
On harmoni weight enumerators of binary odesChristine BahoJune 30, 2000AbstratWe de�ne some new polynomials assoiated to a linear binary odeand a harmoni funtion of degree k. The ase k = 0 is the usualweight enumerator of the ode. When divided by (xy)k, they sat-isfy a MaWilliams type equality. When applied to ertain harmonifuntions onstruted from Hahn polynomials, they an ompute someinformation on the intersetion numbers of the ode. As an applia-tion, we lassify the extremal even formally self-dual odes of length12.keywords: odes, harmoni funtions, weight enumerator, formally self-dual odes1 IntrodutionIn the theory of latties, some modular forms play a speial role, the so-alledtheta series with spherial oeÆients. They are generalizations of the thetaseries of the lattie whih ounts the number of vetors of given norm; theyare a powerful tool for the study of the spherial odes supported by thevetors of an even unimodular lattie, as shown in [24℄, and also provide someknowledge on the values of the salar produt of the vetors of the lattiewith a given vetor of the Eulidean spae (i.e. on the so-alled Jaobitheta series of the lattie). For example, they have allowed B. Venkov tosettle \a priori" the list of the possible root systems of an even unimodular24-dimensional lattie [7, Chapter 18℄. See [1℄ for a generalization of thesemethods to non-unimodular latties.Inspired by the analogy pointed out in [8℄, [9℄ between the theory ofombinatorial and eulidean designs and their onnetion in both ases withharmoni spaes, we de�ne here analogues of these for linear binary odes.More preisely, we assoiate to a binary ode C and a harmoni funtion f1



of degree k in the sense of [8℄, a polynomialWC;f (x; y), whih, when dividedby (xy)k, behaves, up to a sign, like the usual weight enumerator WC(x; y)under the MaWilliams transform. In partiular, when C is a doubly evenself-dual ode, we get a whole set of polynomials whih are relative invari-ants under the usual group G1 of 2 � 2-matries of order 192 generated by1p2 � 1 11 �1 � and ( 1 00 i ). In the ase of an even formally self-dual ode, the groupto be onsidered is the subgroup G2 generated by 1p2 � 1 11 �1 � and � 1 00 �1 �, andthe polynomials (xy)�k(WC;f �WC?;f ) are relative invariants for G2.In both ases, these results an be used to derive some information onthe way a given t-set T meets the odewords. In partiular, we give anotherproof of the fat that the words of �xed weight in an extremal ode (resp.and its dual in the ase formally self-dual) support \t12"-designs, as shownin [6℄, [16℄.More generally, we an derive some \invariant linear forms" in the senseof [5℄ on the so-alled intersetion numbers:nw;i(T ) := Cardfu 2 C j wt(u) = w; ju \ T j = ign�w;i(T ) := Cardfu 2 C? j wt(u) = w; ju \ T j = ig (1)not only in the ase when jT j = t and one has t-designs, but also for allvalue of t = jT j, through the expliit desription of the spae of relativeinvariant polynomials in whih (xy)�k(WC;f �WC?;f ) falls. Therefore, wespeialize to ertain harmoni funtions f = Hk;T assoiated to T , whihhave the property that Hk;T (u) only depends on t, juj, and ju\T j; they areonstruted from Hahn polynomials. As an example and appliation, wederive a lassi�ation of the extremal even formally self-dual odes of length12. This lassi�ation has been extended in [11℄, [12℄, where intersetionnumbers play an important role.Another method is used in [14℄ to derive analogous results. It involvessome other kinds of polynomials, the so-alled overlap and overing polyno-mials, whih are losely onneted to Ozeki's Jaobi polynomials([18℄). Theauthor is grateful to one referee for pointing out this referene.This paper is organized in the following way: Setion 1 ontains theneeded de�nitions and properties of harmoni funtions and binary linearodes. Setion 2 ontains the de�nition of harmoni weight enumeratorsand the proof of the MaWilliams-type formula (Theorem 2.1). The on-sequenes on the invariane properties of these polynomials in the ases ofdoubly even self-dual odes and of even formally self-dual odes are stated2



in Corollaries 2.1 and 2.2. Setion 3 gathers the needed results of invarianttheory. In Setion 4, we reprove Assmus-Mattson theorem and Calderbank-Delsarte strengthening of it for doubly even self-dual odes. Setion 5 ex-plains the method based on Hahn polynomials used to ompute the inter-setion numbers, and Setion 6 ontains the lassi�ation of the extremaleven formally self-dual odes of length 12 (Theorem 6.1).We now reall some de�nitions and properties of disrete harmoni fun-tions, whih are developed in [8℄.Let 
 = f1; 2; : : : ; ng be a �nite set (whih will be the set of oordinatesof the ode C) and letX be the set of its subsets, while, for all k = 0; 1; : : : ; n,Xk is the set of its k-subsets. We denote by RX, RXk the free real vetorspaes spanned by respetively the elements of X, Xk. An element of RXkis denoted by f = Xz2Xk f(z)z (2)and is identi�ed with the real-valued funtion on Xk given by z ! f(z).The omplementary set of z is denoted by z.Suh an element f 2 RXk an be extended to an element ~f 2 RX bysetting, for all u 2 X, ~f(u) := Xz2Xkz�u f(z) (3)(In the notations of [8℄, the restrition of ~f to RXn is de�ned to be  (f).)We may later on denote again ~f by f . If an element g 2 RX is equal tosome ~f , for f 2 RXk , we say that g has degree k. The di�erentiation  isthe operator de�ned by linearity from(z) := Xy2Xk�1;y�z y (4)for all z 2 Xk and for all k = 0; 1; : : : n, and Harmk is the kernel of :Harmk := Ker(jRXk) (5)3



