Cookbook for data scientists
 Charles Deledalle

Linear algebra I

Notations

x, y, z, \ldots :
a, b, c, \ldots :
A, B, C :
Id :
$i=1, \ldots, m$ and $j=1, \ldots, n$

Matrix vector product

$$
\begin{aligned}
(A x)_{i} & =\sum_{k=1}^{n} A_{i, k} x_{k} \\
(A B)_{i, j} & =\sum_{k=1}^{n} A_{i, k} B_{k, j}
\end{aligned}
$$

Basic properties

$$
\begin{aligned}
A(a x+b y) & =a A x+b A y \\
A \operatorname{Id} & =\operatorname{Id} A=A
\end{aligned}
$$

Inverse

($m=n$)
A is said invertible, if it exists B st

$$
A B=B A=\mathrm{Id}
$$

B is unique and called inverse of A.
We write $B=A^{-1}$.

Adjoint and transpose

$$
\begin{aligned}
\left(A^{t}\right)_{j, i} & =A_{i, j}, \quad A^{t} \in \mathbb{C}^{m \times n} \\
\left(A^{*}\right)_{j, i} & =\left(A_{i, j}\right)^{*}, \quad A^{*} \in \mathbb{C}^{m \times n} \\
\langle A x, y\rangle & =\left\langle x, A^{*} y\right\rangle
\end{aligned}
$$

Trace and determinant
($m=n$)
$\operatorname{tr} A=\sum_{i=1}^{n} A_{i, i}=\sum_{i=1}^{n} \lambda_{i}$

$$
\operatorname{tr} A=\operatorname{tr} A^{*}
$$

$\operatorname{tr} A B=\operatorname{tr} B A$
$\operatorname{det} A^{*}=\operatorname{det} A$
$\operatorname{det} A=\prod_{i=1}^{n} \lambda_{i} \quad \operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$
$\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$
A is invertible $\Leftrightarrow \operatorname{det} A \neq 0 \Leftrightarrow \lambda_{i} \neq 0, \forall i$

Scalar products, angles and norms

$$
\begin{array}{lr}
\langle x, y\rangle=x \cdot y=x^{*} y=\sum_{k=1}^{n} x_{k} y_{k} & \text { (dot product) } \tag{dotproduct}\\
\|x\|^{2}=\langle x, x\rangle=\sum_{k=1}^{n} x_{k}^{2} & \left(\ell_{2}\right. \text { norm) } \\
|\langle x, y\rangle| \leqslant\|x\|\|y\| & \text { (Cauchy-Schwartz inequality) } \\
\cos (\angle(x, y))=\frac{\langle x, y\rangle}{\|x\|\|y\|} & \text { (angle and cosine) } \\
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}+2\langle x, y\rangle & \text { (law of cosines) } \\
\|x\|_{p}^{p}=\sum_{k=1}^{n}\left|x_{k}\right|^{p}, \quad p \geqslant 1 & \left(\ell_{p}\right. \text { norm) } \\
\|x+y\|_{p} \leqslant\|x\|_{p}+\|y\|_{p} & \text { (triangular inequality) }
\end{array}
$$

Orthogonality, vector space, basis, dimension

$$
\begin{aligned}
& x \perp y \Leftrightarrow\langle x, y\rangle=0 \\
& x \perp y \Leftrightarrow\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}
\end{aligned}
$$

Let d vectors x_{i} be st $x_{i} \perp x_{j},\left\|x_{i}\right\|=1$. Define

$$
V=\operatorname{Span}\left(\left\{x_{i}\right\}\right)=\left\{y \backslash \exists \alpha \in \mathbb{C}^{d}, y=\sum_{i=1}^{d} \alpha_{i} x_{i}\right\}
$$

V is a vector space, $\left\{x_{i}\right\}$ is an orthonormal basis of V and

$$
\forall y \in V, \quad y=\sum_{i=1}^{d}\left\langle y, x_{i}\right\rangle x_{i}
$$

and $d=\operatorname{dim} V$ is called the dimensionality of V. We have

$$
\operatorname{dim}(V \cup W)=\operatorname{dim} V+\operatorname{dim} W-\operatorname{dim}(V \cap W)
$$

