SEMIDEFINITE PROGRAMMING, MULTIVARIATE ORTHOGONAL
POLYNOMIALS, AND CODES IN SPHERICAL CAPS

CHRISTINE BACHOC AND FRANK VALLENTIN

ABSTRACT. In this paper we apply the semidefinite programming approach de-
veloped in[[2] to obtain new upper bounds for codes in spherical caps. We com-
pute new upper bounds for the one-sided kissing number in several dimensions
where we in particular get a new tight bound in dimensiorFurthermore we
show how to use the SDP framework to get analytic bounds.

Dedicated to Eiichi Bannai in occasion of his 60th birthday

1. INTRODUCTION

Let S”~! denote the unit sphere of the Euclidean spite The spherical cap
with centere € S”~! and angular radius is the set

Cap(e,¢) ={z € S" ' :e -z > cosg}.

Let us consider the problem to upper bound the size of a ¢od®ntained in
Cap(e, ¢) with minimal angular distance. Following notations ofi[3], the max-

imal size of such a code is denoted Ayn, 6, ¢). Many reasons to consider this
problem are exposed inl[3], e.g. upper bounds for spherical codes can be derived
from upper bounds for spherical cap codes through the following inequality:

A(n,0) < A(n,0,9)
vol(S"~1) = vol(Cap(e, ¢))

whereA(n, §) stands as usual for the maximal size of a spherical code with mini-
mal angular distance.

Moreover, it is a challenging problem, because the so-called linear program-
ming method does not apply to this situation. In coding theory many of the best
upper bounds are consequences of the so-called linear programming method due
to P. Delsarte. This method gives upper bounds for codes from the solution of a
certain linear program. It can be applied to symmetric spaces and has been success-
fully used to deal with two-point homogeneous spaces like the unit siifere
(71, 18I, [6} Chapter 9]), or with symmetric spaces which are not two-point homo-
geneous like Grassmannian spaces ([1]). However the method is not applicable to
spaces which are not symmetric spaces like spherical caps.
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In this paper, we want to show that the approach developéd in [2] based on semi-
definite programming can be applied to the above problem. It turns out that it gives
good numerical results. In particular we obtain improvements in the determination
of the so-called one-sided kissing number, correspondingtor /2 andd = /3,
and denoted by3(n) after [11].

Let us describe briefly the idea underlying our approach. The isometry group
of Cap(e, ¢) is the groupH := Stab(O(R"), e) stabilizing the point in O(R"™).

This group acts on the spag®l,(S" ') of polynomial functions of degree at
mostd on the unit sphere. In the decomposition of this space into irreducible sub-
spaces some irreducible subspaces occur with multiplicities. To each irreducible
subspace with multiplicityn we can associate @ x m matrix Y whose coef-
ficients are real polynomials in three variablesv,t) and have a very explicit
expression in terms of Gegenbauer polynomials. Each metgatisfies the posi-
tivity property:

For all finiteC' 5!, Y Y(e-ce-c,c-c) =0,
(e,ceC?

where ‘= 0" stands for “is positive semidefinite”.

We want to point out that the same framework can be developed for every met-
ric spaceX with isometry groupH. Only the expression of the matric&swill
depend on the specific situation. For a symmetric spatke multiplicities in the
irreducible decomposition are equalltoHence the matrices have sizel x 1. So
we recover the classical positivity property of zonal polynomials which underlies
the linear programming method.

The paper is organized as follows: Section 2 recalls the needed notations and
results of [2]. Sectiof|3 states the semidefinite program (SDP for short) which
obtains an upper bound fe¥(n, 6, ¢) and presents the numerical results. Seon 4
translates the dual SDP into a statement on three variable polynomials, and states
more material on orthogonality relations, positivity property and other classical
material.

