & 0 & \omega & 0 & 0 & \omega & 0 & \omega & 0 & 1 & \omega & 1 & \omega & \omega \\
0 & 0 & 0 & \omega & 0 & \omega & 0 & 0 & 0 & \omega & \omega & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & \omega & \omega & 0 & \omega & 0 & 0 & 1 & \omega & 0 & 1
\end{array}\right]
$$

References

[1] C. Bachoc, "Harmonic weight enumerators of nonbinary codes and MacWilliams identities," preprint, 1999.
[2] A. Bonisoli, "Every equidistant linear code is a sequence of dual hamming codes," Ars Comb. 18 (1983), 181-186.
[3] W. Bosma and J. Cannon, Handbook of Magma functions, Sydney, 1995.
[4] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, "Quantum error correction via codes over GF(4)," IEEE Trans. Inform. Theory IT-44 (1998), 1369-1387.
[5] J. Conway, N.J.A. Sloane, "Sphere packings, Lattices and Groups", Springer-Verlag, 1988
[6] P. Gaborit, W. C. Huffman, J.-L. Kim, and V. Pless "On the classification of extremal additive codes over $G F(4), "$ to appear in Proceedings of the 37th Allerton Conference on Communication, Control, and Computing, (1999), UIUC.
[7] G. Höhn, "Self-dual codes over the Kleinian four group," preprint, 1996.
[8] W.C. Huffman, " On extremal self-dual quaternary codes of lengths 18 to 28," IEEE Trans. Inform. Theory 36 (1990), 651-660.
[9] F.J. MacWilliams, A. M. Odlyzko, N.J.A. Sloane and H.N. Ward, "Self-Dual Codes over GF(4)," J. Comb. Theory 25A (1978), 288-318.
[10] G. Nebe, Finite subgroups of $G L(24, \mathbb{Q})$, Exp. Math. Vol. 5, Number 3 (1996), 2341-2397
[11] H.-G. Quebbemann, Modular Lattices in Euclidean Spaces, J. Number Theory 54 (1995), 190-202
[12] E. M. Rains and N. J. A. Sloane, "Self-dual codes," in Handbook of Coding Theory, ed. V. S. Pless and W. C. Huffman. Amsterdam: Elsevier, 1998, pp. 177-294.
[13] R. Scharlau, R. Schulze-Pillot Extremal Lattices, Algorithmic Algebra and Number Theory (Heidelberg 1997), 139-170, Springer, Berlin, 1999

A2X, Université Bordeaux I, 351, cours de la Libération, 33400 Talence, France E-mail address: bachoc@math.u-bordeaux.fr

LACO, Université de Limoges, 87000 Limoge, Frances
E-mail address: gaborit@unilim.edu

[^0]: 2000 Mathematics Subject Classification. Primary 94B60, 11H71; Secondary 94B05, 94B25.