Conerning odes, we take the following notations: we freely identifywords of Fn2 and subsets of 
; the weight of an element u 2 Fn2 is alsothe ardinality of its support and is denoted by wt(u) or juj. We reallsome basi notions of oding theory, for whih we refer to [17℄, [22℄; we onlyonsider linear odes. The weight enumerator WC(x; y) of a binary ode Cis WC(x; y) :=Xu2C xn�wt(u)ywt(u) := nXi=0 Aixn�iyi (6)whereAi is the number of odewords of weight i and satis�es the MaWilliamsidentity: WC?(x; y) = 1jCjWC(x+ y; x� y): (7)A ode C is said to be formally self-dual if WC = WC? . It is even ifwt(u) � 0 mod 2 for all u 2 C, and doubly even if wt(u) � 0 mod 4 for allu 2 C. Self-dual odes are even and formally self-dual, while the onverseis not true; see [16℄, [22℄ for examples. If a formally self-dual ode is inaddition doubly even, then it is neessarily self-dual. From the fats thatthe polynomial WC is invariant under the group G1 in the self-dual doublyeven ase (resp. under G2 in the even formally self-dual ase), one deduesthe inequalities for the minimal weight d(C) of C: d(C) � 4([n=24℄ + 1)(respetively d(C) � 2([n=8℄ + 1)). A ode meeting these bounds is said tobe extremal; its weight enumerator is then uniquely determined.2 Harmoni weight enumeratorsIn this setion, we de�ne the harmoni weight enumerators assoiated to abinary linear ode C and prove a MaWilliams type equality.De�nition 2.1 Let C be a binary ode of length n and let f 2 Harmk. Theharmoni weight enumerator assoiated to C and f isWC;f (x; y) :=Xu2C ~f(u)xn�wt(u)ywt(u): (8)4



Theorem 2.1 LetWC;f (x; y) be the harmoni weight enumerator assoiatedto the ode C and the harmoni funtion f of degree k. ThenWC;f (x; y) = (xy)kZC;f (x; y) (9)where ZC;f is a homogeneous polynomial of degree n� 2k, and satis�esZC?;f (x; y) = (�1)k 2n=2jCj ZC;f (x+ yp2 ; x� yp2 ): (10)Proof. Like in the lassial ase of MaWilliams formula for weight enu-merators, the proof relies on Poisson summation formula, whih we reallhere:Theorem 2.2 (Poisson summation formula) Let � : Fn2 ! R be a fun-tion taking its values into a ring R, and let �̂ be its Fourier transform,de�ned by �̂(v) := Xu2Fn2 (�1)u:v�(u): (11)Then, for all linear ode C � Fn2 ,Xu2C? �(u) = 1jCjXv2C �̂(v) (12)We shall apply Poisson formula to eah term of ZC;f , namely to:�(u) := ~f(u)xn�wt(u)�kywt(u)�k: (13)Therefore, we ompute the Fourier transform of �, �rst in the ase f =z 2 Xk (Lemma 2.2), and in the general ase but for harmoni funtions inLemma 2.3. In order to prove that the ZC;f are atually polynomials, westart with a tehnial lemma on harmoni funtions.Lemma 2.1 Let f 2 Harmk and v 2 Fn2 . Letf (i)(v) := Xz2Xkwt(z\v)=i f(z):Then, for all 0 � i � k, f (i)(v) = (�1)k�i�ki� ~f(v).5