2. REVIEW ON THE SEMIDEFINITE ZONAL MATRICES

We start with some notations. The standard inner product of the Euclidean space
R™ is denoted byt - y. The orthogonal group(R™) acts homogeneously on the
unit sphere

S li={reR" :x-z =1}
The space of real polynomial functions of degree at mast S*~! is denoted by

Pol<4(S™71). Itis endowed with the induced action ©fR"), and equipped with

the standar® (R")-invariant inner product
1
) (1) = 5- [ @)oo,

Wn

wherew,, is the surface area & ! for the standard measude,,.
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It is a classical result that under the action(yfR™)
2) Poleg(S" ) =H L H 1 ... 1L HY,

where H}! is isomorphic to theD(R")-irreducible space of homogeneous, har-
monic polynomials of degrekin n variables, denoted biarm;. For the dimen-
sion of these spaces we writg := dim(Harmj)).

For the restricted action of the subgroép := Stab(e, O(R™)), introduced
above, we have the following decomposition into isotypic components:

3) Poleg(S" ) =To LTy L ... LIy,
where

Ty~ (d—k+1)Harm}™ ', k=0,....d.
More preciselyZ;, decomposes as
(4) Ty=Hy ' L. L H;;;l,

where, fori > k, H}'; " is the unique subspace & isomorphic toHarm} .
The following construction associates to edgha matrix-valued function

(5) Zl? . gn—l o gn—1 _, R(d*k+1)><(d7k+1)
which is uniquely defined up to conjugation. Let:,e%,, ... ,e’;hz,l) be an
orthonormal basis oH,?,;}rs, then define
, e](‘j’l(x) e elof,h};*l (z)
El?(x) = — )
hig eflfk,l(x) eg—k,h};*l(x)
and
(6) Zp(w,y) = B (x)Ej(y)" € RO FHDxERHD,

Moreover, we assume that the ba@ﬁi)lgighz_l is the image O(BISJ)ISZ»Shz—l
by someH -isomorphismy, : Hy' ;b — H}' L.

One can prove that, for all € H, Z}(g(x),9(y)) = Z}(z,y). As a conse-
quence, the coefficients &f;’ can be expressed as polynomials in the three vari-
ablesu = e-x,v =e-y, t = x-y. More precisely, let}*(u,v,t) be the
(d—k+1) x (d —k+ 1) matrix such that

(7) Z}?($,y):Ykn(€$,€y,:Ey>

We denote the zonal polynomials of the unit sphgte! by P. In other words,
P['(t) is the Gegenbauer polynomial of degfewith parameter./2 — 1, normal-
ized by the condition?’(1) = 1. We give in [2, Theorem 3.2] the following
explicit expressions for the coefficients of the matriggs
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Theorem 2.1. We have, foralh <i,j <d — k,

(8) (Vi) (w0, 8) = Ao P22 () PRE2E(0) QR (u, v, 1),
where

Qv t) = (L= =) R —t;?)ug =)

and

Wn Wnt2k—1
)“,j _%n %ni thJerther)l/Q
Wn—1 Wn42k

We recall the matrix-type positivity property of the matriags which underlies
the semidefinite programming method:

Theorem 2.2. For any finite code” ¢ S~ 1,
9) Z Yi(e-c,e-c,e- ) =0.
(e,c)eC?
Proof. We recall the straightforward argument:
t
Z Z(c,d) (ZEk )(ZE;?(C)) =0
(c,c')eC? ceC ceC

O

3. SEMIDEFINITE PROGRAMMING BOUND FOR CODES IN SPHERICAL CAPS

LetC C Cap(e, ¢) be a code of minimal angular distartceDefine the domains
A andAg by

A= {(u,v,t): cosp<u<wv<l,
—1 <t <cosb,
1+ 2uvt — u? —v? — 2 > 0},
and
Ag = {(u,u,1):cosp <u <1},
The two-point distance distribution 6f is the mapy : A U Ay — R given by

_ m(u,v)
y(u,v,t) - card(C’)
where

card{(c,d) € C?:e-c=u,e- =v,c- =t},

m(,0) = {2 fusto,

1 fu=w.

We introduce the symmetric matric&s, (u, v, t) defined by

— 1
Yy (u,v,t) == 5 <Yk”(u,v,t) + Y,f(v,u,t)).



