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Abstract—We survey recent generalizations and improvements
of the linear programming method that involve semidefinite
programming. A general framework using group representations
and tools from graph theory is provided.

I. INTRODUCTION

The celebrated linear programming method was until re-
cently the most powerful method to obtain estimates for
extremal problems in coding theory. Initially developed by
Philippe Delsarte in the early seventies in the framework of
association schemes [12], it was proved equally suitable for
two-point homogeneous spaces [10, Chapter 9]. We recall
that a metric space X with distance dX(x, y) is said to be
two-point homogeneous if the group of transformations of X
preserving dX , which will be called the automorphism group
of X and denoted Aut(X), acts distance transitively on X2.
The binary Hamming space Hn = {0, 1}n is a core example
of these spaces, and the fundamental number A(n, d), the
maximal number of elements of a binary code of length n
with minimal Hamming distance at least equal to d, can be
efficiently upper bounded with Delsarte’s method. It has lead
not only to numerical bounds, but also to explicit bounds [19],
and to the best known asymptotic bounds [22]. Moreover this
method has been equally successful for the other two-point
homogeneous spaces including real spaces such as the unit
sphere of Euclidean space [14], [17].

Despite of these great results, the search for improvements
and for generalizations of this method have been fundamental
issues in coding theory. In recent years, results in these
directions have been obtained using semidefinite programming
instead of linear programming. Semidefinite programming
(SDP for short) is a subfield of convex optimization con-
cerned with the optimization of a linear functional over the
intersection of the cone of positive semidefinite matrices with
an affine subspace. It contains linear programming (LP) as
a special case. It is a field of recent and growing interest
because on one hand it goes with efficient algorithms, and
on the other hand it is capable of modeling or approximating
many optimization problems, in particular in the area of
combinatorial optimization.

The first step was taken by A. Schrijver in [26] who,
using SDP, was able to improve the known upper bounds
for A(n, d) for some parameters (n, d). In [15] these results

where extended to the q-Hamming space, and in [16] they
are further improved. The idea underlying these results is
to exploit constraints involving triples [26], [15], or even
quadruples of codewords [16].

Generalizing the linear programming method to other metric
spaces (X, dX) is of special interest in view of the variety of
spaces that play a role in recent areas of coding theory, such
as codes over rings, network coding, and space time coding.
The LP method was successfully generalized to some of these
spaces (e.g. the non binary Johnson space [27], permutation
codes [28], the Grassmann spaces [1], [24], the ordered codes
[21], [7], the unitary codes [11]), essentially because the
underlying spaces are symmetric spaces. Here we mean that
the group of automorphisms exchanges any two elements of
the space. However, other spaces do not fit into this framework,
such as the projective space over a finite field or a ball in the
Hamming space.

One can go from Hn to another metric space (X, dX) and
ask for estimates for the analogous number A(X, d). One can
also stick to the Hamming space but consider other types of
constraints, such as constraints involving k-tuples of elements
instead of pairs. To be more precise, we want to consider
on the Hamming space Hn, some functions f(x1, . . . , xk)
taking non negative values, defined on k-tuples, that generalize
the Hamming distance. Such a function is called a pseudo-
distance if it satisfies two properties: is is invariant by a
permutation of the xi and it is invariant by the diagonal action
of Aut(Hn). Several such pseudo-distances have been studied
in coding theory, for example the generalized Hamming dis-
tance introduced in [9]. Then, one can ask for Ak−1(n, f,m),
the maximal number of elements of a binary code C such
that f(x1, . . . , xk) is at least equal to some value m when
(x1, . . . , xk) runs over the set of k-tuples of pairwise distinct
elements of C. It can be noticed that A1(n, d,m) = A(n,m).
We show in [4] that Schrijver’s method [26] can be used to
derive upper bounds for A2(n, f,m) and in [5] that it can be
generalized to k ≥ 3.

