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Abstract

In this paper, we construct three new extremal lattices of mini-

mum 8; one is 3-modular and of dimension 40, the two others are

unimodular of dimension 80. They are strongly connected to the 20-

dimensional lattice with automorphism group isomorphic to 2.M22.2.

1 Introduction

An even, unimodular lattice can only exist in dimensions n which are mul-
tiples of 8, and one knows, from the modular properties of its theta series,
that its minimum is bounded by 2([n/24] + 1) (see [CoS 88]). A lattice at-
taining this bound is said to be extremal. Extremal lattices are known up
to dimension 64; the most wanted would be a 72-dimensional lattice of min-
imum 8, which is not yet proved to exist. In this paper, we construct two
extremal lattices in dimension 80. One of them belongs to a series of three
lattices of minimum 8, in dimension 20, 40, 80, which are modular of level 7,
3, respectively 1.
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An even lattice is said to be modular if it is similar to its dual. The
norm of the similarity is then called the level of the lattice. In particular, its
determinant is equal to the level to the power n/2. The modular properties
of the theta series of such lattices, studied in [Que 95] lead to the notion
of extremal lattices; if the level l is a prime number such that 1 + l divides
24, an extremal lattice has minimum 2([n/k] + 1), where k = 2 · 24/(1 + l).
For the levels 7, 3, 1, we get k = 24, 12, 6, which means that the “jump
dimensions” (which are the dimensions where the minimum may increase)
for level 1 (resp. 3) is twice the “jump dimensions” for level 3 (resp. 7). In
order to shift from one level to another, we can take the tensor product of
a lattice with suitable elementary lattices. An example of such a situation
is the following, and was communicated to the first author by B. Gross: let
α satisfy the equation α2 − α + 2 = 0; then Z[α] is the ring of integers of
the imaginary quadratic field of discriminant -7. This ring embeds into any
maximal order M of the quaternion field Q3,∞ over Q ramified at 3 and ∞, as
follows. We set i2 = −1, j2 = −3, ij = k so that Q3,∞ = Q(i, j) and choose
M = Z[1, i, (1 + j)/2, (i+ k)/2]. Then α = (1 + i+ j + k)/2 ∈ M. It embeds
also in a maximal order of the octonions over Q, as described in ([Gro 96],

§4). Then the hermitian matrix E =







2 α −1
α 2 α
−1 α 2





 defines over these

three rings a lattice for the scalar product x.y = trace(xtEy), where trace is
the reduced trace on each algebra, which is isometric to the Barnes lattice
P6, the Coxeter-Todd lattice K12, respectively the Leech lattice Λ24. In other
words, if P6 is the Barnes lattice considered with its hermitian structure over
Z[α], then we have the isometries A2

2 ⊗Z[α] P6 ∼ K12 and E8 ⊗Z[α] P6 ∼ Λ24

(together with the scalar product trace(xy), the previous maximal orders
define respectively the root lattices A2

2 and E8).
We point out the existence of a similar series of three extremal lattices of

minimum 8. The first one is a 20-dimensional even lattice of level 7, which is
a Z[α]-unimodular lattice; its automorphism group is the group 2.M22.2, as
shown in [PlN 95], [CCNPW 85]. Its structure as a Z[α]-lattice is explicitly
given in [CCNPW 85]. Then L40 = A2

2 ⊗Z[α] L20 and L80 = E8 ⊗Z[α] L20 are
of level 3 respectively unimodular; from this definition we determine their
automorphism groups in §3. As shown in §2, one can easily get a Gram matrix
for these lattices from a Gram matrix of L20, following a general procedure
that constructs modular Gram matrices (and we give several examples of
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such constructions); but this is of no use in order to compute the minimum
of the 80-dimensional lattices, which might become lower than 8, since the
algorithms designed to compute the minimum of a lattice are by this time
limited to the dimensions around 60. In §4 we show that these lattices are
special cases of a general construction using a (10, 5, 4)-binary code, which
allows us to compute their minimum. It moreover gives two non-isometric
lattices in dimension 80.

A few constructions were already proposed for an 80-dimensional unimo-
dular extremal lattice. The most natural would perhaps be a lattice invariant
under SL2(79), in connection with the corresponding quadratic residue code;
see [Sch 93]. In fact, there is a unique even unimodular SL2(79)-invariant
lattice of dimension 80 which remains a candidate to be extremal. In [Neb 97]
resp. [BQS 95] three other candidates are constructed, which provide the
groups SL2(41)⊗ S̃3 resp. C4×C41 : C40 as subgroups of their automorphism
groups. None of them can overcome the problem of the determination of its
minimum (although LLL-reduction doesn’t give any vector of norm 6).

It is worth noticing that the center density of an 80-dimensional unimod-
ular lattice of minimum 8 is equal to 240, which is slightly less than the one
of the lattice of the same dimension constructed independently by Elkies and
Shioda which has center density 240.14.. ([Shi 91]).

2 A convenient construction

In this section we give a convenient construction for modular lattices. In
particular Gram matrices for the lattices L40 and L80 may easily be obtained
from a Gram matrix of L20, the latter being given in [PlN 95] (cf. also
[CCNPW 85]).

Proposition 2.1 Let K be either Q or an imaginary quadratic number field
and F ∈ Kn×n a hermitian positive definite matrix. Let a, d ∈ Q, b ∈ K,
such that a, d, ad− bb̄ > 0. Then the matrix

Q(F, a, b, d) :=

(

aF bIn
b̄In dF−1

)

is a positive definite hermitian matrix of determinant (ad − bb̄)n. The map

g →
(

g 0
0 g−tr

)

embeds Aut(F ) into Aut(Q(F, a, b, d)).
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If K = Q then Q(F, a, b, d) is ad − b2-modular with respect to the sym-

plectic similarity

(

0 In
−In 0

)

.