CODES IN SPHERICAL CAPS 5

Then, [9) is equivalent to the semidefinite condition
Z y(u,v,t)?Z(u,v,t) = 0.
(u,v,t)EAUAQ
They(u,v,t)’s satisfy the following obvious properties:
y(u,v,t) > 0forall (u,v,t) € AU Ay,
y(u,v,t) = 0 for almost all(u, v,t) € AU Ao,

Z y(u,u,l) =1,

(u,u,1)EAq

Z y(u,v,t) = card(C),
(u,v,t)EAUAQ
Z y(u,v,t)Y ; (u,v,t) = 0forall k> 0.
(u,v,t)EAUAQ
Hence a solution to the following semidefinite program is an upper bound for
A(n,0,9).

sup{ 1+ Z y(u,v,t) :

(u,v,t)EA
y(u,v,t) >0 forall (u,v,t) € AU Ay,

y(u,v,t) =0 foralmost all(u,v,t) € AU Ay,

Z y(u,u,1) =1,

(u,u,1)EAq
Z y(u,v,t)?Z(u, v,t) =0 forall k > O}.
(u,v,t)EAUAQ

As usual, the dual problem is easier to handle. The duality theorem says that any
feasible solution of the dual problem provides an upper boundifer, 6, ¢). For
expressing the dual problem we use the standard notatipB) = Trace(AB).

Theorem 3.1. Any feasible solution to the following semidefinite problem provides
an upper bound o (n, 6, ¢).

inf{ 14+ M:
F, >0 forall k£ >0,
F, = 0 foralmost allk > 0,

10 —n

(19) D (Fr YVi(u,u,1)) < M forall (u,u,1) € Ay,
k>0
Z(Fk,YZ(u,v,t» < —1 forall (u,v,t) € A}
k>0

In order to make use of this theorem in computations we follow the same line
as in [2, Section 5]. A theorem of Putinar ([14]) shows that the two last conditions
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best lower | best upper bound SDP
n | bound known| previously known| method
3 9 919] 9
4 18 18 [11] 18
5 32 35 [12] 33
6 51 64 [12] 61
7 93 110 [12] 105
8 183 186 [12] 183
9 309 [12] 297
10 472

Table 1. Bounds o#3(n).

can be replaced by:

Z(Fk,?Z(u,u, 1) =M — qo(u) — p(u)qi(u)

k>0

4
Z<Fkv?2(uv v, t)> =—-1- Tﬂ(ua v, t) - sz(ua v, t)ri(uv v, t)
k>0 i=1

wherep(u) = —(u—cos ¢)(u—1), p1 = p(u), p2 = p(v), p3 = —(t+1)(t—cosd),

ps = —(u? + v? +2) + 2uvt + 1, and the polynomialg;(u), 0 < i < 1 and
ri(u,v,t), 0 < i < 4 are sums of squares of polynomials. If we set the degree
of those polynomials to be less than a given vaNieand fix the parametet, we
relax [10) to a finite semidefinite program.

In the most interesting cases ¢ = 0 andcos § = 1/2, corresponding to the so-
called one-sided kissing numb8(n), we obtain the computational results gath-
ered in Table 1. For our computations we chose the paranieteN = 10.

In this table, the values in the column of the best lower bounds known cor-
respond to the number of points in an hemisphere from the best known kissing
configurations, given by the root systeidg, Dy, D5, Fg, E7, Es.

Our method gives a tight upper bound in three cases. In dimedswoa get
with parametere = N = 4 the boundB(3) < 9.6685 and hence we recover the
exact values3(3) = 9 first proved by G. Fejes@th ([9]). In dimensiord we get
with parameterd = N = 6 the boundB(4) < 18.5085 and hence we recover the
exact valueB(4) = 18 first proved by O.R. Musin|([11]). In dimensi&we find a
new tight upper bound. The famous configuratior24d points ofS” given by the
root systemFy is well known to be an optimal spherical code of minimal angular
distancer/3, which is moreover unique up to isometry. Optimality is due to A.M.
Odlyzko and N.J.A. Sloane/([13]), and independently to V.I. Levenshtein ([10]),
uniqueness is due to E. Bannai and N.J.A. Slodne ([5]). From thigspoints we
get a code of the hemisphere as follows: Takenong these points, then the subset
of those points lying in the hemisphere with centeronsists in183 points. We
obtain a bound 0183.012 with d = N = 8 in our computation. Hence, it proves



CODES IN SPHERICAL CAPS 7

that it is an optimal code of the hemisphere, in other words that
B(8) = 183.

