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Linear algebra I

Notations

x, y, z, . . . : vectors of Cn
a, b, c, . . . : scalars of C
A, B, C : matrices of Cm×n
Id : identity matrix
i = 1, . . . ,m and j = 1, . . . , n

Matrix vector product

(Ax)i =
n∑
k=1

Ai,kxk

(AB)i,j =
n∑
k=1

Ai,kBk,j

Basic properties

A(ax+ by) = aAx+ bAy

AId = IdA = A

Inverse (m = n)

A is said invertible, if it exists B st

AB = BA = Id.

B is unique and called inverse of A.
We write B = A−1.

Adjoint and transpose

(At)j,i = Ai,j, At ∈ Cm×n

(A∗)j,i = (Ai,j)
∗, A∗ ∈ Cm×n

〈Ax, y〉 = 〈x, A∗y〉

Trace and determinant (m = n)

trA=
n∑
i=1

Ai,i=
n∑
i=1

λi

detA =
n∏
i=1

λi

trA = trA∗

trAB = trBA

detA∗ = detA

detA−1 = (detA)−1

detAB = detA detB

A is invertible⇔ detA 6= 0⇔ λi 6= 0,∀i

Scalar products, angles and norms

〈x, y〉 = x · y = x∗y =
n∑
k=1

xkyk (dot product)

||x||2 = 〈x, x〉 =
n∑
k=1

x2k (`2 norm)

|〈x, y〉| 6 ||x||||y|| (Cauchy-Schwartz inequality)

cos(∠(x, y)) =
〈x, y〉
||x||||y||

(angle and cosine)

||x+ y||2 = ||x||2 + ||y||2 + 2〈x, y〉 (law of cosines)

||x||pp =
n∑
k=1

|xk|p, p > 1 (`p norm)

||x+ y||p 6 ||x||p + ||y||p (triangular inequality)

Orthogonality, vector space, basis, dimension

x⊥y ⇔ 〈x, y〉 = 0 (Orthogonality)

x⊥y ⇔ ||x+ y||2 = ||x||2 + ||y||2 (Pythagorean)

Let d vectors xi be st xi⊥xj, ||xi|| = 1. Define

V = Span({xi}) =
{
y \ ∃α ∈ Cd, y =

d∑
i=1

αixi

}
V is a vector space, {xi} is an orthonormal basis of V and

∀y ∈ V, y =
d∑
i=1

〈y, xi〉xi

and d = dimV is called the dimensionality of V . We have

dim(V ∪W ) = dimV + dimW − dim(V ∩W )

Column/Range/Image and Kernel/Null spaces

Im[A] = {y ∈ Rm \ ∃x ∈ Rn such that y = Ax} (image)

Ker[A] = {x ∈ Rn \ Ax = 0} (kernel)

Im[A] and Ker[A] are vector spaces satisfying

Im[A] = Ker[A∗]⊥ and Ker[A] = Im[A∗]⊥

rankA+ dim(Ker[A]) = n (rank-nullity theorem)

where rankA = dim(Im[A]) (matrix rank)

Note also rankA = rankA∗

rankA+ dim(Ker[A∗]) = m
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Linear algebra II
Eigenvalues / eigenvectors

If λ ∈ C and e ∈ Cn( 6= 0) satisfy

Ae = λe

λ is called the eigenvalue associated to the
eigenvector e of A. There are at most n distinct
eigenvalues λi and at least n linearly independent
eigenvectors ei (with norm 1). The set λi of n (non
necessarily distinct) eigenvalues is called the
spectrum of A (for a proper definition see
characteristic polynomial, multiplicity, eigenspace).
This set has exactly r = rankA non zero values.

Eigendecomposition (m = n)

If it exists E ∈ Cn×n, and a diagonal matrix
Λ ∈ Cn×n st

A = EΛE−1

A is said diagonalizable and the columns of E are
the n eigenvectors ei of A with corresponding
eigenvalues Λi,i = λi.

Properties of eigendecomposition (m = n)

• If, for all i, Λi,i 6= 0, then A is invertible and

A−1 = EΛ−1E−1 with Λ−1i,i = (Λi,i)
−1

• If A is Hermitian (A = A∗), such decomposition
always exists, the eigenvectors of E can be chosen
orthonormal such that E is unitary (E−1 = E∗), and
λi are real.
• If A is Hermitian (A = A∗) and λi > 0, A is said
positive definite, and for all x 6= 0, xAx∗ > 0.