Proof: Straightforward, using

(?) Q(F, a, b, d) =

(

1 0
0 F−1

)

(

(

a b
b̄ d

)

⊗ F )

(

1 0
0 F−1

)

.

2

Remark: Let B be a basis of the lattice L in the hermitian space (Kn, φ0)
with Gram matrix F and B∗ the dual basis of B which is a lattice basis of the
dual lattice L∗. Then Q(F, a, b, d) is the Gram matrix of the lattice L ⊕ L∗

in the hermitian space (Kn ⊕Kn, φ) with respect to the basis (B,B∗), where
the hermitian form φ : Kn ⊕Kn → K is given by

φ(l1 + l′1, l2 + l′2) = aφ0(l1, l2) + bφ0(l1, l
′
2) + b̄φ0(l

′
1, l2) + dφ0(l

′
1, l

′
2)

for all l1, l2, l
′
1, l

′
2 ∈ Kn.

Many well known lattices can be described as above:

For example the root lattices D4 = Q(A2, 1, 1, 3) and E8 = Q(D4, 1, 1, 2) =
Q(A4, 1, 2, 5), but also the Coxeter Todd lattice K12 = Q(P6, 1, 2, 7) can be
constructed in this way.

Examples: Some extremal 2-modular lattices:

(i) The Barnes-Wall lattice (cf. [CoS 88] p.129)BW16 = Q(A2⊗D4, 1, 2, 6).

(ii) The 2 known extremal 2-modular lattices of dimension 20 (cf. [PlN 95]
p. 49) may be obtained from the Craig lattices (cf. [CoS 88] p.222) in

dimension 10: [2.M12.2]20 = Q(A
(2)
10 , 1, 3, 11) and [SU5(2)

2(2)◦ SL2(3)]20 =

Q(A
(3)
10 , 1, 3, 11).

(iii) The extremal 2-modular lattice of dimension 24 with maximal finite

automorphism group ([Neb 95], [Neb 96]): [6.U4(3).2
2
2×√
-3
SL2(3)]24 =

Q(K12, 1, 1, 3).
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(iv) Applying this construction to a Gram matrix F of the 6-modular lat-
tices of minimum 8 belonging to the maximal finite subgroups 16 and 17
of GL24(Q) (in [Neb 95] and [Neb 96]) one obtains extremal 2-modular
lattices Q(F, 1, 2, 6) of dimension 48.

(v) If F is a Gram matrix of the 6-modular lattice of minimum 6 in dimen-
sion 16 with maximal finite automorphism group number 9 of [NeP 95]
then Q(F, 1, 2, 6) is a non extremal 2-modular lattice of dimension 32.
So this construction does i.g. not preserve the minimum.

It should be noted, that the construction Q only depends on the lattice
and not on the choice of the Gram matrix. For unimodular F , the lattice

Q(F, a, b, d) is simply the tensor product

(

a b
b d

)

⊗F . For arbitrary integral

F , the construction Q is a natural way to obtain a (modular) overlattice of
this tensor product, which is also invariant under the automorphism group
Aut(F ).

Let F be a Gram matrix of L20. Then the corresponding bilinear form is
of the form trace ◦ f , where L20 is a 10-dimensional Z[α]-module and f is a
unimodular hermitian form L20 × L20 → Z[α].

Proposition 2.2 (i) Q(F, 1, 2, 7) ∈ Z40×40 is a Gram matrix of the Z-
lattice L40.

(ii) g := Q(f, 1, 2√
−7
, 1) ∈ Z[α]20×20 is a Gram matrix of the hermitian

Z[α]-lattice L40.

(iii) Q(g, 1, −α√
−7
, 3) ∈ Z[α]40×40 is a Gram matrix of the hermitian Z[α]-

lattice L80.

Proof: (ii) Let M be the maximal order of Q3,∞. As described in the in-
troduction, M is a hermitian Z[α]-lattice. With respect to the Z[α]-basis
( i−k

2
, 1), the form trace(xy) on M has the hermitian Gram matrix

h :=

(

1 2√
-7

− 2√
-7 1

)

.

The Z[α]-hermitian form on L40 = L20⊗
Z[α]

M is given by the Gram matrix

h⊗ f . Since f is unimodular, one finds (ii) using (?).
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(i) may be deduced from (ii) by blowing up the matrix g: Let (b1, . . . , b10)
be a basis of the Z[α]-lattice L20 with Gram matrix f and (b∗1, . . . , b

∗
10) the

corresponding dual basis (i.e. f(bi, b
∗
j) = δij). A Z-basis of L20 is given by

B := (b1, αb1, . . . , b10, αb10). Let F be the corresponding Gram matrix of
trace ◦ f . Then the dual basis is B∗ = (1

7
(4 − α)b∗1,

1
7
(1 − 2α)b∗1, . . . ,

1
7
(4 −

α)b∗10,
1
7
(1−2α)b∗10) (with Gram matrix F−1). To get integral scalar products

we multiply the elements of B∗ by
√
−7 and compute trace(g(bi,

4−α√
−7
b∗j)) =

δij(trace(− 2√
−7

4−ᾱ√
−7

)) = 2δij, etc.. Therefore trace ◦ g = Q(F, 1, 2, 7).

(iii) The matrix

o :=













1 2√
−7

−α√
−7

0

− 2√
−7

1 0 −α√
−7

ᾱ√
−7

0 1 − 2√
−7

0 ᾱ√
−7

2√
−7

1













is a Gram matrix of the Z[α]-lattice E8. Hence (iii) follows from the equation










I10 0 0 0
0 f 0 0
0 0 f 0
0 0 0 I10











Q(g, 1,
−α√
−7

, 3)











I10 0 0 0
0 f 0 0
0 0 f 0
0 0 0 I10











= o⊗ f.