It is reasonable to believe that the configuration&s points of Es is unique up to
isometry. Unfortunately we cannot prove it.

4. POLYNOMIALS

4.1. A restatement of the SDP bound for codes in spherical capsiVe want to

give an equivalent expression of the bound provided by Theprem 3.1 in terms of
polynomials. Such an expression will be useful to prove analytic bounds with-
out the use of software for solving semidefinite programs, just like in the case of
the linear programming (LP) bound (see elg.|[13]). Moreover, we aim at setting
bounds in the form of explicit functions @bs # andcos ¢. We start with a lemma
which shows that any polynomial in the variabtes, ¢ can be expressed in terms

of the matrix coefficients of th&," (u, v,t). In our situation it suffices to restrict to
polynomials which are symmetric im v. We introduce the following notation:

Ry :={F € Rlu,v,t] : F(u,v,1) = F(v,u,t),deg,(F) < d,deg,(F) < d}
wheredeg,, ;) stands for the total degree in the variables.

Lemma 4.1. Let F(u,v,t) € Ry. There exists a unique sequencelof 1 real
symmetric matrice§Fy, F1, ..., Fy) suchthatfy isa(d —k+1) x (d—k +1)
matrix and
d
(11) F(U,U,t) = Z(Fk,?Z(U,’U,t))
k=0
We shall say thatFy, .. ., Fy) are the matrix coefficients df.

Proof. The ponnomialsQZ‘l(u,v,t) have degree: in the variablet, so that
F(u,v,t) has aunique expression of the foffu, v, t) = Zz:o qr(u, v)QZ‘l(u, v, t),
where gy (u, v) is symmetric inu,v and has degree in at mostd — k. Since
Pf“k(u) has degree, g has a unique expression as a linear combination of the
productsP; " (u) PP**(v) for 0 < 4,5 < d — k. Thus,q, = (A, P;) with
(Pr)iy = P (u)P!***(v) and a symmetric matrixy,. SinceQp " (u,v, 1)
factor out fromY;”, we obtain the announced decomposition With= A, put to

a conjugation. O

Remark 4.2. The matrix coefficients of a polynomial do not really depend on
the choice ofl. The matrix coefficients associated#o> d will simply be the ones
associated tal, enlarged by sufficiently many rows and columns of zeros.

Remark 4.3. From [2, Proposition 3.5]the polynomials?;(t) are linear combi-
nations of diagonal elements of the matriCTé%with non negative coefficients. As
a consequence, the matrix coefficients of any polynomigl € R|t], are diagonal
matrices. IfP(t) = ) fi P} (t), with all f > 0, then the matrix coefficients, of

P are also non negative, and, moreover, the top left corndryofqualsfy.
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The following reformulation of Theorem 3.1 is closer to the classical expression
of the linear programming bound (see elg. [6, Chapter 9, Theorem 4]).

Theorem 4.4. Let £y be the matrix whose only non zero entry is the top left corner

which containsl. Let F'(u,v,t) € Ry. Let(Fy,...,Fy) be symmetric matrices
such that
d
Flu,0,8) = Y (Fi, Vi (u,0,1)).
k=0

Suppose the following conditions hold:

(@ Forall0 < k <d, F, = 0.
(b) Fy = 0 whereF, = F, — foE, for somefy > 0.
() F(u,v,t) <0forall (u,v,t) € A.
(d) F(u,u, 1) < Bforall u € [cos ¢, 1].
Then, for any code i€ap(e, ¢) with minimal angular distance at least equal&p
card(C) < E
Jo
Proof. It follows from Theorenj 3]1 because the matri€és= F,/fo — Eo and
G = Fy/fo for1 < k < d are a feasible solution to the SDP [10) with =

B/fo—1.