Column/Range/Image and Kernel/Null spaces

$\operatorname{Im}[A]=\left\{y \in \mathbb{R}^{m} \backslash \exists x \in \mathbb{R}^{n}\right.$ such that $\left.y=A x\right\}$
$\operatorname{Ker}[A]=\left\{x \in \mathbb{R}^{n} \backslash A x=0\right\}$
$\operatorname{Im}[A]$ and $\operatorname{Ker}[A]$ are vector spaces satisfying

$$
\operatorname{Im}[A]=\operatorname{Ker}\left[A^{*}\right]^{\perp} \quad \text { and } \quad \operatorname{Ker}[A]=\operatorname{Im}\left[A^{*}\right]^{\perp}
$$

$$
\operatorname{rank} A+\operatorname{dim}(\operatorname{Ker}[A])=n \quad(\text { rank-nullity theorem })
$$

where $\quad \operatorname{rank} A=\operatorname{dim}(\operatorname{Im}[A])$
Note also $\quad \operatorname{rank} A=\operatorname{rank} A^{*}$ $\operatorname{rank} A+\operatorname{dim}\left(\operatorname{Ker}\left[A^{*}\right]\right)=m$

Cookbook for data scientists
 Charles Deledalle

Linear algebra II

Eigenvalues / eigenvectors

If $\lambda \in \mathbb{C}$ and $e \in \mathbb{C}^{n}(\neq 0)$ satisfy

$$
A e=\lambda e
$$

λ is called the eigenvalue associated to the eigenvector e of A. There are at most n distinct eigenvalues λ_{i} and at least n linearly independent eigenvectors e_{i} (with norm 1). The set λ_{i} of n (non necessarily distinct) eigenvalues is called the spectrum of A (for a proper definition see characteristic polynomial, multiplicity, eigenspace). This set has exactly $r=\operatorname{rank} A$ non zero values.

Eigendecomposition

If it exists $E \in \mathbb{C}^{n \times n}$, and a diagonal matrix $\Lambda \in \mathbb{C}^{n \times n}$ st

$$
A=E \Lambda E^{-1}
$$

A is said diagonalizable and the columns of E are the n eigenvectors e_{i} of A with corresponding eigenvalues $\Lambda_{i, i}=\lambda_{i}$.

Properties of eigendecomposition

- If, for all $i, \Lambda_{i, i} \neq 0$, then A is invertible and

$$
A^{-1}=E \Lambda^{-1} E^{-1} \quad \text { with } \quad \Lambda_{i, i}^{-1}=\left(\Lambda_{i, i}\right)^{-1}
$$

- If A is Hermitian $\left(A=A^{*}\right)$, such decomposition always exists, the eigenvectors of E can be chosen orthonormal such that E is unitary $\left(E^{-1}=E^{*}\right)$, and λ_{i} are real.
- If A is Hermitian $\left(A=A^{*}\right)$ and $\lambda_{i}>0, A$ is said positive definite, and for all $x \neq 0, x A x^{*}>0$.

Singular value decomposition (SVD)

For all matrices A there exists two unitary matrices $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$, and a real non-negative diagonal matrix $\Sigma \in \mathbb{R}^{m \times n}$ st

$$
A=U \Sigma V^{*} \quad \text { and } \quad A=\sum_{k=1}^{r} \sigma_{k} u_{k} v_{k}^{*}
$$

with $r=\operatorname{rank} A$ non zero singular values $\Sigma_{k, k}=\sigma_{k}$.

Eigendecomposition and SVD

- If A is Hermitian, the two decompositions coincide with $V=U=E$ and $\Sigma=\Lambda$.
- Let $A=U \Sigma V^{*}$ be the SVD of A, then the eigendecomposition of $A A^{*}$ is $E=U$ and $\Lambda=\Sigma^{2}$.