2

3 The automorphism groups

In this section we deduce the automorphism groups Aut(L), i.e. the group
of all orthogonal transformations mapping the lattice L into itself, of the two
lattices L = L40 and L = L80. Since L40 only has 360360 minimal vectors, it
might be possible to compute Aut(L40) with the computer program described
in [PlS 97]. But L80 has 1250172000 vectors of length 8 (which moreover
cannot be found directly by computer), so here this method will fail. We
use the classification of finite simple groups to show that the automorphism
groups of both lattices are the tensor products of Aut(L20) = 2.M22.2 with
the automorphism groups of the hermitian lattices A2

2 respectively E8.

Proposition 3.1 (i) The hermitian automorphism group of the Z[α]-lattice
A2

2 is the unit group of the maximal order M of Q3,∞, isomorphic to
S̃3.
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(ii) The hermitian automorphism group of the Z[α]-lattice E8 is 2.Alt7.

(iii) Aut(L20) = 2.M22.2 is an extension of the double cover 2.M22 of the
Mathieu group M22 by the outer automorphism of order 2. This group
is also the hermitian automorphism group of the Z[α]-lattice L20.

Proof: (i) The automorphism group of the integral lattice A2
2 is D12 o C2 the

wreath product of the dihedral group of order 12 by C2. The hermitian
automorphism group U ≤ GL4(Z[α]) of this lattice may be regarded as a
subgroup ofD12oC2 commuting with an element α ∈ GL8(Q) with α2−α+2 =
0. By construction, U contains the unit group S̃3 of M. Since 7 does not
divide the order of U , the commuting algebra CQ8×8(U) of U in Q8×8 contains
Q[α] properly. One concludes that CQ8×8(U) = CQ8×8(S̃3) ∼= Q3,∞. Therefore
U embeds into Q3,∞ and hence U = S̃3.
(ii) Let U ≤ GL4(Z[α]) be the hermitian automorphism group of E8. Then
U ≤ Aut(E8) = 2.O+

8 (2).2 is contained in the stabilizer of a maximal totally
singular subspace T1 = αE8/2E8. By [CCNPW 85] this subspace is unique
up to the action of 2.O+

8 (2).2 and its stabilizer is 21+6
+ .Alt8. One computes

the centralizer of α in this group to be the subgroup 2.Alt7 of index 512.
(iii) Follows from [CCNPW 85] p. 39 (cf. also [PlN 95] Chapter IX). 2

Theorem 3.2 The automorphism group of L80 is G := Aut(L80) = 2.Alt7⊗√
−7

2.M22.2 and a maximal finite subgroup of GL80(Q). The G-invariant lattices
in Q1×80 are of the form cL80, where 0 6= c ∈ CQ80×80(G) ∼= Q[α] is an in-
vertible element in the commuting algebra of G (i.e. G is a GIR in the sense
of [Gro 90]).

Proof: Let U := 2.Alt7 ⊗√
−7 2.M22.2. By construction U is a subgroup of

Aut(L80) = G. The commuting algebra of U is isomorphic to Q[α] and U fixes
up to isomorphism only one lattice (cf. [CCNPW 85] and [JLPW 95]). So
we only have to show that G = U . Since L80 is orthogonally indecomposable,
G is a maximal finite primitive subgroup of GL80(Q).

Assume first, that 2.M22 ≤ G is a normal subgroup of G. Then C :=
CG(2.M22) embeds into GL4(Q[α]) and contains 2.Alt7. Since 2.Alt7 is the
full automorphism group of its up to isomorphism unique lattice in Q[α]1×4

this implies that C = 2.Alt7 and G contains 2.Alt7 ⊗√
−7 2.M22 of index

≤ 2 = |Out(2.M22)|. Hence G = U . The same conclusion holds under
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the assumption that 2.Alt7 is a normal subgroup of G, because then C :=
CG(2.Alt7) is 2.M22.2, a maximal finite subgroup of GL20(Q). Therefore
2.M22 ≤ G and G = U .

Hence we may assume that none of the two groups is a normal subgroup
of G. Let F := Fit(G) =

∏

p||G|Op(G) be the Fitting group of G. The
primitivity of G implies that all abelian characteristic subgroups of F are
cyclic. A Theorem of P. Hall, which classifies those p-groups, all of which
abelian characteristic subgroups are cyclic (cf. [Hup 67], p. 357), yields only
rather restricted possibilities for F : If p 6= 2, 5, then Op(G) is cyclic, for
p = 5, one additionally has the possibility O5(G) ∼= 51+2

+ and O2(G) embeds
into GL16(Q), leaving many possibilities (cf. [NeP 95]). None of the possible
groups F have an outer automorphism group the order of which is divisible
by 11.

Therefore one concludes that S := G(∞)/Z(G) is a finite simple group
containing U (∞)/Z(U). An inspection of the orders and character tables
of the 26 sporadic finite simple groups in [CCNPW 85] shows that S is a
finite Chevalley group. Bounds for the minimal degrees of the projective
representation of the finite Chevalley groups are given in [SeZ 93] (cf. also
[LaS 74]). Using the fact, that the minimal degree of a faithful projective
modular representation of U (∞)/Z(U) is 3 · 6 = 18 (cf. [JLPW 95]), one
immediately excludes the case that S is a classical group. The bounds in
[SeZ 93] now only leave the possibilities that S is one of F4(2), G2(2), G2(3),
G2(4), Sz(8), Sz(32), 2G2(3), 2G2(27), 3D4(2), or 2F4(2). But none of
these 10 groups is of order divisible by 11, contradicting the assumption that
M22 ≤ S. 2

Using the same arguments one shows the following

Theorem 3.3 The automorphism group of L40 is G := Aut(L40) = S̃3⊗√
−7

2.M22.2 and a maximal finite subgroup of GL40(Q). The G-invariant lattices
in Q1×40 are of the form cL40 or cL#

40, where 0 6= c ∈ CQ40×40(G) ∼= Q[α] is
an invertible element in the commuting algebra of G.