We also give a direct proof, which has the additional feature to give information
about the case when the obtained bound coincides with the size of a certain code.
Let

We expandF in theY,'s:

d
S = ZFk, Z Yile-ce-c,c-c)).
k=0

(c,c)eC?
On one hand, from property](9) together with the fact th&tB) > 0 for two
positive semidefinite matrice$, B we obtain
S > (foEo, Y Yg(e-ce-cie-d))

(12) (070’)622
= fo Z (Yg)o 0(6 cCG e C,, C- C,) = fo Card(C’)Q.

(c,c/)eC?
On the other hand, if we separateSrthe pairs(c, ¢’) with ¢ = ¢/, we obtain from
condition (c) and (d)
S = ZF(e~c,e-c,l) + Z Fle-cie-c,e-c)
(13) ceC (c,c’)eC? c#c!
B card(C) + 0,

IA
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becausde - c,e - c,1) € Agand(e-c,e-c,c-) € Aif ¢ # ¢. Now (12) and
(13) together give the inequalitard(C) < B/ fo. O

Remark 4.5. Like in the LP method, the above proof gives a hint on the case
of equality. Namely, if for a given codg& and a given polynomiaF', we have
card(C) = B/ fo, the inequality(I3) must be an equality. S&,(u,v,t) = 0 for

all (u,v,t) running through the set of triple& - ¢,e - ¢/, ¢ - ¢) with ¢ # ¢ and
(e,d) € C? andF(u,u,1) = Bforallu =e-cwithc € C.

Remark 4.6. In view of explicit computations, it is more convenient to remove the
factor \; ; from the coefficients &f;", so that polynomials with rational coefficients
have rational matrix coefficients. It changes the above defifietb conjugates,
hence does not affect the property to be positive semidefinite. These are the matrix
coefficients we discuss about in the next two examples.

Example 1.(d = 1)

Let F = t — cosf — uv + cos® ¢. The matrices of the decompositidn (11) are:
Fy = (&9) with a = cos’¢ — cosf andFy = (1). Condition (a) of Theorem
[4.4 is fulfilled if « > 0. Condition (b) holds forf, = a. Obviously (c) holds if
cos ¢ > 0 and, sincel'(u,u,1) = 1 — cosf — u® + cos? ¢, B = 1 — cosf. We
obtain:

1 —cosf
If cos$ > 0andcosf < cos® ¢, card(C) < o’

cosZ ¢ — cosf’

It is worth to point out that the polynomi& = (¢ — cosf) — cosp(u + v —
2 cos ¢) leads to exactly the same bound. This tife= (% 1) with ¢ = cos ¢,
fo=a,B=1-—cos#.

The above bound is already provedI|in [3, Th 5.2]. Indeed with the notations of
3], let w(h, ¢) be defined byosw(f, ¢) = (cosd — cos? ¢)/(sin? ¢); we have
just proved that the Rankin bound fd{n — 1, w (0, ¢)) applies tacard(C'). More
generally, we recover the LP bounds féfn — 1,w(6, ¢)) by the following : let
f(x) be a polynomial of degreé that realizes the best LP bound 8~ for the
anglew(#, ¢). We can take polynomial approximations of the function

B /2 t — uv
Flu,v0) = (0= )1 =) ( (1—w?)(1 - v2>)”2>

obtained by the truncated developments of the poers u?)(1 —1)2))]“/2 around
U = COS ¢, U = COS .