Proof. For all 0 � i � k � 1, k�i(f) = 0, whih means (from (4)) thatgi :=Pt2Xi(Pz2Xkt�z f(z))t = 0. The evaluation at v 2 Fn2 is:gi(v) = 0 = Xt2Xit�v (Xz2Xkt�z f(z)) = kXj=i �ji�f (j)(v)The proof then follows by indution on k � i, sine learly f (k)(v) = ~f(v)and the previous equality impliesf (i)(v) =� kXj=i+1�ji�f (j)(v) = �( kXj=i+1(�1)k�j�ji��kj�) ~f(v)=��ki�( kXj=i+1(�1)k�j�k � ij � i�) ~f(v) = (�1)k�i�ki� ~f(v):
We an notie now that, for all u suh that wt(u) < k, from de�nition (3)of ~f , ~f(u) = 0, and from Lemma 2.1, ~f(u) = f (0)(u) = 0; hene ZC;f (x; y)is a polynomial. We now ompute the Fourier transform of � (see (13)).Lemma 2.2 Let f = z 2 Xk. Then�̂(v) = x�k(�1)wt(v\z)(x+ y)n�k�wt(v\z)(x� y)wt(v\z)Proof.�̂(v) := Xu2Fn2 (�1)u:v�(u) = Xu2Fn2 (�1)u:v ~f(u)xn�wt(u)�kywt(u)�k=x�k Xu2Fn2z�u (�1)u:vxn�wt(u)ywt(u)�k:We an write u = z[u0, where u0 runs through Fn�k2 , with wt(u) = k+wt(u0)and u:v = wt(v \ z) + u0:(v \ z) mod 2; we are then redued to the usualformula for the Fourier transform of xn�k�wt(v\z)ywt(v\z).
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�̂(v) =x�k(�1)wt(v\z) Xu02Fn�k2 (�1)u0:(v\z)xn�k�wt(u0)ywt(u0)=x�k(�1)wt(v\z)(x+ y)n�k�wt(v\z)(x� y)wt(v\z):We now onsider the ase of a harmoni funtion of degree k and proveLemma 2.3 Let f 2 Harmk. Then�̂(v) = (�1)k2k ~f(v)(x+ y)n�wt(v)�k(x� y)wt(v)�kProof. Sine f =Pz2Xk f(z)z, and from Lemma 2.2,�̂(v) =x�k Xz2Xk f(z)(�1)wt(v\z)(x+ y)n�k�wt(v\z)(x� y)wt(v\z)=x�k(x+ y)n�wt(v)�k(x� y)wt(v)�k: Xz2Xk f(z)(�1)wt(v\z)(x+ y)wt(v\z)(x� y)k�wt(v\z):To onlude for Lemma 2.3, we need another last lemma:Lemma 2.4 Let f 2 Harmk. Then, for all v 2 Fn2 ,Xz2Xk f(z)(�1)wt(v\z)(x+ y)wt(v\z)(x� y)k�wt(v\z) = (�1)k2k ~f(v)xkProof. Let Bs be the oeÆient of xk�sys in this polynomial. We mustshow that B0 = (�1)k2k ~f(v) and Bs = 0 for all s � 1.We sum over i = wt(v \ z); with the notations of Lemma 2.1, it is equalto Pki=0 f (i)(v)(�1)i(x+ y)i(x� y)k�i, and, by Lemma 2.1,
7



Bs = kXi=0 f (i)(v)(�1)i Xj;l;j�i;l�k�ij+l=s �ij��k � il �(�1)l= ~f(v) kXi=0 �ki�(�1)k Xj;l;j�i;l�k�ij+l=s �ij��k � il �(�1)l=(�1)k ~f(v) Xi;j;l0�j�i�k0�l�k�ij+l=s (�1)l k!j!l!(i � j)!(k � i� l)!=(�1)k ~f(v) Xj;l;t;r0�j;l;t;r�kj+l=sj+l+t+r=k(�1)l k!j!l!t!r!=(�1)k ~f(v)2kÆs;0where the last equality is the omputation of the oeÆient of xs in thespeialization of (x� y + z + w)k at x = y, z = w = 1.Theorem 2.1 now follows from Lemma 2.3 and the Poisson summation for-mula (12).In the speial ase of doubly even self-dual odes, an immediate onse-quene of Theorem 2.1 is that the polynomials ZC;f are relative invariantsfor the group G2. This result is stated in Corollary 2.1, and an analogousresult for even formally self-dual odes is stated in Corollary 2.2.We take the following notations:T1 := 1p2 � 1 11 �1 � ; T2 := ( 1 00 i ) ; T3 := � 1 00 �1 � : (14)We onsider the group G1 =< T1; T2 > together with the haraters �kde�ned by: �k(T1) = (�1)k; �k(T2) = i�k (15)8



and the group G2 =< T1; T3 > together with the haraters �+k , ��k de�nedby �+k (T1) = �+k (T3) = (�1)k (16)��k (T1) = (�1)k; ��k (T3) = (�1)k+1 (17)Corollary 2.1 If C is a self-dual, doubly even ode of length n, for allf 2 Harmk, the polynomial ZC;f (x; y) satis�esZC;f (A(x; y)) = �k(A)ZC;f (x; y)for all matrix A 2 G1.Corollary 2.2 If C is an even formally self-dual ode of length n, for allf 2 Harmk, the polynomials ZC;f � ZC?;f satisfy(ZC;f + ZC?;f )(A(x; y)) = �+k (A)(ZC;f + ZC?;f )(x; y)(ZC;f � ZC?;f )(A(x; y)) = ��k (A)(ZC;f � ZC?;f )(x; y)for all matrix A 2 G2.3 Some invariant theoryWe gather here some well-known results of invariant theory that will beof further use. We denote by C [x1 ; : : : ; xn℄ the polynomial algebra in nvariables, together with the left ation of the algebraMn(C ) of n�n omplexmatries given by (M:P )(x) = P (Mxt) (where x = (x1; : : : ; xn) and xt isthe transposition).If G is a subgroup of Mn(C ), we denote by IG the algebra of invariantsof G, namelyIG = fP (x1; : : : xn) 2 C [x1 ; : : : xn℄ j g:P = P 8g 2 Gg:If � is a harater of G, the spae of relative invariants with respet to� is IG;� = fP (x1; : : : xn) 2 C [x1 ; : : : xn℄ j g:P = �(g)P 8g 2 Gg:It is learly a module over IG. In view of our situation, we need to omputeIG1;�k , for the haraters �k de�ned in (15). It is well-known to be, in the9