Our aim in this paper is to give a general framework
for the problems discussed above, based on a combination
of tools from graph theory, and from the theory of group
representations. Indeed, these situations can be interpreted
in terms of the independence number of specific graphs (or
hypergraphs); on the other hand, an upper bound for the



independence number of a graph, which is the optimal value
of a SDP, was discovered by L. Lovász [20] who called it
the theta number of the graph. In order to exploit this upper
bound in coding theory, it is necessary to exploit the action of
the automorphism group of the underlying space, and this step
requires tools from group representations. We shall illustrate
these ideas with the cases of projective space, Hamming balls
and generalized Hamming distance. In this paper we restrict
ourselves to finite spaces, although the ideas and results extend
almost straightforwardly to the case of compact spaces (see
[6], [3]).

The paper is organized as follows: Section II reviews
Delsarte’s LP method for binary codes. Section III discusses
Lovász theta number of a graph. Section IV introduces
semidefinite programs and their symmetrization. Section V
links the theta number and the LP bound in the case of
binary codes, and introduces the notions relative to a general
space X . Section VI gives the necessary results from group
representations. Section VII develops applications to codes in
Hamming balls and to codes in the projective spaces. Section
VIII discusses the applications to pseudo-distances.

II. DELSARTE’S LP METHOD FOR BINARY CODES

We take the following notations: for x an element of the
binary Hamming space Hn := {0, 1}n, the Hamming weight
wt(x) is the number of its non zero coordinates and the
Hamming distance of a pair (x, y) ∈ H2

n equals dH(x, y) =
wt(x − y). A certain family of orthogonal polynomials, the
Krawtchouk polynomials Kn

k (t), are naturally attached to the
Hamming space, and satisfy the so-called positivity property:

For all C ⊂ Hn,
∑

(x,y)∈H2
n

Kn
k (dH(x, y)) ≥ 0. (1)

This property lies at the root of Delsarte LP method. Let us
introduce the distance distribution (xi)0≤i≤n of a code C:

xi :=
1
|C|
|{(x, y) ∈ C2 : dH(x, y) = i}|.

Then, these numbers satisfy the following inequalities:
1) For all 0 ≤ k ≤ n,

∑n
i=0K

n
k (i)xi ≥ 0.

2) xi ≥ 0
3) x0 = 1
4)
∑n
i=0 xi = |C|

where 1) rephrases (1). Moreover, if dH(C) ≥ d, then xi = 0
for i = 1, . . . , d − 1. From these inequalities, one obtains a
linear program in real variables yi, the optimal value of which
upper bounds the number A(n, d) [12]:

max
{∑n

i=0 yi : yi ≥ 0,
y0 = 1,
yi = 0 if i = 1, . . . , d− 1∑n
i=0K

n
k (i)yi ≥ 0 0 ≤ k ≤ n

} (2)

In view of generalizations of this method, the role of the
Krawtchouk polynomials should be clarified. In fact, these
polynomials come into play because they are closely related to

the irreducible decomposition of the space C(Hn) of complex
valued functions on Hn:

C(Hn) := {f : Hn → C}

under the action of the group Aut(Hn) of transformations of
Hn preserving the Hamming distance. This group, of order
2nn!, combines swaps of 0 and 1 with permutations of the
coordinates.

More precisely, if χz(x) := (−1)x·z denote the characters
of (Fn2 ,+), we have:

C(Hn) = ⊕z∈HnCχz = ⊕nk=0Pk

where Pk := ⊕wt(z)=kCχz are Aut(Hn)-irreducible sub-
spaces, and the Krawtchouk polynomials can be defined by

Kn
k (dH(x, y)) :=

∑
wt(z)=k

χz(x)χz(y)

which in turn lead to the explicit expression:

Kn
k (t) =

k∑
j=0

(−1)j
(
t

j

)(
n− t
k − j

)
.

III. LOVÁSZ’S THETA NUMBER

Let Γ = (V,E) be a finite graph. An independent set S of Γ
is a subset of V such that no pair of vertices in S is connected
by an edge, in other words S2 ∩ E = ∅. The independence
number α(Γ) is then the maximal number of elements of an
independent set.