Singular value decomposition (SVD)

For all matrices A there exists two unitary matrices
U ∈ Cm×m and V ∈ Cn×n, and a real non-negative
diagonal matrix Σ ∈ Rm×n st

A = UΣV ∗ and A =
r∑

k=1

σkukv
∗
k

with r = rankA non zero singular values Σk,k=σk.

Eigendecomposition and SVD

• If A is Hermitian, the two decompositions coincide
with V = U = E and Σ = Λ.
• Let A = UΣV ∗ be the SVD of A, then the
eigendecomposition of AA∗ is E = U and Λ = Σ2.

SVD, image and kernel

Let A = UΣV ∗ be the SVD of A, and assume Σi,i

are ordered in decreasing order then

Im[A] = Span({ui ∈ Rm \ i ∈ (1 . . . r)})
Ker[A] = Span({vi ∈ Rn \ i ∈ (r + 1 . . . n)})

Moore-Penrose pseudo-inverse

The Moore-Penrose pseudo-inverse reads

A+ = V Σ+U∗ with Σ+
i,i =

{
(Σi,i)

−1 if Σii > 0,
0 otherwise

and is the unique matrix satisfying A+AA+ = A+

and AA+A = A with A+A and AA+ Hermitian.
If A is invertible, A+ = A−1.

Matrix norms

||A||p = sup
x;||x||p=1

||Ax||p, ||A||2 = max
k

σk, ||A||∗ =
∑
k

σk,

||A||2F =
∑
i,j

|ai,j|2 = trA∗A =
∑
k

σ2k
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Fourier analysis

Fourier Transform (FT)

Let x : R→ C such that

∫ +∞

−∞
|x(t)| dt <∞. Its

Fourier transform X : R→ C is defined as

X(u) = F [x](u) =

∫ +∞

−∞
x(t)e−i2πut dt

x(t) = F−1[X](t) =

∫ +∞

−∞
X(u)ei2πut du

where u is referred to as the frequency.

Properties of continuous FT

F [ax+ by] = aF [x] + bF [y] (Linearity)

F [x(t− a)] = e−i2πauF [x] (Shift)

F [x(at)](u) =
1

|a|
F [x](u/a) (Modulation)

F [x∗](u) = F [x](−u)∗ (Conjugation)

F [x](0) =

∫ +∞

−∞
x(t) dt (Integration)∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
|X(u)|2 du (Parseval)

F [x(n)](u) = (2πiu)nF [x](u) (Derivation)

F [e−π
2at2](u) =

1√
πa
e−u

2/a (Gaussian)

x is real⇔ X(ε) = X(−ε)∗ (Real ↔ Hermitian)

Properties with convolutions

(x ? y)(t) =

∫ ∞
−∞

x(s)y(t− s) ds (Convolution)

F [x ? y] = F [x]F [y] (Convolution theorem)

Multidimensional Fourier Transform

Fourier transform is separable over the different d
dimensions, hence can be defined recursively as

F [x] = (F1 ◦ F2 ◦ . . . ◦ Fd)[x]

where Fk[x](t1 . . . , εk, . . . , td) =

F [tk 7→ x(t1, . . . , tk, . . . , td)](εk)

and inherits from above properties (same for DFT).

Discrete Fourier Transform (DFT)

Xu = F [x]u =
n−1∑
t=0

xte
−i2πut/n

xt = F−1[X]t =
1

n

n−1∑
u=0

Xke
i2πut/n

Or in a matrix-vector form X = Fx and x = F−1X
where Fu,k = e−i2πuk/n. We have

F ∗ = nF−1 and U = n−1/2F is unitary

Properties of discrete FT

F [ax+ by] = aF [x] + bF [y] (Linearity)

F [xt−a] = e−i2πau/nF [x] (Shift)

F [x∗]u = F [x]∗n−u mod n (Conjugation)

F [x]0 =
n−1∑
t=0

xt (Integration)

||x||22 =
1

n
||X||22 (Parseval)

||x||1 6 ||X||1 6 n||x||1

||X||∞ 6 ||x||1 and ||x||∞ 6
1

n
||X||1

x is real⇔ Xu = X∗n−u mod n (Real ↔ Hermitian)

Discrete circular convolution

(x ∗ y)t =
n∑
s=1

xsy(t−s mod n)+1 or x ∗ y = Φyx

where (Φy)t,s = y(t−s mod n)+1 is a circulant matrix
diagonalizable in the discrete Fourier basis, thus

F [x ∗ y]u = F [x]uF [y]u

Fast Fourier Transform (FFT)

The matrix-by-vector product Fx can be computed
in O(n log n) operations (much faster than the
general matrix-by-vector product that required O(n2)
operations). Same for F−1 and same for
multi-dimensional signals.
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Probability and Statistics