ase k � 0 mod 4, the polynomial algebra C [P8 ; P24℄, where P8 = x8 +14x4y4 + y8 and P24 = x4y4(x4 � y4)4. The other ases are probably alsovery lassial, but we reall the result:Lemma 3.1IG1;�k = 8><>:P12IG1 if k � 2 mod 4, where P12 = x2y2(x4 � y4)2P18IG1 if k � 3 mod 4, where P18 = xy(x8 � y8)(x8 � 34x4y4 + y8)P30IG1 if k � 1 mod 4, where P30 = P12P18Proof. The dimension a�;d of (IG;�)d, the homogeneous omponent ofdegree d of (IG;�) is omputed by Molien's series:Xd�0 a�;dXd = 1jGjXg2G �(g)Det(I �Xg) :In the ase of the group G1, and for the haraters �k given by (15), we�nd respetively 1=((1�X8)(1�X24)), X30=((1�X8)(1�X24)), X12=((1�X8)(1 � X24)), X18=((1 � X8)(1 � X24)). It is easy to verify that thepolynomials announed in the lemma do belong to the spaes IG1;�k ; theresult then follows from the equality of the dimensions.The ase of the group G2 goes the same; we have IG2 = C [P2 ; P 08℄, whereP2 = x2+y2, P 08 = P8�P 42 = x2y2(x2�y2)2, and the IG2;��k for the haraters(16), (17), are prinipal ideals. Clearly these haraters only depend on kmod 2.Lemma 3.2IG2;� = 8><>:Q4IG2 if � = ��0 , where Q4 = xy(x2 � y2)Q8IG2 if � = �+1 , where Q8 = xy(x6 � 7x4y2 + 7x2y4 � y6)R4IG2 if � = ��1 , where R4 = x4 + y4 � 6x2y24 New proofs of some lassial resultsIn this setion, we reover the lassial results on t-designs supported bywords of binary linear odes, using the harmoni weight enumerators previ-ously de�ned, and the haraterization of designs in terms of the harmonispaes given in [8℄: a set B of bloks is a t-design if and only ifPb2B ~f(b) = 010



for all f 2 Harmk, 1 � k � t. Hene, the set of words of �xed weight ina ode C form a t-design if and only if WC;f (x; y) = 0 for all f 2 Harmk,1 � k � t.We start with Assmus-Mattson theorem:Theorem 4.1 (Assmus-Mattson) Let C be a binary ode of length n anddistane d, and let C? be its dual, of distane e. If t � d is suh that thenumber of non zero weights of C? whih are lower or equal to n � t, is atmost d� t, then the set of odewords of C (respetively C?) of �xed weightw form a t-design, for d � w � n (respetively e � w � n� t).Proof. Let f 2 Harmk, 1 � k � t. Write Ai;f := Pu2C;wt(u)=i ~f(u) andBi;f :=Pu2C?;wt(u)=i ~f(u). We want to prove that, for all i (rep. i � n� t),Ai;f = 0 (rep. Bi;f = 0). Theorem 2.1 translates, in terms of these, into:(�1)k2kjC?j Xk�i�n�kP (n�2k)j (i� k)Bi;f = Aj;f (18)for all j, k � j � n�k, where the P (n�2k)j are the Krawthouk polynomials([17, Chap 5℄). Sine C has distane d, we have Ak;f = � � � = Ad�1;f = 0,whih leads to d � k independent equations in the Bi;f , k � i � n� k. Byhypothesis, there are at most d � k unknowns and hene the only solutionis trivial . Hene Bi;f = 0 for all i � n� t and k � t.Now the n � 2k + 1 equations Bi;f = 0, k � i � n� k, translate intoequations in the Ai;f , d � i � n� d, using equations (18) applied to C?;sine k � d and the equations are independent, the only solution is trivial.In the ase of extremal doubly even self-dual odes, we an prove theresult diretly from the desription of the relative invariants of the group G1,avoiding the use of Krawthouk polynomials; moreover, the extra propertythat the t-designs are \t12"-designs (whih was shown �rst by B. Venkov bymeans of spherial theta series, then in [6℄ in a ombinatorial setting) followseasily, and is very similar to the initial proof of B.Venkov [24℄ onerningthe spherial designs in extremal even unimodular latties. We reall theslightly more general de�nition of the notion of a T -design, for a subset T off1; 2; : : : ; ng: a set B of bloks is alled a T -design if and only ifPb2B ~f(b) =0 for all f 2 Harmk and for all k 2 T . Hene a t-design is a T = f1; : : : ; tg-design. 11