The number A(n, d) studied in coding theory can be in-
terpreted as the independence number of a particular graph,
i.e. the graph Γ(n, d) with vertex set V = Hn and edge
set E = {(x, y) ∈ H2

n : 0 < dH(x, y) < d}. So the
methods developed in graph theory in order to estimate the
independence number can be applied. It turns out that the exact
determination of this graph invariant is a hard problem, but that
a relaxation was defined by L. Lovász [20] under the name
of the theta number, which is computable with polynomial
complexity in the size of the graph. More precisely, Lovász
theta number ϑ(Γ) is the optimal value of a semidefinite
program:

ϑ(Γ) = max
{∑

i,j Bi,j : B = (Bi,j)1≤i,j≤v, B � 0∑
iBi,i = 1,

Bi,j = 0 (i, j) ∈ E
}

where the matrix B is indexed by the vertex set V =
{1, . . . , v} and where B � 0 stands for: B is a symmetric,
positive semidefinite matrix. The celebrated Sandwich theorem
is proved in [20]:

Theorem 1: If χ(Γ) denotes the chromatic number of the
complementary graph Γ, then

α(Γ) ≤ ϑ(Γ) ≤ χ(Γ).

Proof: We only prove the first inequality. Let S be an
independent set and let 1S denote its characteristic function.
The matrix

Bi,j :=
1
|S|

1S(i) 1S(j)



is feasible for the program ϑ(Γ) and moreover its optimal
value

∑
i,j Bi,j is equal to |S|. So |S| ≤ ϑ(Γ).

However, a straightforward application of the inequality
α(Γ) ≤ ϑ(Γ) in the case of binary codes would not be
satisfactory because the graph Γ(n, d) has 2n vertices, thus
its size grows exponentially with the dimension n. The key
to reduce the complexity of the computation of ϑ(Γ(n, d))
is to exploit the action of Aut(Hn) on this graph. In this
process, up to a minor modification (i.e. one should consider
ϑ′(Γ(n, d)), in which the constraint that B takes non negative
values is added), ϑ′(Γ(n, d)) turn to be equal to Delsarte linear
programming bound (see Section V and [25]).

The situation described above is in fact very general. In
coding theory, the spaces of interest are always huge spaces,
but also have a huge group of automorphisms. Thus symmetry
reduction will play a crucial role in the design of upper bounds
of ϑ type for extremal problems.

IV. SEMIDEFINITE PROGRAMS

A semidefinite program (SDP for short) is an optimization
problem of the form:

γ := min
{

c1x1 + · · ·+ cmxm :
−A0 + x1A1 + · · ·+ xmAm � 0

}
where (c1, . . . , cm) ∈ Rm, A0, . . . , Am are real symmetric
matrices, and the minimum is taken over (x1, . . . , xm) ∈ Rm.
Linear programs correspond to the special case of Ai being di-
agonal matrices. The above primal program has an associated
dual program, defined below, where 〈A,B〉 = Trace(AB∗) is
the standard inner product of matrices:

γ∗ := max
{
〈A0, Z〉 : Z � 0,

〈Ai, Z〉 = ci, i = 1, . . . ,m
}
.

Weak duality, i.e. γ∗ ≤ γ, always holds. Under some mild
conditions, one has also strong duality, i.e. γ = γ∗. In this
case, interior point methods lead to algorithms that allow to
approximate γ to an arbitrary precision in polynomial time.
Moreover free solvers are available, e.g. on the web site NEOS
[23].

Let G be a group of permutations of {1, . . . , r}. It acts
on matrices of size r by: (σA)i,j = Aσ−1(i),σ−1(j), σ ∈ G.
The SDP γ∗ is said to be G-invariant if the matrices Ai are
of size r, if the set {Z : Z � 0, 〈Ai, Z〉 = ci} of feasible
solutions is globally invariant by G, and if σA0 = A0 for all
σ ∈ G. In this case, if Z is a feasible solution, then another
feasible solution Z ′ with the same optimal value and which
is moreover invariant by G is obtained by an average of Z on
G, i.e. setting

Z ′ :=
1
|G|

∑
σ∈G

σZ.