SVD, image and kernel

Let $A=U \Sigma V^{*}$ be the SVD of A, and assume $\Sigma_{i, i}$ are ordered in decreasing order then

$$
\begin{aligned}
\operatorname{Im}[A] & =\operatorname{Span}\left(\left\{u_{i} \in \mathbb{R}^{m} \backslash i \in(1 \ldots r)\right\}\right) \\
\operatorname{Ker}[A] & =\operatorname{Span}\left(\left\{v_{i} \in \mathbb{R}^{n} \backslash i \in(r+1 \ldots n)\right\}\right)
\end{aligned}
$$

Moore-Penrose pseudo-inverse

The Moore-Penrose pseudo-inverse reads
$A^{+}=V \Sigma^{+} U^{*} \quad$ with $\quad \Sigma_{i, i}^{+}= \begin{cases}\left(\Sigma_{i, i}\right)^{-1} & \text { if } \Sigma_{i i}>0, \\ 0 & \text { otherwise }\end{cases}$ and is the unique matrix satisfying $A^{+} A A^{+}=A^{+}$ and $A A^{+} A=A$ with $A^{+} A$ and $A A^{+}$Hermitian. If A is invertible, $A^{+}=A^{-1}$.

Matrix norms

$$
\begin{aligned}
& \|A\|_{p}=\sup _{x ;\|x\|_{p}=1}\|A x\|_{p},\|A\|_{2}=\max _{k} \sigma_{k},\|A\|_{*}=\sum_{k} \sigma_{k}, \\
& \|A\|_{F}^{2}=\sum_{i, j}\left|a_{i, j}\right|^{2}=\operatorname{tr} A^{*} A=\sum_{k} \sigma_{k}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\tilde{x}=A^{-1} x}{\longleftrightarrow} \\
& \stackrel{\text { x }=A \tilde{x}}{\longrightarrow}
\end{aligned}
$$

Cookbook for data scientists
 Charles Deledalle

Fourier analysis

Fourier Transform (FT)

Let $x: \mathbb{R} \rightarrow \mathbb{C}$ such that $\int_{-\infty}^{+\infty}|x(t)| \mathrm{d} t<\infty$. Its
Fourier transform $X: \mathbb{R} \rightarrow \mathbb{C}$ is defined as

$$
\begin{aligned}
X(u)=\mathcal{F}[x](u) & =\int_{-\infty}^{+\infty} x(t) e^{-i 2 \pi u t} \mathrm{~d} t \\
x(t)=\mathcal{F}^{-1}[X](t) & =\int_{-\infty}^{+\infty} X(u) e^{i 2 \pi u t} \mathrm{~d} u
\end{aligned}
$$

where u is referred to as the frequency.

Properties of continuous FT

$$
\begin{array}{lr}
\mathcal{F}[a x+b y]=a \mathcal{F}[x]+b \mathcal{F}[y] & \text { (Linearity) } \\
\mathcal{F}[x(t-a)]=e^{-i 2 \pi a u} \mathcal{F}[x] & \text { (Shift) } \\
\mathcal{F}[x(a t)](u)=\frac{1}{|a|} \mathcal{F}[x](u / a) & \text { (Modulation) } \\
\mathcal{F}\left[x^{*}\right](u)=\mathcal{F}[x](-u)^{*} & \text { (Conjugation) } \\
\mathcal{F}[x](0)=\int_{-\infty}^{+\infty} x(t) \mathrm{d} t & \text { (Integration) } \\
\int_{-\infty}^{+\infty}|x(t)|^{2} \mathrm{~d} t=\int_{-\infty}^{+\infty}|X(u)|^{2} \mathrm{~d} u & \text { (Parseval) } \\
\mathcal{F}\left[x^{(n)}\right](u)=(2 \pi i u)^{n} \mathcal{F}[x](u) & \text { (Derivation) } \\
\mathcal{F}\left[e^{-\pi^{2} a t^{2}}\right](u)=\frac{1}{\sqrt{\pi a}} e^{-u^{2} / a} & \text { (Gaussian) } \\
x \text { is real } \Leftrightarrow X(\varepsilon)=X(-\varepsilon)^{*} & \text { (Real } \leftrightarrow \text { Hermitian) }
\end{array}
$$