Theorem 4.2 ([5℄) Let C be an extremal self-dual doubly even ode oflength n.� If n � 0 mod 24, the odewords of �xed weight in C form af1; 2; 3; 4; 5; 7g � design.� If n � 8 mod 24, the odewords of �xed weight in C form af1; 2; 3; 5g � design.� If n � 16 mod 24, the odewords of �xed weight in C form af1; 3g � design.Proof. Let n = 24m+r; the extremality of C means that d(C) = 4(m+1).We prove that WC;f (x; y) = 0 for all f 2 Harmk, k = 1; 5, and r = 0; 8, theother ases being similar. From Theorem 2.1 and Lemma 3.1, for all f 2Harmk, WC;f(x; y) = (xy)kZC;f (x; y) = (xy)kP30Q, where Q 2 C [P8 ; P24℄.Sine the valuation at y ofQ, (i.e. the least power of y inQ) is 4(m+1)�k�3,Q = Pm+1� k+3424 :Q0, with Q0 2 C [P8 ; P24℄. We ompute the degree of Q0: ifthis polynomial is non zero, it has degree n� 2k � 30� 24(m+ 1� k+34 ) =r + 4k � 36. Hene Q0 = 0 and WC;f (x; y) = 0 for r = 0; 8 and k = 1; 5.Notie that, if k = 9, the polynomial Q0 is determined up to a salar: it isproportional to 1 if r = 0, respetively to P8 if r = 8.Remark 4.1 With the same method, we an reover the results of [16℄ onthe designs supported by odewords of �xed weight in C [C?, when C is anextremal even formally self-dual ode. We omit the proof.5 Harmoni weight enumerators and the ompu-tation of Jaobi polynomialsIn this setion, we show how harmoni weight enumerators an be used toompute Jaobi polynomials. We �rst reall the de�nition of these: Let Cbe a binary ode of length n and T � f1; : : : ; ng.JC;T (v; z; x; y) :=Xu2C vm0(u)zm1(u)xn0(u)yn1(u) (19)where, for i = 0; 1, mi(u) (respetively ni(u)) is the number of oordinates ofu\T (respetively of u\T ) equal to i. They have been introdued by Ozeki12



[18℄ in analogy with Jaobi forms of latties, and studied by A. Bonneaze,P. Sol�e et al. [2℄, [3℄, [4℄ in the ase of type II binary and Z4-odes. Inpartiular they point out the following haraterization of odes supportingdesigns: the set of odewords of a ode C form a t-design for every �xedweight, if and only if the Jaobi polynomial JC;T for a t-set T is independentof T .Sine we an also haraterize this property of a ode C by the set ofonditions: WC;f (x; y) = 0 8f 2 Harmk; 1 � k � t (20)a natural question is: how an one ompute JC;T for a t-set T given in (19)from the set of onditions (20)? The answer lies in the fat that one anattah to every t-set T some harmoni funtions Hk;T of degree k, 1 � k � t;the values Hk;T (u) are expressed in terms of Hahn polynomials, and onlydepend on juj and ju \ T j. They are desribed in [8℄ as the orthogonalprojetion of T 2 RXt over Harmk. In view of our appliations, we need togeneralize [8, Theorem 5℄ to the ase of subsets of non equal ardinality. Forthe de�nition and properties of Hahn polynomials, we refer to [15℄.Proposition 5.1 [8, Theorem 5℄ Let T be a t-subset of f1; : : : ; ng. For allk, 1 � k � t � n=2, let Hk;T 2 RXt be given by:Hk;T (u) = Qtk(t� ju \ T j)for all t-set u, where ([15℄) Qtk(x) = Qk(x; t � n � 1;�t � 1; t + 1) areorthogonal Hahn polynomials. Then Hk;T 2 Harmk.Proof. In the notations of [8℄, Hk;T (u) = Ek(T; u) and Qk;T = Qk.Proposition 5.2 With the same hypothesis, as an element of RX, theHk;T (u) for all subsets u of f1; : : : ; ng only depend on w = juj and ju \ T j.We set Hk;T (u) = hk;t(juj; ju \ T j). Then:hk;t(w; i) = 1�k;t XI �k;t(w; i)Qtk(t� i1 � i2) (21)
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where I = fi1; i2; i3 j 0 � i1 � i;0 � i2 � t� i;0 � i3 � w � i;i1 + i2 + i3 � t;i1 + i3 � kg (22)
�k;t = �n� 2kt� k � (23)�k;t(w; i) = � ii1��t� ii2 ��w � ii3 �� n� w � t+ it� i1 � i2 � i3��i1 + i3k �: (24)Proof. From [8, Theorem 3℄ applied to f = Hk;T and g = ~z, z 2 Xk, wehave Hk;T (z) = �n�2kt�k ��1Px2Xt;z�xHk;T (x). Then, for all u 2 X,Hk;T (u) = Xz2Xk;z�uHk;T (z)=�n� 2kt� k ��1 Xz2Xkz�u Xx2Xtz�x Hk;T (x) (25)=�n� 2kt� k ��1 Xx2Xt�jx \ ujk �Qtk(t� jx \ T j) (26)whih leads to the announed formula by setting i1 := jx \ (u \ T )j, i2 :=jx \ (u \ T )j, i3 := jx \ (u \ T )j.Remark: The same argumentation as in [8℄ applied to Hk;T (u) = Ek(T; u)for juj > t show that they are also linked to Hahn polynomials but for theparameters (with the notations of [15℄): Qk(x; juj � n� 1;�juj � 1; t+ 1).From (1) and (19), the numbers nw;i(T ) are the oeÆients of JC;T :JC;T (v; z; x; y) = tXi=0 nw;i(T )vt�izixn�t�w+iyw�i: (27)14