This reasoning shows that, if γ∗ is G-invariant, one can restrict
the feasible solutions to be G-invariant. In other words,

γ∗ =
(
γ∗
)G := max

{
〈A0, Z〉 : Z � 0,

σZ = Z for σ ∈ G,
〈Ai, Z〉 = ci

}
.

Going from γ∗ to
(
γ∗
)G

is referred to as symmetry reduction
or symmetrization of the SDP γ∗.

V. BACK TO THE ROOTS

We come back to ϑ′(n, d), which is Aut(Hn)-invariant.
Its symmetrization involves thus the matrices B indexed by
Hn, which are positive semidefinite, and Aut(Hn)-invariant. It
turns out that there is a beautiful description of these matrices
with help of the Krawtchouk polynomials. We now adopt a
functional notation for matrices, i.e. we write B(x, y) instead
of Bx,y .

Theorem 2: B ∈ C(H2
n) is positive semidefinite and G-

invariant if and only if

B(x, y) =
d∑
k=0

akK
n
k (dH(x, y)) with ak ≥ 0, 0 ≤ k ≤ d.

This result shows that the condition B � 0 can be replaced
by the non negativity of the variables ak. Replacing in ϑ′, one
obtains a linear program in the variables (a0, . . . , an). With
a little bit of transformations, one can show that it is equal to
Delsarte linear program.

Now we consider following the same line for a metric space
(X, dX) with group of automorphisms G. With the obvious
graph Γ(X, d), we have similarly

A(X, d) ≤ ϑ′(Γ(X, d))G. (3)

Then we need a description of the G-invariant positive
definite functions F ∈ C(X2), i.e such that the matrix
(F (x, y))(x,y)∈X2 is (Hermitian) positive semidefinite. This
description can be obtained using harmonic analysis of G,
and is explained in next section.

VI. TOOLS FROM HARMONIC ANALYSIS

We shall be rather sketchy here and refer to [6] for details. In
[6], the more general case of compact groups is considered.
The space C(X) is a G-module for the action (gf)(x) :=
f(g−1x) thus can be decomposed in irreducible submodules.
So we have

C(X) = Rm0
0 ⊥ Rm1

1 ⊥ · · · ⊥ Rms
s

where the subspaces Rk are pairwise non isomorphic and
G-irreducible. Then, for all k = 0, . . . , s, one can define a
G-invariant matrix Ek(x, y), of size mk, associated to the
isotypic subspace Rmk

k , such that we have:
Theorem 3: F ∈ C(X2) is positive definite and G-invariant,

if and only if

F (x, y) =
s∑

k=0

〈Fk, Ek(x, y)〉 with Fk � 0. (4)

Moreover, since Ek(x, y) is G-invariant, its coefficients only
depend on the orbits OG(x, y) of pairs (x, y) ∈ X2 under the
action of G, i.e. we have

Ek(x, y) = Yk(OG(x, y))



for some matrix Yk. It remains to explicitly compute this
matrix, which is a non trivial task in general. Special cases
will be worked out in the next section. Replacing F � 0 by
the expression (4) in ϑ′(Γ(X, d)) then leads to a semidefinite
program in the “variables” Fk � 0. Here we can see exactly
when this SDP turns to be an LP: since the matrices Fk have
size mk, it corresponds to the cases when mk = 1 for all
0 ≤ k ≤ s. One can show that it is so if X is a symmetric
space as defined in the Introduction.