Properties with convolutions

$$
\begin{array}{lr}
(x \star y)(t)=\int_{-\infty}^{\infty} x(s) y(t-s) \mathrm{d} s & \text { (Convolution) } \\
\mathcal{F}[x \star y]=\mathcal{F}[x] \mathcal{F}[y] & \text { (Convolution theorem) }
\end{array}
$$

Multidimensional Fourier Transform

Fourier transform is separable over the different d dimensions, hence can be defined recursively as

$$
\begin{array}{ll}
\mathcal{F}[x]=(& \left.\mathcal{F}_{1} \circ \mathcal{F}_{2} \circ \ldots \circ \mathcal{F}_{d}\right)[x] \\
\text { where } & \mathcal{F}_{k}[x]\left(t_{1} \ldots, \varepsilon_{k}, \ldots, t_{d}\right)= \\
& \mathcal{F}\left[t_{k} \mapsto x\left(t_{1}, \ldots, t_{k}, \ldots, t_{d}\right)\right]\left(\varepsilon_{k}\right)
\end{array}
$$

and inherits from above properties (same for DFT).

Discrete Fourier Transform (DFT)

$$
\begin{gathered}
X_{u}=\mathcal{F}[x]_{u}=\sum_{t=0}^{n-1} x_{t} e^{-i 2 \pi u t / n} \\
x_{t}=\mathcal{F}^{-1}[X]_{t}=\frac{1}{n} \sum_{u=0}^{n-1} X_{k} e^{i 2 \pi u t / n}
\end{gathered}
$$

Or in a matrix-vector form $X=F x$ and $x=F^{-1} X$ where $F_{u, k}=e^{-i 2 \pi u k / n}$. We have

$$
F^{*}=n F^{-1} \quad \text { and } \quad U=n^{-1 / 2} F \quad \text { is unitary }
$$

Properties of discrete FT

$$
\begin{aligned}
& \mathcal{F}[a x+b y]=a \mathcal{F}[x]+b \mathcal{F}[y] \\
& \mathcal{F}\left[x_{t-a}\right]=e^{-i 2 \pi a u / n} \mathcal{F}[x] \\
& \mathcal{F}\left[x^{*}\right]_{u}=\mathcal{F}[x]_{n-u}^{*} \bmod n \\
& \mathcal{F}[x]_{0}=\sum_{t=0}^{n-1} x_{t}
\end{aligned}
$$

$$
\begin{equation*}
\|x\|_{2}^{2}=\frac{1}{n}\|X\|_{2}^{2} \tag{Parseval}
\end{equation*}
$$

$\|x\|_{1} \leqslant\|X\|_{1} \leqslant n\|x\|_{1}$
$\|X\|_{\infty} \leqslant\|x\|_{1} \quad$ and $\quad\|x\|_{\infty} \leqslant \frac{1}{n}\|X\|_{1}$ x is real $\Leftrightarrow X_{u}=X_{n-u \bmod n}^{*} \quad($ Real \leftrightarrow Hermitian)

Discrete circular convolution

$$
(x * y)_{t}=\sum_{s=1}^{n} x_{s} y_{(t-s \bmod n)+1} \quad \text { or } \quad x * y=\Phi_{y} x
$$

where $\left(\Phi_{y}\right)_{t, s}=y_{(t-s \bmod n)+1}$ is a circulant matrix diagonalizable in the discrete Fourier basis, thus

$$
\mathcal{F}[x * y]_{u}=\mathcal{F}[x]_{u} \mathcal{F}[y]_{u}
$$

Fast Fourier Transform (FFT)

The matrix-by-vector product $F x$ can be computed in $\mathcal{O}(n \log n)$ operations (much faster than the general matrix-by-vector product that required $\mathcal{O}\left(n^{2}\right)$ operations). Same for F^{-1} and same for multi-dimensional signals.