Example 2.(d = 2)

Let FF = (t + 1)(t — cos ) + a((u — cos)(u — 1) + (v — cos ¢)(v — 1)). The
parameters, > 0 will be chosen later to optimize the bound. Condition (c) is
obviously fulfilled and condition (d) holds witB = 2(1 — cos #). The polynomial

(t + 1)(t — cos @) has non negative coefficients on ti¥ under the condition
cosf < 1/n. More precisely its constant coefficient eqL(%Is— cos 9) while
the two others are positive. So we only need to make sureAhas positive
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semidefinite. We find that:
2a(L +cosp) + L —cos® —a(l+cosg) a(l—1)
Fo = (1 —cosb) 0
1-3)
Let
(1 + cos ¢)?

1 1 1
T cos +(1- E)) +2a(ﬁ + cos ¢) + -~ — cos 6.

fola) == —a2<
Then, an easy calculation shows tt#gt = 0 iff fo(a) > 0, and thatF, = Fy —
foEo = 01iff fo < fo(a). The best bound is obtained whén= fj(a) attains the
maximal value

1 (% + cos ¢)2
(fO)max = (ﬁ — COSG) + ((1+cos¢)2 L1 l) .
1—cosf n
The final bound equals
2(1 — cos®)
(fO)max .

and is valid as long a&fo)max > 0 and(% + cos ¢) > 0 (this last condition holds
becaus€ f,)max Must be attained at a positiug.

It is worth noticing that the resulting bound is smaller than the LP bound for the
entire sphere, obtained from the polynonmieh 1)(¢ — cos §), which is

2(1 —cos9)
(l — cos 9) '

n

For example, whenos ¢ = cos# = 0, we recover the exact bound ot — 1.

Remark 4.7. We can interpret the two examples treated above as follows: in both
cases, we have perturbed the optimal polynomial for the LP method, respectively
t—cosfand(t+1)(t—cos @), with a polynomial in the variables, v, which affects

the first matrix coefficient, and increases the value of the constant coefficignt
However it seems difficult to generalize this approach.

4.2. Orthogonality relations in Ru,v,t]. In this subsection, we calculate the
scalar product induced oR[u, v, ] by the natural scalar product dtol(S™1)
defined by/[(1L).

Proposition 4.8. Let P € Ru, v, t]. We have

1
) Ple-xz,e-y,x-y)dw,(z)dw,(y) = / P(u, v, t)k(u, v, t)dudvdt
n (Sn71)2

Q

where \

M(l —u? —v? —t2 4 2uvt) 2

k 77t —
(u0.) = <L
and

Q={(u,v,t): —1<w,v,t<1,

1+ 2uvt —u? —v? — 2 > 0}.
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Proof. If u = e - z and¢ € S"~2 is defined by = ue + (1 — u2)2¢, we have
dwn (z) = (1 = u?)*F dudw,_1(C).
With y = ve + (1 — v2)2¢, we have

Ple-z,e-y,x - y)dwn(z)
Sn—l

‘/ /1 Pluyv,uo + (1 u?) (1~ %)) 2¢ - €)(1 — )7 dudwn—1(Q)
sn-2J 1
= Wp—2 /11 /11 P(u,v,t)(1 — a2)n774(1 - uQ)nTigdadu,

wheret := uv + ((1 — u?)(1 — UQ))%OA With this change of variables having
Jacobian((1 — u?)(1 — 02))% we obtain

/ Ple-z,e-y,x-y)dwp(z)

Sn—1

= wn_Q/ P(u,v,t)k(u,v,t)(1 —UQ)*HT%dudt,
Q(v)

where
Qv) ={(u,t): —1<u,t<1,

1+ 2uvt —u? —v? — 2 > 0}.
Hence

/ Ple-z,e-y,x - y)dw,(z)dwy(y)
(Snfl)Z
= wnlwng/ P(u,v,t)k(u, v, t)dudvdt

Q

O

Definition 4.9. With the notations of Propositign 4.8, the following expression de-
fines a scalar product oR[u, v, t]:

(14) [F, G :/QF(u,v,t)G(u,v,t)k(u,v,t)dudvdt.

From Propositiorj 4.8, it is the scalar product induced by the standard scalar prod-
uct (@) on Pol(S™~1).