4 The minimum

In order to prove that the minimum of L20, L40, L80 is 8, we shall reconstruct
them using codes. This general construction, of which a special case is already
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described in [Bac 97] for the lattice of dimension 20, also shows the existence
of a second unimodular lattice of minimum 8 in dimension 80.

The first step is a special case of [Que 84]. Let (L0, b(x, y)) be an even,
integral lattice of odd determinant and of dimension k; then the quotient
(L0/2L0, b) admits an hyperbolic decomposition L0/2L0 = T1⊕T2 (i.e. T⊥

i =
Ti for the induced non degenerate form b). For i = 1, 2, we denote by Li the
sublattice of L0 which is the preimage of Ti. We again denote by b, b the
forms over Ln

0 , (L0/2L0)
n deduced from the previous ones.

The Hamming weight of a word x ∈ F2
n is the number wt(x) of its non

zero coordinates. We denote by x.y the usual scalar product x.y =
∑n

i=1 xiyi

in F2
n. Let C be a binary linear code of length n (see [MWS 77]), and let

C = T1 ⊗F2
C ⊕ T2 ⊗F2

C⊥ ⊂ (L0/2L0)
n.

For x ∈ L0 (respectively x ∈ L0/2L0), and u ∈ F2
n, we denote by x⊗u ∈

Ln
0 (respectively x ⊗ u ∈ (L0/2L0)

n) the n-tuple which i-th coordinate is
equal to x if i belongs to the support of u and is zero otherwise.

The n-tuple of F2
n with all coordinates equal to 1 (resp. 0) is denoted by

1 (resp. 0).

Proposition 4.1 With the previous notations, we have

(i) C⊥ = C.

(ii) Let LC be the preimage of C in Ln
0 , endowed with the form x.y =

1
2
b(x, y). It is an integral lattice of determinant det(LC) = det(L0)

n.

(iii) If moreover 1√
2
Li is even, or if the codes C and C⊥ are even (i.e. the

Hamming weight takes even values on them), then LC is even.

Proof:
(i) The F2-vector space C is generated by elements of the form t⊗ u, where
either u belongs to C and t to T1, or u belongs to C⊥ and t to T2. Since
b(t⊗ u, s⊗ v) = (u.v)b(t, s), this is zero in all cases. Hence C ⊂ C⊥; equality
holds from the equality of the dimensions.
(ii) follows from (i) and [Que 84].
(iii) The lattice LC is generated by (2L0)

n which is obviously even with res-
pect to 1

2
b(x, y), and by the x ⊗ u, where u belongs to C (resp C⊥) and x
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to L1 (resp to L2). Since (x ⊗ u).(x⊗ u) = wt(u)b(x, x)/2, the lattice LC is
even under the hypothesis of the proposition. 2

In order to measure the norm of the lattice LC , we define a weight w on
L0/2L0 by the following:

Definition 4.2 We set, for t1 ∈ T1 and t2 ∈ T2,

w(t1 + t2) =











0 if t1 = t2 = 0
1 if b(t1, t2) 6= 0
2 if b(t1, t2) = 0 and (t1, t2) 6= (0, 0)

We extend the function w to (L0/2L0)
n by setting w(x) =

∑n
i=1 w(xi). If

C ⊂ (L′/∈L′)
\, the weight of C is defined by

w(C) = min{w(t) | t ∈ C \ {0}}.

Lemma 4.3 If L0 is one of the lattices Z[α], A2
2, E8, we can choose a de-

composition L0/2L0 = T1 ⊕ T2 as above with Li isometric to
√

2L0; then

∀ t ∈ L0/2L0, w(t) = min{b(x, x)/2 | x ∈ t}.

Proof: The fact that these three lattices are Z[α]-modules shows the exis-
tence of such a decomposition: one can take L1 = αL0, L2 = αL0 (see the
Introduction). In all three cases it is well known that the classes of L0 modulo
2L0 are represented by the vectors of norm 2 and 4 (see [CoS 88], [Bac 97])
and that one class doesn’t contain elements of the two types. For xi ∈ Li,
the equality b(x1 + x2, x1 + x2) = b(x1, x1) + b(x2, x2) + 2b(x1, x2) shows that

(?) 2w(t) ≡ b(x, x) (mod 4) ∀ t ∈ L0/2L0, ∀ x ∈ t

which concludes the proof. 2

Now we apply the construction described in Proposition 4.1 to the three
lattices L0 of Lemma 4.3, which show that, in those cases, the weight w is the
right one to be considered in order to determine the minimum of the lattice
LC.

Example. If C is the length 3 code generated by 1, it is easy to see that
the corresponding C has weight 4; from Lemma 4.3 and the fact that 2L0 has
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minimum 4, the lattices LC have minimum 4. We recover B. Gross construc-
tions of the Coxeter-Todd and Leech lattices described in the Introduction.

In ([Bac 97], Theorem 6.3), a code C × C⊥ over F2 × F2 of weight 8 and
length 10 is defined; this is the case L0 = Z[α], where Z[α]/2Z[α] is identified
with F2 ×F2. We prove here that the extension of this code to the two other
quotients L0/2L0 keeps the weight 8 (clearly C = L0/2L0 ⊗F2×F2

(C × C⊥)).
We start by the definition of the code C and some of its properties which
will be of later use. We identify an element of F2

n and the set of its non zero
coordinates.