Cookbook for data scientists
 Charles Deledalle

Probability and Statistics

Kolmogorov's probability axioms

Let Ω be a sample set and A an event

$$
\begin{aligned}
\mathbb{P}[\Omega] & =1, \quad \mathbb{P}[A] \geqslant 0 \\
\mathbb{P}\left[\bigcup_{i=1}^{\infty} A_{i}\right] & =\sum_{i=1}^{\infty} \mathbb{P}\left[A_{i}\right] \quad \text { with } \quad A_{i} \cap A_{j}=\emptyset
\end{aligned}
$$

Basic properties

$$
\begin{aligned}
& \mathbb{P}[\emptyset]=0, \quad \mathbb{P}[A] \in[0,1], \quad \mathbb{P}\left[A^{c}\right]=1-\mathbb{P}[A] \\
& \mathbb{P}[A] \leqslant \mathbb{P}[B] \quad \text { if } \quad A \subseteq B \\
& \mathbb{P}[A \cup B]=\mathbb{P}[A]+\mathbb{P}[B]-\mathbb{P}[A \cap B]
\end{aligned}
$$

Conditional probability

$$
\mathbb{P}[A \mid B]=\frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]} \quad \text { subject to } \quad \mathbb{P}[B]>0
$$

Bayes' rule

$$
\mathbb{P}[A \mid B]=\frac{\mathbb{P}[B \mid A] \mathbb{P}[A]}{\mathbb{P}[B]}
$$

Independence

Let A and B be two events, X and Y be two rv

$$
\begin{array}{lll}
A \perp B & \text { if } & \mathbb{P}[A \cap B]=\mathbb{P}[A] \mathbb{P}[B] \\
X \perp Y & \text { if } & (X \leqslant x) \perp(Y \leqslant y)
\end{array}
$$

If X and Y admit a density, then

$$
X \perp Y \quad \text { if } \quad f_{X, Y}(x, y)=f_{X}(x) f_{Y}(y)
$$

Properties of Independence and uncorrelation

$$
\begin{aligned}
& \mathbb{P}[A \mid B]=\mathbb{P}[A] \Rightarrow A \perp B \\
& X \perp Y \Rightarrow\left(\mathbb{E}\left[X Y^{*}\right]=\mathbb{E}[X] \mathbb{E}\left[Y^{*}\right] \Leftrightarrow \operatorname{Cov}[X, Y]=0\right) \\
& \text { Independence } \Rightarrow \text { uncorrelation } \\
& \text { correlation } \Rightarrow \text { dependence } \\
& \text { uncorrelation } \nRightarrow \text { Independence } \\
& \text { dependence } \nRightarrow \text { correlation }
\end{aligned}
$$

Discrete random vectors

Let X be a discrete random vector defined on \mathbb{N}^{n}

$$
\mathbb{E}[X]_{i}=\sum_{k=0}^{\infty} k \mathbb{P}\left[X_{i}=k\right]
$$

The function $f_{X}: k \rightarrow \mathbb{P}[X=k]$ is called the probability mass function (pmf) of X.

Continuous random vectors

Let X be a continuous random vector on \mathbb{C}^{n}.
Assume there exist f_{X} such that, for all $A \subseteq \mathbb{C}^{n}$,

$$
\mathbb{P}[X \in A]=\int_{A} f_{X}(x) \mathrm{d} x
$$

Then f_{X} is called the probability density function (pdf) of X, and

$$
\mathbb{E}[X]=\int_{\mathbb{C}^{n}} x f_{X}(x) \mathrm{d} x
$$

Variance / Covariance

Let X and Y be two random vectors. The covariance matrix between X and Y is defined as

$$
\operatorname{Cov}[X, Y]=\mathbb{E}\left[X Y^{*}\right]-\mathbb{E}[X] \mathbb{E}[Y]^{*}
$$