On the other hand, the harmoni weight enumerators WC;Hk;T have thefollowing expression:WC;Hk;T (x; y) =Xu2CHk;T (u)xn�wt(u)ywt(u)= nXw=0f tXi=0 hk;t(w; i)nw;i(T )gxn�wyw (28)Hene the set of equations (20) for f = Hk;T , k � t leads for every w tothe following t linear equations in the t+ 1 unknowns nw;i(T ), 0 � i � t:8 0 � k � t; tXi=0 hk;t(w; i)nw;i(T ) (29)We denote by Cw the set of odewords of weight w. Its ardinality is isequal to the oeÆient Aw of the weight enumerator of the ode C, de�nedby (6). Then, another equation, orresponding to the degree 0 ase, is:tXi=0 nw;i(T ) = Aw (30)For all w, the nw;i(T ) are the solutions of the system of equations (29),(30).Remark: In the ases when the polynomials ZC;Hk;T are invariant polyno-mials, i.e. in the ases of doubly even self-dual odes or of even formallyself-dual odes, we an more generally get some information on the nw;i(T ),not only when the odewords support t-designs, in the following way: a on-dition of the type ZC;f 2 IG;�, joined with the knowledge of d(C), says thatZC;f sits in a �nite-dimensional vetor spae, whih is expliitly desribed.Hene this information an be turned into linear equations in the nw;i(T ).Of ourse, the smaller this dimension is, the more equations we get, and thease when the odewords support designs is the 0-dimensional ase. Thehigher d(C) is, the smaller are these dimensions, the most interesting asesbeing the extremal odes. An example of this method is treated in nextsetion. 15



6 A lassi�ation resultIn this setion, we lassify, with the help of harmoni weight enumerators,the extremal even formally self-dual odes of length 12. These odes haveweight 4 and their weight enumerator isWC(x; y) =WC?(x; y) = x12 + 15x8y4 + 32x6y6 + 15x4y8 + y12: (31)There is a unique ode whih is self-dual; it is the ode B12 with ompo-nent d12 of [19℄, [20℄; we �nd two other odes whih are isodual, one of themis desribed in [22, Chap.3℄. They both appear in [13℄ as double irulantodes.First step in this lassi�ation result is the omputation of thefnw;i(T ); n�w;i(T )g0�i�t (see (1)). We �rst show that, if T is a word ofC of weight 4 or 6, there are only two solutions for fnw;i(T ); n�w;i(T )g0�i�t;therefore, we use the results of the previous setion to derive some equationssatis�ed by these numbers.Lemma 6.1 Let C be an extremal even formally self-dual ode of length12 and let T 2 C, of weight 4 or 6. There are only two possibilities forfnw;i(T ); n�w;i(T )g0�i�t, whih are given in the following tables:� If wt(T ) = 4 T 2 C \ C? T 2 C; T =2 C?i 0 1 2 3 4 0 1 2 3 4n4;i(T ) 6 0 8 0 1 2 8 4 0 1n6;i(T ) 0 0 32 0 0 0 8 16 8 0n�4;i(T ) 6 0 8 0 1 5 0 10 0 0n�6;i(T ) 0 0 32 0 0 2 0 28 0 2� If wt(T ) = 6 T 2 C \ C? T 2 C; T =2 C?i 0 1 2 3 4 5 6 0 1 2 3 4 5 6n4;i(T ) 0 0 15 0 0 0 4 7 4 0n6;i(T ) 1 0 15 0 15 0 1 1 0 7 16 7 0 1n�4;i(T ) 0 0 15 0 0 1 0 13 0 1n�6;i(T ) 1 0 15 0 15 0 1 0 0 16 0 16 0 016