Lemma 4.4 Let C be the binary code of length 10 generated by the rows of
the matrix

1 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 1 1 1
0 0 0 1 0 1 0 0 1 1
0 0 0 0 1 1 1 0 0 1

(i) It is a cocyclic code, equivalent to its dual; it contains 15 words of
weight 4, 15 words of weight 6, and one word of weight 10.

(ii) C ∩ C⊥ = {0, 1}.

(iii) A word of weight 6 of C contains exactly three words of weight 4 of C⊥,
which are, up to permutation, in the following position:

1 1 1 1 0 0
0 0 1 1 1 1
1 1 0 0 1 1

.

and this is a one to one correspondence between the words of weight
6 of C and the sets of three words of weight 4 of C⊥ in the previous
position.

Proof: Straightforward from the definition of C. 2

Proposition 4.5 If C is the binary code defined in Lemma 4.4, in all three
cases C has weight 8.
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Proof: We set (e1, . . . , ek) a basis of L0/2L0 such that the k/2 first vectors
generate T1, while the k/2 last vectors generate T2 and satisfy b(ei, ek/2+j) =
δi,j. We write x = e1 ⊗ u1 + . . . + ek ⊗ uk a non zero element of C, with
u1, . . . , uk/2 ∈ C and uk/2+1, . . . , uk ∈ C⊥. Up to a change of basis, we
can assume that {u1, . . . , uk/2} are distinct. ¿From (?) and the fact that
(LC,

1
2
b(x, y)) is even (Proposition 4.1), the weight is even on C and we only

need to prove that w(x) ≥ 7. Obviously w(x) ≥ card(∪ui), so we can assume
that card(∪ui) ≤ 6. If at least one of the words ui has weight 6, for example
u1, the others are contained in it. Since wt(C) = 4, u2, . . . , uk/2 = 0. ¿From
the definition of w, w(x) = 6 if and only if uk/2+1 = u1, which is not possible
since C ∩ C⊥ = {0, 1}.

The last case to consider is the case where all the non zero ui have weight
4. Two distinct weight 4 words of C ∪ C⊥ intersect on zero, one, or two co-
ordinates. Since we assume card(∪ui) ≤ 6, we only need to consider the case
where the intersections have cardinality 2. If at most one of the {u1, . . . , uk/2}
and at most one of the {uk/2+1, . . . , uk} is non zero, then clearly at least four
coordinates belong to T1 ∪ T2 \ {0} and have weight 2. If at least two of
the {u1, . . . , uk/2} are weight 4 words, they are in the position of Lemma 4.4
and define a weight 6 word of C⊥. Under our assumption, this means that
uk/2+1, . . . , uk = 0, and the nonzero coordinates of x all have weight 2. 2

We have the following estimate of the norm of the lattice LC:

• It contains (2L0)
n, which has norm 4, attained on the vectors of the form

(x, 0, . . . , 0) up to permutation, where x is a minimal vector of L0. The next
value of the norm on this lattice is 8.

• min(LC \ (2L0)
n) = w(C).

The goal of the second step of the construction, in the case of the code
C given in Lemma 4.4, is to get rid of the norm 4 vectors of LC . Therefore,
we define a sublattice L′ of LC not containing them, and show the existence
of an even overlattice Λ of L′, with the same index, and of minimum 8. This
must be understood as a “neighbouring” procedure. The lattice L′ is easy to
define:

L′ = {x = (x1, . . . , xn) ∈ LC |
n
∑

i=1

xi ∈ 2L1}.

We also set
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L′′ = LC + {1

2
(z, z, . . . , z) | z ∈ L1}.

Proposition 4.6 Assume that n ≡ 2 (mod 4), 1 ∈ C ∩ C⊥ and that
w(C) = 8. Then

(i) min(L′) = 8.

(ii) The map ψ : x → ∑n
i=1 xi induces an isometry of the F2-quadratic

spaces (L′′/L′, 1
2
b(x, x)) and (L1/2L1,

1
4
b(x, x)). Moreover ψ(LC/L

′) =
2L0/2L1.

Proof:
(i) Clearly, the norm 4 vectors of LC, previously defined, don’t belong to L′

because the minimum of L1 is 4.
(ii) With the previous notations, a vector y of LC can be written y =

∑

l1 ⊗
u+

∑

l2 ⊗ v+2t where u ∈ C, v ∈ C⊥, li ∈ Li for i = 1, 2, and t ∈ Ln
0 . Then

∑

yi =
∑

wt(u)l1 +
∑

wt(v)l2 + 2
∑

ti ∈ 2L0, and, if x = y + 1
2
(z, . . . , z),

ψ(x) =
∑

xi =
∑

yi +
n
2
z ≡ ∑

yi + z (mod 2L1) belongs to 2L1, if and only
if x ∈ L′. Clearly, ψ(x) ∈ 2L0 if and only if x ∈ LC, i.e. z ∈ 2L1.

Since the lattice LC is even for 1
2
b(x, y), one has for y ∈ LC, b(y, y) ≡ 0

(mod 4). Hence b(x, x) = b(y + 1
2
(z, . . . , z), y + 1

2
(z, . . . , z)) ≡ b(

∑

yi, z) +
2(b(z, z)/4) (mod 4) is even and 1

2
b(ψ(x), ψ(x)) = 1

2
b(
∑

yi + z,
∑

yi + z) ≡
b(
∑

yi, z) + 1
2
b(z, z) (mod 4) since

∑

yi ∈ 2L0, which shows that ψ is an
isometry of the quadratic forms. 2

The last step of the construction shows that certain overlattices of L′ keep
the minimum 8.

Theorem 4.7 Let C be the binary code defined in Lemma 4.4, and let LC, L
′

be the lattices previously defined from it. Let B be a maximal totally singular
subspace of the F2-quadratic space L′′/L′, which is a complement of LC/L

′

and let Λ(B) be the sublattice of L′′ which is the preimage of B. Then the
minimum of Λ(B) is 8.