X and Y are said uncorrelated if $\operatorname{Cov}[X, Y]=0$.
The variance-covariance matrix is

$$
\operatorname{Var}[X]=\operatorname{Cov}[X, X]=\mathbb{E}\left[X X^{*}\right]-\mathbb{E}[X] \mathbb{E}[X]^{*}
$$

Basic properties

- The expectation is linear

$$
\mathbb{E}[a X+b Y+c]=a \mathbb{E}[X]+b \mathbb{E}[Y]+c
$$

- If X and Y are independent

$$
\operatorname{Var}[a X+b Y+c]=a^{2} \operatorname{Var}[X]+b^{2} \operatorname{Var}[Y]
$$

- $\operatorname{Var}[X]$ is always Hermitian positive definite

Cookbook for data scientists
 Charles Deledalle

Multi-variate differential calculus

Partial and directional derivatives

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The (i, j)-th partial derivative of f, if it exists, is

$$
\frac{\partial f_{i}}{\partial x_{j}}(x)=\lim _{\varepsilon \rightarrow 0} \frac{f_{i}\left(x+\varepsilon e_{j}\right)-f_{i}(x)}{\varepsilon}
$$

where $e_{i} \in \mathbb{R}^{n},\left(e_{j}\right)_{j}=1$ and $\left(e_{j}\right)_{k}=0$ for $k \neq j$. The directional derivative in the dir. $d \in \mathbb{R}^{n}$ is

$$
\mathcal{D}_{d} f(x)=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon d)-f(x)}{\varepsilon} \in \mathbb{R}^{m}
$$

Jacobian and total derivative

$J_{f}=\frac{\partial f}{\partial x}=\left(\frac{\partial f_{i}}{\partial x_{j}}\right)_{i, j} \quad(m \times n$ Jacobian matrix $)$
$\mathrm{d} f(x)=\operatorname{tr}\left[\frac{\partial f}{\partial x}(x) \mathrm{d} x\right]$
(total derivative)

Gradient, Hessian, divergence, Laplacian

$$
\begin{aligned}
\nabla f & =\left(\frac{\partial f}{\partial x_{i}}\right)_{i} \\
H_{f} & =\nabla \nabla f=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{i, j}
\end{aligned}
$$

$$
\operatorname{div} f=\nabla^{t} f=\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}=\operatorname{tr} J_{f}
$$

(Divergence)
$\Delta f=\operatorname{div} \nabla f=\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{i}^{2}}=\operatorname{tr} H_{f}$
(Laplacian)

Properties and generalizations

$\nabla f=J_{f}^{t}$
(Jacobian \leftrightarrow gradient)
$\operatorname{div}=-\nabla^{*}$ (Integration by part)
$\mathrm{d} f(x)=\operatorname{tr}\left[J_{f} \mathrm{~d} x\right]$ (Jacob. character. I)
$\mathcal{D}_{d} f(x)=J_{f}(x) \times d$
$f(x+h)=f(x)+\mathcal{D}_{h} f(x)+o(\|h\|)$ (1st order exp.)
$f(x+h)=f(x)+\mathcal{D}_{h} f(x)+\frac{1}{2} h^{*} H_{f}(x) h+o\left(\|h\|^{2}\right)$
$\frac{\partial(f \circ g)}{\partial x}=\left(\frac{\partial f}{\partial x} \circ g\right) \frac{\partial g}{\partial x}$
(Chain rule)