Proof. We �rst make some easy remarks: sine T 2 C, n�w;i(T ) = 0 if i isodd. Moreover, sine the all-one word 1 belongs to C \C?, n12�w;t�i(T ) =nw;i(T ) and n�12�w;t�i(T ) = n�w;i(T ).From (31), we have:Xi n4;i(T ) =Xi n�4;i(T ) = 15 (32)and Xi n6;i(T ) =Xi n�6;i(T ) = 32: (33)� wt(T ) = 4. Some of the entries are easily omputed from the hypoth-esis on the ode C: n4;3(T ) = 0 and n6;4(T ) = 0 otherwise the sum with Twould be a weight 2 word in C, and learly n4;4(T ) = 1. Taking into aountthe equations (32) and (33), we are redued to the set of six unknowns:S := fn4;0(T ); n4;1(T ); n6;1(T ); n�4;0(T ); n�4;2(T ); n�6;0(T )g. We now onsiderthe harmoni weight enumerators WC;Hk;T de�ned in the previous setion.From Corollary 2.2 and Lemma 3.2, ZC;H1;T + ZC?;H1;T 2 Q8C [P2 ; P 08℄;but, sine C and C? have weight 4, ZC;H1;T + ZC?;H1;T must be a mul-tiple of (xy)3, and hene of Q8P 08. This last polynomial is of degree 16while ZC;H1;T + ZC?;H1;T is of degree 10; hene it is zero. A similar dis-ussion shows that ZC;H1;T � ZC?;H1;T = 0, ZC;H2;T + ZC?;H2;T 2 CP 08 =C (x6y2 � 2x4y4 + x2y6) and that ZC;H2;T � ZC?;H2;T = 0. We derive thefollowing equations:
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4Xi=0 h1;4(4; i)n4;i(T ) = 04Xi=0 h1;4(4; i)n�4;i(T ) = 02( 4Xi=0 h2;4(4; i)n4;i(T ) + 4Xi=0 h2;4(4; i)n�4;i(T ))+ ( 6Xi=0 h2;4(6; i)n6;i(T ) + 6Xi=0 h2;4(6; i)n�6;i(T )) = 04Xi=0 h2;4(4; i)n4;i(T )� 4Xi=0 h2;4(4; i)n�4;i(T ) = 06Xi=0 h2;4(6; i)n6;i(T )� 6Xi=0 h2;4(6; i)n�6;i(T ) = 0
(34)

whih, in terms of our six unknowns, the oeÆients hk;4(w; i) being om-puted from equation (), lead to:n4;0(T ) = �18 + 4n�4;0(T )n4;1(T ) = 48� 8n�4;0(T )n�4;2(T ) = 20� 2n�4;0(T )n�6;0(T ) = 12� 2n�4;0(T )n6;1(T ) = 48� 8n�4;0(T ) (35)Sine we look for positive integral solutions, we see from the �rst twoequations of (35) that the only possibilities are n�4;0(T ) = 5; 6 whih givethe two announed solutions. Clearly, n�4;4(T ) = 1; 0, depending whether Tbelongs to C? or not.� w(T ) = 6. Similar arguments lead to the result.Theorem 6.1 There are exatly three extremal formally self-dual odes witheven weights of length 12; one is the unique self-dual ode B12 and the twoothers are given by the following generator matries:18



C(1)12 = 0BBBBBB� 1 0 0 0 0 1 0 0 1 0 0 10 1 0 0 0 1 0 0 1 0 1 00 0 1 0 0 1 0 1 1 0 1 10 0 0 1 0 1 0 1 0 1 1 10 0 0 0 1 1 0 0 1 1 1 10 0 0 0 0 0 1 1 1 1 1 1
1CCCCCCAC(1)12 \ (C(1)12 )? = 0BB� 1 1 0 0 0 0 0 0 0 0 1 10 0 1 0 1 0 0 1 0 1 0 00 0 0 1 0 1 0 1 0 1 1 10 0 0 0 0 0 1 1 1 1 1 1 1CCAPermutation group of order 384

C(2)12 =0BBBBBB� 1 0 0 0 0 1 0 1 1 0 0 00 1 0 0 0 1 0 1 1 1 0 10 0 1 0 0 1 0 0 0 1 1 00 0 0 1 0 1 0 0 1 1 0 00 0 0 0 1 1 0 0 1 1 1 10 0 0 0 0 0 1 1 1 1 1 1
1CCCCCCAC(2)12 \ (C(2)12 )? = � 1 1 1 1 1 1 0 0 0 0 0 00 0 0 0 0 0 1 1 1 1 1 1 �Permutation group of order 120Proof. Let C be suh a ode. Let T6 2 C be a word of weight 6, notbelonging to C?. From Lemma 6.1 we know that n�4;4(T6) = 1, i.e. thereis a unique word u4 of weight 4 in C? whose support is ontained in T6.Clearly u4 doesn't belong to C beause u4 + T6 has weight 2. On the otherhand, sine n�6;4(u4) = 2, we see that eah suh u4 is assoiated to exatlytwo weight 6 words of C (we have reversed the roles of C and C? in Lemma6.1). Hene the number of weight 6 words in C but not in C? is at most2:15 = 30. Sine j C6 j= 32, there is at least one pair (T;1+ T ) of words ofweight 6 belonging to C \ C?.Eah of the words of weight 4 in C intersets T in two positions, whihare never the same, otherwise the sum of two suh words with 1+T would bea weight 2 word in C. Hene there is a one-to-one orrespondene betweenthe 15 elements in C4 and the �62� = 15 2-subsets of T (respetively of 1+T ).We denote them by u! t(u), u! t(u).19