Kolmogorov’s probability axioms

Let Ω be a sample set and A an event

P[Ω] = 1, P[A] > 0

P

[ ∞⋃
i=1

Ai

]
=
∞∑
i=1

P[Ai] with Ai ∩ Aj = ∅

Basic properties

P[∅] = 0, P[A] ∈ [0, 1], P[Ac] = 1− P[A]

P[A] 6 P[B] if A ⊆ B

P[A ∪B] = P[A] + P[B]− P[A ∩B]

Conditional probability

P[A|B] =
P[A ∩B]

P[B]
subject to P[B] > 0

Bayes’ rule

P[A|B] =
P[B|A]P[A]

P[B]

Independence

Let A and B be two events, X and Y be two rv

A⊥B if P[A ∩B] = P[A]P[B]

X⊥Y if (X 6 x)⊥(Y 6 y)

If X and Y admit a density, then

X⊥Y if fX,Y (x, y) = fX(x)fY (y)

Properties of Independence and uncorrelation

P[A|B] = P[A]⇒ A⊥B
X⊥Y ⇒ (E[XY ∗] = E[X]E[Y ∗]⇔ Cov[X, Y ] = 0)

Independence⇒ uncorrelation

correlation⇒ dependence

uncorrelation ; Independence

dependence ; correlation

Discrete random vectors

Let X be a discrete random vector defined on Nn

E[X]i =
∞∑
k=0

kP[Xi = k]

The function fX : k → P[X = k] is called the
probability mass function (pmf) of X.

Continuous random vectors

Let X be a continuous random vector on Cn.
Assume there exist fX such that, for all A ⊆ Cn,

P[X ∈ A] =

∫
A

fX(x) dx.

Then fX is called the probability density function
(pdf) of X, and

E[X] =

∫
Cn

xfX(x) dx.

Variance / Covariance

Let X and Y be two random vectors. The
covariance matrix between X and Y is defined as

Cov[X, Y ] = E[XY ∗]− E[X]E[Y ]∗.

X and Y are said uncorrelated if Cov[X, Y ] = 0.
The variance-covariance matrix is

Var[X] = Cov[X,X] = E[XX∗]− E[X]E[X]∗.

Basic properties

• The expectation is linear

E[aX + bY + c] = aE[X] + bE[Y ] + c

• If X and Y are independent

Var[aX + bY + c] = a2Var[X] + b2Var[Y ]

• Var[X] is always Hermitian positive definite
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Multi-variate differential calculus

Partial and directional derivatives

Let f : Rn → Rm. The (i, j)-th partial derivative of
f , if it exists, is

∂fi
∂xj

(x) = lim
ε→0

fi(x+ εej)− fi(x)

ε

where ei ∈ Rn, (ej)j = 1 and (ej)k = 0 for k 6= j.
The directional derivative in the dir. d ∈ Rn is

Ddf(x) = lim
ε→0

f(x+ εd)− f(x)

ε
∈ Rm

Jacobian and total derivative

Jf =
∂f

∂x
=

(
∂fi
∂xj

)
i,j

(m× n Jacobian matrix)

df(x) = tr

[
∂f

∂x
(x) dx

]
(total derivative)

Gradient, Hessian, divergence, Laplacian

∇f =

(
∂f

∂xi

)
i

(Gradient)

Hf = ∇∇f =

(
∂2f

∂xi∂xj

)
i,j

(Hessian)

div f = ∇tf =
n∑
i=1

∂fi
∂xi

= tr Jf (Divergence)

∆f = div∇f =
n∑
i=1

∂2f

∂x2i
= trHf (Laplacian)

Properties and generalizations

∇f = J tf (Jacobian ↔ gradient)

div = −∇∗ (Integration by part)

df(x) = tr [Jf dx] (Jacob. character. I)

Ddf(x) = Jf (x)× d (II)

f(x+h)=f(x) +Dhf(x) + o(||h||) (1st order exp.)

f(x+h)=f(x) +Dhf(x) + 1
2h
∗Hf (x)h+ o(||h||2)

∂(f ◦ g)

∂x
=

(
∂f

∂x
◦ g
)
∂g

∂x
(Chain rule)

Elementary calculation rules

dA = 0

d[aX + bY ] = adX + bdY (Linearity)

d[XY ] = (dX)Y +X(dY ) (Product rule)

d[X∗] = (dX)∗

d[X−1] = −X−1(dX)X−1

d tr[X] = tr[dX]

dZ

dX
=

dZ

dY

dY

dX
(Leibniz’s chain rule)