The subspaceéf,’ji‘l are pairwise orthogonal. Consequently the matrix coeffi-

cients ofY;"(u, v, t) are pairwise orthogonal fdr,-]. Their norm is also easy to
compute, and we obtain the following useful formulas:

Proposition 4.10.
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(a) For all £k and alli, j we have
n n O k) (i 57.k")
(15) (Vi) (Vi) ) = ot
(b) For all symmetric matrices!, B,

=40 =0 5 / A7
(16) (A 77, (8,77 = BEALE)
k

Proof. Obvious. O

4.3. A characterization of the positive definite polynomials. In view of Theo-
rem[4.4, we are concerned with the construction of polynomials satisfying condi-
tion (a). We prove in this subsection that this property is stable under multiplica-
tion. We start with a characterization of the set of polynomials satisfying (a).

Definition 4.11. We say that the polynomi&l(u, v,t) € R|u, v, t] is positive def-
inite if, for all finite C ¢ S™~1, for all functiona : C — R,
(17) Z a(c)a(d)F(e-ce-d,c ) > 0.
(c,c)eC?
The polynomialsF'(u, v, t) of the form

d
F(u,0,t) =Y (F, Vi (u,v,t))
k=0

with Fj, = for all 0 < k < d are positive definite in the above sense. Note that it is
slightly stronger than the positivity property of the matri¢gsproved in Theorem
[2.2; the argument is essentially the same, it follows from the equality

> ala(@) (e d) = (Yo Br @) (X ot B @) = o.

(c,c)eC? ceC ceC

Our goal now is to prove that all positive definite polynomialdip arise in this
way.

Proposition 4.12. Let F'(u,v,t) € Ry. Let(Fy,...,Fy) be symmetric matrices

such that
d

F(u,v,t) = Z(Fk,?Z(u,v,t)).
k=0
If ' is positive definite, thehy, > 0forall 0 < k£ < d.

Proof. Let F(z,y) = F(e - x,e - y,x - y). By compactnesst is positive definite
if and only if for all f € Pol(S™~1),

[ T @) F ) () (9) > 0
()
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As a consequence, @ (x) is any matrix,
[ Q). QU F . p)d (2)dn () >
()

Letusfixk € {0,...,d} andletA be a(d—k+1) x (d—k+1) symmetric, positive
semidefinite matrix. Because of expression (6Z¢f we can writeAZ} (z,y) in
the formQ(z)Q(y)*. Hence,

[ A 2R ) F ) () deny) > 0.
(5

In terms of the scalar produft -] it is equivalent to
[(A,Y}), F] > 0.

Since from[[@B)(A, Y}), F] = (k) "'(A, F), we have proved thdtd, F,) >
0 for all A > 0, and soF}, > 0. O

Corollary 4.13. Let F, G € Ry. If F andG are positive definite, then the product
FG is also positive definite.

Proof. From Propositiof 4.32 it suffices to consider the cAse: (A,Y}.), G =

(B,Y]'), whereA andB are positive semidefinite matrices. Like we did before, we

write AZ(z,y) = Q(z)Q(y)" andBZ]'(x,y) = T'(x)T (y)'. With the formula
(Q(2), QT (x), T(y)) = (Qz) @ T(z), Qy) @ T(y))

we have

Z a(c)a(c/)ﬁ(c, c’)é(c, d)
(c,c')eC?
= 3 a)ald)(Q(e), QN (T(e), T(¢))

(c,c')eC?
= Y ((0)Q(0) © T(e), a()Q() ® T(¢)))

(c,c')eC?

= (Uo,Ug) >0
with
Uo =3 ale)Qc) @ T(e).
ceC
|

4.4. The reproducing kernels. We introduce the following notation: we l&f :=
(u,v,t) be as before the variables of the polynomial riR@y, v, ¢], and we let
X' := (u',v',t') € R3. Moreover, we define:

(18) Ko(X, X') = hp {Y(X), V(X))
k=0
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Proposition 4.14. K4(X, X’) is thereproducing kernebf the spaceR, i.e., for
all F € Ry,

Proof. It is straightforward from[(1]6).
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