VII. BOUNDS FOR CODES IN HAMMING BALLS AND IN
PROJECTIVE GEOMETRY

The projective space X = Pq,n over Fq , the set of all
linear subspaces of Fnq , is a metric space for the distance
dX(x, y) := dim(x) + dim(y) − 2 dim(x ∩ y). Its automor-
phism group is the group G = Gln(Fq) of invertible linear
transformations. The codes of this space have found recent
applications in network coding [18]. Its action on X is not
transitive; there are n+ 1 orbits, the subsets Xk of subspaces
of fixed dimension k, 0 ≤ k ≤ n. The sets Xk themselves
are two-point homogeneous, and Delsarte in [13], who calls
them q-Johnson spaces, has shown that they can be seen as
q-analogs of the Johnson spaces, i.e. the sets of binary words
with fixed weight. This analogy in fact extends to the pairs
(X,G) when X is the full projective space over Fq and G
is the linear group Gln(Fq), respectively the Hamming space
and the symmetric group Sn. We discuss these situations in a
uniform way, with the notations of (5).

X Pq,n Hn

q pt 1
G Gln(Fq) Sn
|x| dim(x) wt(x)

(5)

G splits X into the orbits Xk:

Xk := {x ∈ X : |x| = k}

while the orbits of X2 are:

Xa,b,c := {(x, y) ∈ X2 : |x| = a, |y| = b, |x ∩ y| = c}.

The distance on these spaces also has a common expression:

dX(x, y) = |x|+ |y| − 2|x ∩ y|.

In [13], the G-decomposition of the spaces C(Xk) and the
associated polynomials are determined (since the spaces are
two-point homogeneous, the multiplicities mk are equal to 1).
They belong to the family of q-Hahn polynomials. From these
results one can go one step further and infer the computation
of the matrices Yk for the space X ([2]):

Theorem 4: The space C(X) contains 1 + bn/2c isotypic
subspaces indexed by 0 ≤ k ≤ bn/2c, with multiplicities
mk = n − 2k + 1, corresponding to irreducible spaces Rk
of dimension hk. The coefficients of the associated matrices
Ek(x, y) are explicitly given by the formulas:

Ek,i,j(x, y) = |X|hk

[
j−k
i−k
][
n−2k
j−k

][
n
j

][
j
i

] qk(j−k)Qk(n, i, j; i−|x∩y|)

where k ≤ i ≤ j ≤ n− k, |x| = i, |y| = j, Ek,i,j(x, y) = 0 if
|x| 6= i or |y| 6= j, and Qk(n, i, j; t) are q-Hahn polynomials
with parameters n, i, j.
As an application, it is possible to derive from (3) upper
bounds for A(Jq,n, d) and for A(Bn(w), d) where Bn(w) is
the Hamming ball of radius w centered at 0:

Bn(w) := {x ∈ Hn : wt(x) ≤ w}.

Some numerical results are displayed in Table I. The stars
indicate optimal bounds, attained by the intersection of the
Golay code with Bn(w).

n\w 8 9 10 11 12 13 14 15 16
18 67
19 100 123 137
20 154 222 253
21 245 359 465
22 349 598 759 870 967 990 1023
23 507 831 1112 1541 1800 1843 1936 2047
24 760∗ 1161 1641 2419 3336∗ 3439 3711 3933 4095∗

TABLE I
SDP BOUNDS FOR A(Bn(w), 8)

VIII. BOUNDS FOR BINARY CODES RELATED TO
PSEUDO-DISTANCES

We begin with the introduction of three pseudo-distances
that have been studied in coding theory. For (x1, . . . , xk) ∈
Hk
n , the generalized Hamming distance d(x1, . . . , xk) is de-

fined by:

d(x1, . . . , xk) = |
{
j, 1 ≤ j ≤ n : xj /∈ {0k, 1k}

}
|.

where xj := ((x1)j , . . . , (xk)j) denotes the j-th column of
the array:

x1 = 0 . . . 01 . . . 1100 . . . 0
x2 = 0 . . . 01 . . . 1011 . . . 0
...
xk = 0 . . . 01 . . . 1 001 . . . 1︸ ︷︷ ︸

d(x1,...,xk)

This notion was introduced in [9], and takes its origin in
the work of Ozarow and Wyner, and of Wei, who studied
the generalized Hamming weight of linear codes in view of
cryptographic applications. When k = 2, d(x1, x2) is nothing
else than the usual Hamming distance.