Classical identities

d tr[AXB] = tr[BA dX]

d tr[X∗AX] = tr[X∗(A∗ + A) dX]

d tr[X−1A] = tr[−X−1AX−1 dX]

d tr[Xn] = tr[nXn−1 dX]

d tr[eX ] = tr[eX dX]

d|AXB| = tr[|AXB|X−1 dX]

d|X∗AX| = tr[2|X∗AX|X−1 dX]

d|Xn| = tr[n|Xn|X−1 dX]

d log |aX| = tr[X−1 dX]

d log |X∗X| = tr[2X+ dX]

Implicit function theorem

Let f : Rn+m → Rn be continuously differentiable
and f(a, b) = 0 for a ∈ Rn and b ∈ Rm. If ∂f

∂y (a, b)

is invertible, then there exist g such that g(a) = b
and for all x ∈ Rn in the neighborhood of a

f(x, g(x)) = 0

∂g

∂xi
(x) = −

(
∂f

∂y
(x, g(x))

)−1 ∂f
∂xi

(x, g(x))

In a system of equations f(x, y) = 0 with an infinite
number of solutions (x, y), IFT tells us about the
relative variations of x with respect to y, even in
situations where we cannot write down explicit
solutions (i.e., y = g(x)). For instance, without
solving the system, it shows that the solutions (x, y)
of x2 + y2 = 1 satisfies ∂y

∂x = −x/y.
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Convex optimization

Conjugate gradient

Let A ∈ Cn×n be Hermitian positive definite The
sequence xk defined as, r0 = p0 = b, and

xk+1 = xk + αkpk

rk+1 = rk − αkApk
with αk =

r∗krk
p∗kApk

pk+1 = rk+1 + βkpk with βk =
r∗k+1rk+1

r∗krk

converges towards A−1b in at most n steps.

Lipschitz gradient

f : Rn → R has a L Lipschitz gradient if

||∇f(x)−∇f(y)||2 6 L||x− y||2

If ∇f(x) = Ax, L = ||A||2. If f is twice differentiable
L = supx ||Hf (x)||2, i.e., the highest eigenvalue of
Hf (x) among all possible x.

Convexity

f : Rn → R is convex if for all x, y and λ ∈ (0, 1)

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

f is strictly convex if the inequality is strict. f is
convex and twice differentiable iif Hf (x) is Hermitian
non-negative definite. f is strictly convex and twice
differentiable iif Hf (x) is Hermitian positive definite.
If f is convex, f has only global minima if any. We
write the set of minima as

argmin
x

f(x) = {x \ for all z ∈ Rnf(x) 6 f(z)}

Gradient descent

Let f : Rn → R be differentiable with L Lipschitz
gradient then, for 0 < γ 6 1/L, the sequence

xk+1 = xk − γ∇f(xk)

converges towards a stationary point x? in O(1/k)

∇f(x?) = 0

If f is moreover convex then

x? ∈ argmin
x

f(x).

Newton’s method

Let f : Rn → R be convex and twice continuously
differentiable then, the sequence

xk+1 = xk −Hf (xk)
−1∇f(xk)

converges towards a minimizer of f in O(1/k2).

Subdifferential / subgradient

The subdifferential of a convex† function f is

∂f(x) = {p \ ∀x′, f(x)− f(x′) > 〈p, x− x′〉} .

p ∈ ∂f(x) is called a subgradient of f at x.
A point x? is a global minimizer of f iif

0 ∈ ∂f(x?).

If f is differentiable then ∂f(x) = {∇f(x)}.

Proximal gradient method

Let f = g + h with g convex and differentiable with
Lip. gradient and h convex†. Then, for 0<γ61/L,

xk+1 = proxγh(xk − γ∇g(xk))

converges towards a global minimizer of f where

proxγh(x) = (Id + γ∂h)−1(x)

= argmin
z

1

2
||x− z||2 + γh(z)

is called proximal operator of f .

Convex conjugate and primal dual problem

The convex conjugate of a function f : Rn → R is

f∗(z) = sup
x
〈z, x〉 − f(x)

if f is convex (and lower semi-continuous) f = f??.
Moreover, if f(x) = g(x) + h(Lx), then minimizers
x? of f are solutions of the saddle point problem

(x?, z?) ∈ args min
x

max
z

g(x) + 〈Lx, z〉 − h∗(z)

z? is called dual of x? and satisfies

{
Lx? ∈ ∂h∗(z?)
L∗z ∈ ∂g(x?)