Proof: Let B be a fixed maximal totally singular subspace as in the Theorem
and Λ := Λ(B). From the definition of Λ, Λ∩LC = L′ which has minimum 8,
and Λ ⊂ LC +{1

2
(z, . . . , z) | z ∈ L1}. For y ∈ L0 and z ∈ L1 \2L0, since L1 ∼
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√
2L0, b(y+z/2, y+z/2) = b(y, y)+b(y, z)+b(z, z)/4 ∈ N≥1. Hence a vector

X in LC + 1
2
(z, . . . , z) satisfies X.X ≥ 5 (recall that X.X = b(X,X)/2 ∈ N

from Proposition 4.6(ii)). We shall prove that such a translate of LC doesn’t
contain any vector of norm 6, which is enough to prove that Λ has minimum
8. We fix z ∈ L1 \ 2L0. For i = 1, 2, 3 we set

Si = {y ∈ L0 | b(y + z/2, y + z/2) = i}.

Then a vector Y ∈ LC such that X = Y + 1
2
(z, . . . , z) has norm 6 would have

either 8 coordinates in S1 and 2 in S2, or 9 coordinates in S1 and one in S3.
We need a precise description of these sets. The case L0 = Z[α] is treated
in [Bac 97] (in this case, S3 = ∅), so we now concentrate on the two other
cases.

Lemma 4.8 With the previous notations,

(i) If L0 = A2
2, there are εi ∈ 1

2
L0, 1 ≤ i ≤ 4, such that 2εi belongs to the

class of z modulo 2L0, and b(εi, εi) = 1 for i = 1, 2, b(εi, εi) = 3 for
i = 3, 4, and b(εi, εj) = 0 for i 6= j, such that

S1 = {− z
2
± εi | i = 1, 2}

S2 = {− z
2

+ 1
2

∑4
i=1 kiεi | ki = ±1,

∑4
i=1 ki ≡ 0 (mod 4)}

S3 = {− z
2
± εi | i = 3, 4}

(ii) If L0 = E8, there are εi ∈ 1
2
L0, 1 ≤ i ≤ 8, such that 2εi belongs to the

class of z modulo 2L0, and b(εi, εj) = δi,j for all i, j, such that

S1 = {− z
2
± εi | 1 ≤ i ≤ 8}

S2 = {− z
2

+ 1
2

∑8
i=1 kiεi | ki = ±1,

∑8
i=1 ki ≡ 0 (mod 4)}

S3 = {− z
2
± εi ± εj ± εl | 1 ≤ i, j, l ≤ 8 pairwise distinct }

Proof: In the case L0 = E8, z/2 is a deep hole and its class modulo 2L0

contains an orthogonal frame denoted by (2εi)1≤i≤8 ([CoS 88], p.169). In the
case L0 = A2

2, it is easy to check that any class modulo 2L0 which doesn’t
contain a minimal vector, contains such an orthogonal set.

In both cases, the vectors εi ± εj generate a sublattice of index 2 in L0

(isometric to D8 in the case L0 = E8). So we may assume (up to a change of
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signs) that (ε1 + . . .+ εk)/2 ∈ L0. We set y+ x/2 = (
∑8

i=1 kiεi)/2, where the
ki are integers with the same parity, and find the announced solutions. 2

Now we need to study the decomposition of the elements of the sets Si

in L0/2L0 = T1 ⊕ T2. We set pi the projection on Ti. Since T1 ⊕ T2 is a
hyperbolic decomposition, for all x, y ∈ L0/2L0, b(x, y) = b(p1(x), p2(y)) +
b(p2(x), p1(y)). Moreover, we can choose z arbitrarily in its class modulo 2L0,
so we take z = −2ε1. We fix a basis (e1, . . . , ek/2) of T1 such that ek/2 = 2εi
(mod 2L0) for all i, and choose for (ek/2+1, . . . , ek) its dual basis in T2, defined
by the conditions b(ei, ek/2+j) = δi,j. If −z/2 ± εi and −z/2 ± εj are two
distinct elements of S1, p1(−x/2 ± εi) − p1(−x/2 ± εj) = p1(±εi ± εj) 6= 0,
since, for i 6= j, ±εi ± εj has norm 2, hence cannot belong to L1, and, for
i = j, p1(2εi) = ek/2. So, in both cases, the map p1 is a bijection from S1 to
T1. Since p2(2εi) = 0, the image of S1 under p2 is half of T2. More precisely,
we have b(2ε1, ε1 ± εi) ≡ 0 (mod 2), so b(ek/2, p2(s)) = 0 for all s ∈ S1, and
p2(S1) = F2ek/2+1 + . . .+ F2ek−1.

Let now s belong to S2. We have b(ek/2, p2(s)) ≡ b(2ε1, ε1+
∑k

i=1 kiεi)/2 ≡
1 (mod 2), which proves that p2(s) has a non zero coordinate on ek. Then
it is not possible for Y to have 8 coordinates in S1 and 2 in S2, since the code
C⊥ doesn’t contain any word of weight 2.

We now consider the case where Y has exactly one coordinate in S3. If s ∈
S3, b(ek/2, p2(s)) = 0, and the coordinates of Y don’t have any component on
ek. In order to deal with this case, we need to know the exact decomposition
of S1 on the basis {e1, . . . , ek}, i.e., since S1 is in a one-to-one correspondence
with T1, we need to know the map φ : F2

k/2 → F2
k/2−1 such that for all s ∈ S1,

and for all x ∈ F2
k/2, p1(s) =

∑k/2
i=1 xiei ⇐⇒ p2(s) =

∑k−1
i=k/2+1(φ(x))i−k/2ei.