The radial distance has connections with the notion of
list decoding ([8]). The radial distance r(x1, . . . , xk) is by
definition the smallest radius of a Hamming ball containing
the points x1, . . . , xk:

r(x1, . . . , xk) = min
y∈Hn

{
max
1≤i≤k

d(y, xi)
}
.

Because this parameter is difficult to analyse, it is sometimes
studied jointly with the average radial distance ([8])

r(x1, . . . , xk) := min
y

{1
k

∑
1≤i≤k

d(y, xi)
}
.



We want to define an upper bound for the number
Ak−1(n, f,m) relative to a pseudo-distance f , that resembles
Lovász’s theta number. In view of the proof of the inequality
α(Γ) ≤ ϑ(Γ) of Theorem 1, it is natural to consider the
function

χC(z1, . . . , zk) :=
1
|C|

1C(z1) . . .1C(zk) (6)

associated to a binary code C, and to work out a semidefinite
program from its properties. With this line of thought, we
obtain in the simplest form:

Theorem 5: [5] The optimal value of the following SDP is
an upper bound of Ak−1(n, f,m):

max
{∑

(x,y)∈H2
n
F (x, y) : F : Hk

n → R,
F satisfies (1)− (4)

}
where:

(1) F (z1, . . . , zk) = F ({z1, . . . , zk})
(2) (x, y) 7→ F (x, y, z3, . . . , zk) � 0 and ≥ 0
(3) F (z1, . . . , zk) = 0 if f(z1, . . . , zk) ≤ m−1 and zi 6= zj
(4)

∑
x∈Hn

F (x) = 1
A slightly stronger condition is used in [5] instead of (2).
In order to compute effectively with this program, it is again
necessary to reduce it with Aut(Hn), which amounts to ex-
press the Aut(Hn)-invariant functions F satisfying condition
(2). This step can be completed with an analysis of the
positive definite functions on Hn which are invariant under
the stabilizer of k − 2 elements (z3, . . . , zk). The case k = 3
corresponds to the stabilizer of one element, which can be
chosen to be the zero word, thus to the group Sn, so this case
is contained in Theorem 4. The resulting symmetrized program
for k = 3 coincides with the program used in [26] (with of
course a change in condition (3)). In [4], numerical bounds
for k = 2 and for the three pseudo-distances defined above
are computed and compared to the previous known bounds. It
turns out that in almost every case the SDP bound is better. In
[5], numerical results are obtained for k = 4, i.e. for quadruple
functions. However, it seems difficult to consider larger values
of k, because the size of the resulting SDP is of order of
magnitude n2k−1−1.

Remark 6: There is also a graphic view point on Theorem
5. Indeed, the semidefinite program that we have defined,
upper bounds the independence number of an hypergraph if
Hn is replaced by its vertex set and if condition (3) is replaced
by: F (z1, . . . , zk) = 0 if {z1, . . . , zk} is an hyperedge of the
hypergraph.

Remark 7: The semidefinite bound presented in [16], in-
volves functions F defined on the set Sk(Hn) of subsets of
Hn of cardinality at most k. The semidefinite constraints on
F are as follows: for all S ⊂ Sk(Hn),

(X,Y ) 7→ F (X ∪ Y ) � 0

where X,Y run over the elements of Sk(Hn), containing S,
and of size at most (k + |S|)/2 (so that |X ∪ Y | ≤ k). The
case |S| = k − 2 corresponds to condition (2).

The authors obtain with k = 4 new upper bounds for
A(n, d) for sixteen values of (n, d) in the range 18 ≤ n ≤ 26
and 6 ≤ d ≤ 12. Remarkably, the new bound in the case
(n, d) = (20, 8) reaches the lower bound provided by succes-
sive shortening of the Golay code, thus proves A(20, 8) = 256.
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