Elementary calculation rules

$$
\begin{array}{lr}
\mathrm{d} A=0 & \\
\mathrm{~d}[a X+b Y]=a \mathrm{~d} X+b \mathrm{~d} Y & \text { (Linearity) } \\
\mathrm{d}[X Y]=(\mathrm{d} X) Y+X(\mathrm{~d} Y) & \text { (Product rule) } \\
\mathrm{d}\left[X^{*}\right]=(\mathrm{d} X)^{*} & \\
\mathrm{~d}\left[X^{-1}\right]=-X^{-1}(\mathrm{~d} X) X^{-1} & \\
\mathrm{~d} \operatorname{tr}[X]=\operatorname{tr}[\mathrm{d} X] \\
\frac{\mathrm{d} Z}{\mathrm{~d} X}=\frac{\mathrm{d} Z}{\mathrm{~d} Y} \frac{\mathrm{~d} Y}{\mathrm{~d} X} & \text { (Leibniz's chain rule) }
\end{array}
$$

Classical identities

$$
\begin{aligned}
& \mathrm{d} \operatorname{tr}[A X B]=\operatorname{tr}[B A \mathrm{~d} X] \\
& \mathrm{d} \operatorname{tr}\left[X^{*} A X\right]=\operatorname{tr}\left[X^{*}\left(A^{*}+A\right) \mathrm{d} X\right] \\
& \mathrm{d} \operatorname{tr}\left[X^{-1} A\right]=\operatorname{tr}\left[-X^{-1} A X^{-1} \mathrm{~d} X\right] \\
& \mathrm{d} \operatorname{tr}\left[X^{n}\right]=\operatorname{tr}\left[n X^{n-1} \mathrm{~d} X\right] \\
& \mathrm{d} \operatorname{tr}\left[e^{X}\right]=\operatorname{tr}\left[e^{X} \mathrm{~d} X\right] \\
& \mathrm{d}|A X B|=\operatorname{tr}\left[|A X B| X^{-1} \mathrm{~d} X\right] \\
& \mathrm{d}\left|X^{*} A X\right|=\operatorname{tr}\left[2\left|X^{*} A X\right| X^{-1} \mathrm{~d} X\right] \\
& \mathrm{d}\left|X^{n}\right|=\operatorname{tr}\left[n\left|X^{n}\right| X^{-1} \mathrm{~d} X\right] \\
& \mathrm{d} \log |a X|=\operatorname{tr}\left[X^{-1} \mathrm{~d} X\right] \\
& \mathrm{d} \log \left|X^{*} X\right|=\operatorname{tr}\left[2 X^{+} \mathrm{d} X\right]
\end{aligned}
$$

Implicit function theorem

Let $f: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n}$ be continuously differentiable and $f(a, b)=0$ for $a \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{m}$. If $\frac{\partial f}{\partial y}(a, b)$ is invertible, then there exist g such that $g(a)=b$ and for all $x \in \mathbb{R}^{n}$ in the neighborhood of a

$$
\begin{aligned}
& f(x, g(x))=0 \\
& \frac{\partial g}{\partial x_{i}}(x)=-\left(\frac{\partial f}{\partial y}(x, g(x))\right)^{-1} \frac{\partial f}{\partial x_{i}}(x, g(x))
\end{aligned}
$$

In a system of equations $f(x, y)=0$ with an infinite number of solutions (x, y), IFT tells us about the relative variations of x with respect to y, even in situations where we cannot write down explicit solutions (i.e., $y=g(x)$). For instance, without solving the system, it shows that the solutions (x, y) of $x^{2}+y^{2}=1$ satisfies $\frac{\partial y}{\partial x}=-x / y$.

Cookbook for data scientists
 Charles Deledalle

Convex optimization

Conjugate gradient

Let $A \in \mathbb{C}^{n \times n}$ be Hermitian positive definite The sequence x_{k} defined as, $r_{0}=p_{0}=b$, and

$$
\begin{aligned}
& x_{k+1}=x_{k}+\alpha_{k} p_{k} \\
& r_{k+1}=r_{k}-\alpha_{k} A p_{k} \\
& \text { with } \quad \alpha_{k}=\frac{r_{k}^{*} r_{k}}{p_{k}^{*} A p_{k}} \\
& p_{k+1}=r_{k+1}+\beta_{k} p_{k} \\
& \text { with } \beta_{k}=\frac{r_{k+1}^{*} r_{k+1}}{r_{k}^{*} r_{k}}
\end{aligned}
$$

converges towards $A^{-1} b$ in at most n steps.