Let u be a �xed weight 4 word in C. Up to permutation, we an assumethat T , u are in the following position:1 1 1 1 1 1 0 0 0 0 0 00 0 0 0 1 1 1 1 0 0 0 0We assume �rst that u 2 C \ C?. From Lemma 6.1, there are 8 wordsu0 in C4 meeting u in two positions; sine t(u0) 6= t(u), t(u0) 6= t(u), thereare four possibilities for u \ u0: 0110, 1001, 1010, 0101. Assume one ofthem appears at least three times, say the �rst one and for u2, u3, u4.Again beause t and t are bijetions, there is up to permutation only onepossibility: u 0 0 0 0 1 1 1 1 0 0 0 0u2 0 0 0 1 0 1 1 0 1 0 0 0u3 0 0 1 0 0 1 1 0 0 1 0 0u4 0 1 0 0 0 1 1 0 0 0 1 0Then f1; T; u; u2; u3; u4g generates the self-dual ode B12 ([19℄,[20℄). We annext assume that the eight u0 reah exatly twie the four possibilities foru \ u0. Again for the same argument, there is up to permutation only onepossibility: u 0 0 0 0 1 1 1 1 0 0 0 0u2 0 0 0 1 0 1 1 0 1 0 0 0u3 0 0 1 0 0 1 1 0 0 1 0 0u04 0 1 0 0 1 0 1 0 0 0 1 0and now f1; T; u; u2; u3; u04g generates the ode C(1)12 .The last ase to onsider is the ase when no weight 4 word in C belongsto C?. Hene C \ C? is the 2-dimensional ode generated by T and 1.From Lemma 6.1, we know that eight words of weight 4 in C meet u in oneposition. Then, at least one position is reahed at least twie, say by u2,u3. Sine u+ u2 + u3 annot have weight 10, u2 and u3 must share anotherposition outside u. Up to permutation, they are in the following positions:u 0 0 0 0 1 1 1 1 0 0 0 0u2 0 0 0 1 0 1 0 0 1 1 0 0u3 0 0 1 0 0 1 0 0 0 1 1 0If a third word u4 meets u again in the same position as u2 and u3,this is also true for the other pairs (u2; u4) and (u3; u4); but then eitheru2+u3+u4+T or u2+u3+u4+T +1 has weight 2, whih is not possible.20



Hene eah position in u orresponds to a pair of weight 4 words in Cinterseting at that position. From the previous disussion, the sum is aweight 4 word whih is disjoint from u; there are exatly two suh wordssine n4;0(u) = 2 and they are neessarily disjoint (if w is one of them, theother is w0 = 1 + w + u). Then (u2; u3) orresponds to w = 001100001010and let (u4; u5) be suh that u4 + u5 = w0. We have two hoies up topermutation for the ommon position of u; u4; u5; it an be (on u) either1000 or 0010. But it is easy to see that the �rst one is not possible underthe ondition that t, t are bijetive and that the seond one leads to onlyone possibility: u 0 0 0 0 1 1 1 1 0 0 0 0u2 0 0 0 1 0 1 0 0 1 1 0 0u3 0 0 1 0 0 1 0 0 0 1 1 0u4 0 1 1 0 0 0 1 0 0 1 0 0u5 1 0 1 0 0 0 1 0 0 0 0 1In that ase, f1; T; u; u2; u3; u4; u5g generate the ode C(2)12 .Sine we �nd up to permutation two odes, whih are distinguished bythe dimension of C\C?, and sine the dual of an extremal even formally self-dual ode is again an extremal formally self-dual ode with even weights,these odes are neessarily equivalent to their duals. The automorphismgroups have been omputed with Magma.Remark 6.1 By \onstrution A", these odes onstrut non-isometri lat-ties whih are 4-modular and extremal in the sense of H.-G. Quebbemann[21℄.Referenes[1℄ C. Baho, B. Venkov, Modular forms, latties and spherial designspreprint[2℄ A. Bonneaze, B. Mourrain, P. Sol�e, Jaobi polynomials, type II odes,and designs, to appear in Designs, Codes and Cryptography[3℄ A. Bonneaze, E. Rains, P. Sol�e, 3-olored 5-designs and Z4-odes, toappear in J. Stat. Inf. and Planning[4℄ A. Bonneaze, P. Udaya, P. Sol�e, Strong 4-olored 5-designs, preprint21
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