In general, this map is not linear. ¿From the previous remarks, we have
φ(0) = 0 and φ(x+ ek/2) = φ(x); hence we only need to know φ|<e1,...,ek/2−1>,

again denoted by φ. In the case L0 = A2
2, k = 4, and φ is already determined

by these conditions: the only possibility is φ(x1e1) = x1e3. In the case
L0 = E8, we need to take into account the mutual scalar products of the
elements of S1. Since, for 1 6= i 6= j 6= 1, b(ε1 ± εi, ε1 ± εj) = 1, we have
∀x, x′ ∈ F2

k/2−1 \ {0} | x 6= x′, xtφ(x′) + x′tφ(x) = 1. This set of affine
conditions leaves eight solutions for φ, which are transitively permuted by
changes of the base {e1, . . . , ek/2−1}. One of them is:
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x











0 0 0 0 1 1 1 1 e1

0 0 1 1 0 0 1 1 e2

0 1 0 1 0 1 0 1 e3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ(x)











0 0 0 1 1 1 1 0 e5

0 0 1 1 1 0 0 1 e6

0 1 1 0 1 0 1 0 e7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ci 1 2 4 6 8 5 7 3

where each column contains x ∈ F2
k/2−1 and φ(x).

Lemma 4.9 For all t ∈ S3, there is a unique s ∈ S1 such that t = s + l1,
where l1 ∈ L1 and p1(l1) /∈ F2ek/2.

Proof: In both cases, since x ∈ L1, the vectors 2εi belong to L1 for all i. Since
b(x, y) ∈ 2Z for all x, y ∈ L1, we have the inclusion L1 ⊂ ⊕k

i=1Zεi. Then,
from the isometries L1 ∼

√
2L0:

If L0 = A2
2, ∀ i = 3, 4, ∃! j(i) ∈ {1, 2} | εi ± εj(i) ∈ L1. Clearly εi ± εj(i) 6≡ 2εi

(mod 2L0).
If L0 = E8, ∀1 ≤ i 6= j 6= l ≤ 8, ∃! s = s(i, j, l) | εi ± εj ± εl ± εs ∈ L1. (The
unicity of s in this case comes from the fact that the words of the Hamming
code form a 3-design ([MWS 77]).) Again, εi± εj ± εl ± εs 6≡ 2εi (mod 2L0).

2

Now we conclude in the case L0 = A2
2: if Y has nine coordinates in S1 and

one in S3, say Yi0, from Lemma 3.4, Yi0 = s + l1, with p1(l1) /∈ F2e2. Then
Y = e1 ⊗ u1 + e2 ⊗ u2 + e3 ⊗ u3 (mod 2L0) with u1, u2 ∈ C and u3 ∈ C⊥;
the determination of φ shows that u1 = u3 up to the coordinate i0 which is
different since p1(l1) /∈ F2e2. Hence they cannot be even at the same time.

Let L0 = E8 and Y =
∑7

i=1 ei ⊗ ui, with u1, . . . , u4 ∈ C and u5, . . . u7 ∈
C⊥. We arrange the elements of F2

3 in the lexicographic order:
F2

3 = {C1, C2, . . . , C8}, C1 = (0, 0, 0), C2 = (0, 0, 1), C3 = (0, 1, 0),. . . ,C8 =
(1, 1, 1) and set, for 1 ≤ i ≤ 8, Ai = {j | (u5,j, u6,j, u7,j) = Ci}. Moreover, we
set ai = card(Ai) (mod 2). Then, the determination of φ in this case shows
that, up to the coordinate i0 where Yi0 ∈ S3, we have for i = 1, 2, 3, ui = vi,
where:
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v1 = A3 ∪ A5 ∪ A6 ∪ A8

v2 = A3 ∪ A4 ∪ A6 ∪ A7

v3 = A2 ∪ A3 ∪ A5 ∪ A7

More precisely, since C is even, ui = vi if and only if vi is even.
Case 1: u5.u6 = 0. Then, from the parity of C⊥,































a1 + a2 = 0
a3 + a4 = 0
a5 + a6 = 0
a7 + a8 = 0
a1 + a3 + a5 + a7 = 0

and wt(v3) ≡ a2 + a3 + a5 + a7 = a1 + a2 = 0 (mod 2), which shows that
the component of p1(l1) over e3 is zero and hence that v3 ∈ C. Then the
scalar product of this word with u5, u6, u7 must be zero which leads to the
additional conditions:











a5 + a7 = 0
a3 + a7 = 0
a2 = 0

This implies that ai = 0 for all 1 ≤ i ≤ 8, which means that p1(l1) ∈ F2e4,
in contradiction with Lemma 3.4.
Case 2: u5.u6 = 1. Now we have the conditions































a1 + a2 = 1
a3 + a4 = 1
a5 + a6 = 1
a7 + a8 = 1
a1 + a3 + a5 + a7 = 0

which imply











wt(v1) ≡ a3 + a7 (mod 2)
wt(v2) ≡ a5 + a7 (mod 2)
wt(v3) ≡ a1 + a2 = 1 (mod 2)

If a3 +a7 = 0, then v1 ∈ C which is in contradiction with v1.u6 = a3 +a8 = 1.
If a5 +a7 = 0, then v2 ∈ C which is in contradiction with v2.u5 = a6 +a7 = 1.
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If a3 + a7 = a5 + a7 = 1, since v3.u5 = a5 + a7 = 1 and v3.u6 = a3 +
a7 = 1, i0 ∈ A7 and v3.u7 = a2 = 0. Then a2 = a3 = a5 = a8 = 0 and
a1 = a4 = a6 = a7 = 1. But v1 + v2 ∈ C which is in contradiction with
(v1 + v2).u5 = a5 + a7 + a8 = 1. 2

The group S := StabAut(LC)(L
′) acts on the set of maximal totally singular

subspaces B of L′′/L′ which are complements of LC/L
′, as defined in Theorem

4.7. From Proposition 4.6(ii), L′′/L′ is a non-singular F2-quadratic space of
dimension k = dim(L0) and Witt defect 0. Let k = 2m; there are 2m(m−1)/2

such subspaces B. If L0 is one of Z[α], A2
2, or E8 we find using the notation

of Theorem 4.7.