Lipschitz gradient

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has a L Lipschitz gradient if

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leqslant L\|x-y\|_{2}
$$

If $\nabla f(x)=A x, L=\|A\|_{2}$. If f is twice differentiable $L=\sup _{x}\left\|H_{f}(x)\right\|_{2}$, i.e., the highest eigenvalue of $H_{f}(x)$ among all possible x.

Convexity

$f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex if for all x, y and $\lambda \in(0,1)$

$$
f(\lambda x+(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y)
$$

f is strictly convex if the inequality is strict. f is convex and twice differentiable iif $H_{f}(x)$ is Hermitian non-negative definite. f is strictly convex and twice differentiable iif $H_{f}(x)$ is Hermitian positive definite. If f is convex, f has only global minima if any. We write the set of minima as

$$
\underset{x}{\operatorname{argmin}} f(x)=\left\{x \backslash \text { for all } z \in \mathbb{R}^{n} f(x) \leqslant f(z)\right\}
$$

Gradient descent

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable with L Lipschitz gradient then, for $0<\gamma \leqslant 1 / L$, the sequence

$$
x_{k+1}=x_{k}-\gamma \nabla f\left(x_{k}\right)
$$

converges towards a stationary point x^{\star} in $O(1 / k)$

$$
\nabla f\left(x^{\star}\right)=0
$$

If f is moreover convex then

$$
x^{\star} \in \underset{x}{\operatorname{argmin}} f(x) .
$$

Newton's method

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex and twice continuously differentiable then, the sequence

$$
x_{k+1}=x_{k}-H_{f}\left(x_{k}\right)^{-1} \nabla f\left(x_{k}\right)
$$

converges towards a minimizer of f in $O\left(1 / k^{2}\right)$.

Subdifferential / subgradient

The subdifferential of a convex ${ }^{\dagger}$ function f is

$$
\partial f(x)=\left\{p \backslash \forall x^{\prime}, f(x)-f\left(x^{\prime}\right) \geqslant\left\langle p, x-x^{\prime}\right\rangle\right\}
$$

$p \in \partial f(x)$ is called a subgradient of f at x.
A point x^{\star} is a global minimizer of f iif

$$
0 \in \partial f\left(x^{\star}\right)
$$

If f is differentiable then $\partial f(x)=\{\nabla f(x)\}$.

Proximal gradient method

Let $f=g+h$ with g convex and differentiable with Lip. gradient and h convex †. Then, for $0<\gamma \leqslant 1 / L$,

$$
x_{k+1}=\operatorname{prox}_{\gamma h}\left(x_{k}-\gamma \nabla g\left(x_{k}\right)\right)
$$

converges towards a global minimizer of f where

$$
\begin{aligned}
\operatorname{prox}_{\gamma h}(x) & =(\operatorname{Id}+\gamma \partial h)^{-1}(x) \\
& =\underset{z}{\operatorname{argmin}} \frac{1}{2}\|x-z\|^{2}+\gamma h(z)
\end{aligned}
$$

is called proximal operator of f.

Convex conjugate and primal dual problem

The convex conjugate of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is

$$
f^{*}(z)=\sup _{x}\langle z, x\rangle-f(x)
$$

if f is convex (and lower semi-continuous) $f=f^{\star \star}$. Moreover, if $f(x)=g(x)+h(L x)$, then minimizers x^{\star} of f are solutions of the saddle point problem

$$
\left(x^{\star}, z^{\star}\right) \in \operatorname{args} \min _{x} \max _{z} g(x)+\langle L x, z\rangle-h^{*}(z)
$$

z^{\star} is called dual of x^{\star} and satisfies $\left\{\begin{array}{l}L x^{\star} \in \partial h^{*}\left(z^{\star}\right) \\ L^{*} z \in \partial g\left(x^{\star}\right)\end{array}\right.$