Proposition 4.10 (i) If L0 = Z[α], then B, hence Λ(B), is unique and
Λ(B) is isometric to L20.

(ii) If L0 = A2
2, then the two subspaces B lie in one orbit under the action

of S. Hence also in this case one gets a unique lattice Λ(B), which is
isometric to L40.

(iii) If L0 = E8, the 64 subspaces B fall into 2 orbits under the action of S
of length 8 and 56 with representatives say B and B ′. The two lattices
Λ(B) ∼= L80 and Λ(B′) are non isometric.

Proof: The group S0 := Aut(L0)∩Aut(L1)∩Aut(L2) acts on the set of maxi-
mal totally singular subspaces of L1/2L1 which are complements of 2L0/2L1.
They correspond bijectively to the set of subspaces B as in Theorem 4.7. by
the isometry ψ : L′′/L′ → L1/2L1 as defined in Proposition 4.6. (ii). The
action of S0 is induced by the action of a subgroup of S on L′′/L′. One
calculates S0 = {±1}, D8

|∧ S3, resp. 2.Alt8 and the decomposition of the set
of ψ(B) into 1, 1, resp. 2 orbits under S0 of lengths 1, 2, resp. 8 and 56.
The stabilizers of representatives of the last two orbits are the two maximal
subgroups 2.Alt7 resp. (SL2(5) × C3).2 of 2.Alt8. To show the proposition,
we have to show that the lattices defined by the latter two subspaces B
are non isometric and that the lattices L20, L40, and L80 as defined in the
Introduction are of the form Λ(B).

The explicit description of the lattice L20 given in [CCNPW 85] shows
that L20 is isometric to the lattice Λ of ([Bac 97], Theorem 6.4), which clearly
satisfies the conditions of Theorem 4.7. (with the notations of [Bac 97],
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L′ = Le
C). Let us denote by a superscript (20) the previous constructions

when applied to the first case L0 = Z[α]. It was already noticed that, for the
three cases L0 = Z[α], A2

2, E8,

C = L0/2L0 ⊗F2×F2
C(20).

Hence we also have
LC ' L0 ⊗Z[α] L

(20)
C

and clearly

L′ ' L0 ⊗Z[α] L
′(20).

Then, if L20 defines the maximal self-orthogonal subspace B(20) of L′′(20)/L′(20),
the even lattice L0 ⊗Z[α] L20 defines the maximal self-orthogonal subspace

B = L0/2L0 ⊗F2×F2
B(20) ⊂ L0/2L0 ⊗F2×F2

L′′(20)/L′(20) ' L′′/L′ (notice
that this is the 2-torsion part of (L′)∗/L′) which is a complement of LC/L

′.
Therefore the lattices L20, L40, and L80 are isometric to Λ(B) in the respec-
tive cases.

It remains to consider the dimension 80. The lattice L80 corresponds to
the orbit of length 8 with stabilizer 2.Alt7 = AutZ[α](L0). Since the stabilizer
of a representative B ′ of the orbit of length 56 has endomorphism ring ∼=
Z[β := −1+

√
-15

2
], it is natural to construct the lattice M80 := Λ(B′) replacing

Z[α] by Z[β].
Let LC be the Z[β]-lattice in Q[β]10 constructed as in Proposition 4.1.

from L0 = Z[β], L0/2L0 = ℘/(2)⊕℘/(2), and the binary code of Lemma 4.4,
where ℘ := (β, 2) is a prime ideal of Z[β] containing 2. Let

M20 := {(x1, . . . , x10) ∈ LC |
∑

xi ∈ 2℘} +
℘2

2
(1, . . . , 1).

Lemma 4.11 (i) The lattice M20 is a Z[β]-unimodular lattice which as Z-
lattice has minimum 8, 180 minimal vectors, and automorphism group
AutZ(M20) = AutZ[β](M20) = 25 : S6 (a maximal subgroup of 2.M22.2).

(ii) Let M80 := M20⊗Z[β]E8, where AutZ[β](E8) = (SL2(5)×C3).2 as above.
Then M80 is an even unimodular lattice not isometric to L80.

Proof: (i) May be calculated with the computer ([PlS 97]). Note that the
minimal vectors of M20 are up to permutation of the coordinates the vectors
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(±2, ±2, 0, . . . , 0) ∈ 2Z[β]10. In particular, the automorphism group of M20

fixes LC. This can be seen from the fact that the weight w to be defined on
L0/2L0 in order to satisfy the equality of Lemma 4.3. takes the values 0, 1,
4 (cf. Definition 4.2) since the ideal ℘ is not principal. Hence one can show
that the minimum min(LC \ 2Z[β]10) is 10.
(ii) M80 is clearly an even unimodular lattice. By construction its automor-
phism group contains the subgroup (SL2(5) ⊗ C3).2 ⊗ 25.S6, which is not a
subgroup of Aut(L80) = 2.Alt7 ⊗Z[α] 2.M22.2 (cf. [CCNPW 85]). Therefore
M80 is not isometric to L80. 2

As above one now concludes that M80 is of the form Λ(B′) and hence of
minimum 8 by Theorem 4.7. Since M80 is not isometric to L80, the subspace
B′ ≤ L′′/L′ belongs to a second orbit (of length 56) under S. 2
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