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Accelerating GMM-based patch priors for image
restoration: Three ingredients for a 100× speed-up

Shibin Parameswaran, Charles-Alban Deledalle, Loïc Denis and Truong Q. Nguyen

Abstract—Image restoration methods aim to recover the un-
derlying clean image from corrupted observations. The Expected
Patch Log-likelihood (EPLL) algorithm is a powerful image
restoration method that uses a Gaussian mixture model (GMM)
prior on the patches of natural images. Although it is very
effective for restoring images, its high runtime complexity makes
EPLL ill-suited for most practical applications. In this paper, we
propose three approximations to the original EPLL algorithm.
The resulting algorithm, which we call the fast-EPLL (FEPLL),
attains a dramatic speed-up of two orders of magnitude over
EPLL while incurring a negligible drop in the restored image
quality (less than 0.5 dB). We demonstrate the efficacy and
versatility of our algorithm on a number of inverse problems
such as denoising, deblurring, super-resolution, inpainting and
devignetting. To the best of our knowledge, FEPLL is the first
algorithm that can competitively restore a 512×512 pixel image
in under 0.5s for all the degradations mentioned above without
specialized code optimizations such as CPU parallelization or
GPU implementation.

Index Terms—Image restoration, image patch, Gaussian mix-
ture model, efficient algorithms

I. INTRODUCTION

Patch-based methods form a very popular and successful
class of image restoration techniques. These methods process
an image on a patch-by-patch basis where a patch is a small
sub-image (e.g., of 8×8 pixels) that captures both geometric
and textural information. Patch-based algorithms have been at
the core of many state-of-the-art results obtained on various
image restoration problems such as denoising, deblurring, super-
resolution, defogging, or compression artifact removal to name
a few. In image denoising, patch-based processing became
popular after the success of the Non-Local Means algorithm [2].
Subsequently, continued research efforts have led to significant
algorithmic advancements in this area [1], [8], [43], [11],
[29], [40], [26]. Other inverse problems such as image super-
resolution and image deblurring have also benefited from patch-
based models [9], [16], [32], [37], [14], [27].

Among these various patch-based methods, the Expected
Patch Log-Likelihood algorithm (EPLL) [43] deserves a special
mention due to its restoration performance and versatility.
The EPLL introduced an innovative application of Gaussian
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Mixture Models (GMMs) to capture the prior distribution
of patches in natural images. Note that a similar idea was
introduced concurrently in [40]. The success of this method
is evident from the large number of recent works that extend
the original EPLL formulation [19], [38], [28], [4], [31], [33],
[20]. However, a persistent problem of EPLL-based algorithms
is their high runtime complexity. For instance, it is orders
of magnitude slower than the well-engineered BM3D image
denoising algorithm [8]. However, extensions of BM3D that
perform super-resolution [10] and other inverse problems [22]
require fundamental algorithmic changes, making BM3D far
less adaptable than EPLL. Other approaches that are as versatile
as EPLL [36], [5], [21] either lack the algorithmic efficiency
of BM3D or the restoration efficacy of EPLL.

Another class of techniques that arguably offers better run-
time performance than EPLL-based methods (but not BM3D)
are those based on deep learning. With the advancements in
computational resources, researchers have attempted to solve
some classical inverse problems using multi-layer perceptrons
[3] and deep networks [6], [13], [23]. These methods achieve
very good restoration performance, but are heavily dependent
on the amount of training data available for each degradation
scenario. Most of these methods learn filters that are suited to
restore a specific noise level (denoising), blur (deblurring) or
upsampling factor (super-resolution), which makes them less
attractive to serve as generic image restoration solutions. More
recently, Zhang et al. [42] demonstrated the use of deep residual
networks for general denoising problems, single-image super-
resolution and compression artifact removal. Unlike earlier
deep learning efforts, their approach can restore images with
different noise levels using a single model which is learned by
training on image patches containing a range of degradations.
Even in this case, the underlying deep learning model requires
retraining whenever a new degradation scenario different from
those considered during the learning stage is encountered.

More recently, [34] proposed training a single deep network
to solve many inverse problems. This work uses an iterative
scheme that alternatively enforces a good fit to the learned prior
model of natural images (via a projection operator performed
by a deep neural network) and a satisfying fidelity to the
data (via the direct model). The projection operator takes the
form of an auto-encoder, trained by an adversarial strategy,
that processes 64× 64 patches with 1024-dimensional latent
space (i.e., 4 times smaller). This framework shows promise
but, in its current form, requires a very large image database
for training. In addition, almost all of the training and testing
in the original publication are conducted on small 64 × 64
images. Another limitation, as noted by the authors, is that the
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regularization parameter that controls the contribution of prior
is fixed during training stage. In other words, regularization
parameter cannot be changed during test time which can be
an issue in certain situations. In contrast, our approach needs
much less data during training stage and, during test time,
the regularization parameter can be tuned according to the
signal-to-noise ratio of the image being addressed.

Moreover, it is much harder to gain insight into the actual
model learned by a deep architecture compared to a GMM.
For this reason, even with the advent of deep learning
methods, flexible algorithms like EPLL that have a transparent
formulation remain relevant for image restoration.

Recently, researchers have tried to improve the speed of
EPLL by replacing the most time-consuming operation in
the EPLL algorithm with a machine learning-based technique
of their choice [39], [35]. These methods were successful in
accelerating EPLL to an extent but did not consider tackling
all of its bottlenecks. In contrast, this paper focuses on
accelerating EPLL by proposing algorithmic approximations to
all the prospective bottlenecks present in the original algorithm
proposed by Zoran et al. [43]. To this end, we first provide a
complete computational and runtime analysis of EPLL, present
a new and efficient implementation of original EPLL algorithm
and then finally propose innovative approximations that lead to
a novel algorithm that is more than 100× faster compared to
the efficiently implemented EPLL (and 350× faster than the
runtime obtained by using the original implementation [43]).

Contributions: The main contributions of this work are
the following. We introduce three strategies to accelerate patch-
based image restoration algorithms that use a GMM prior. We
show that, when used jointly, they lead to a speed-up of the
EPLL algorithm by two orders of magnitude. Compared to the
popular BM3D algorithm, which represents the current state-of-
the-art in terms of speed among CPU-based implementations,
the proposed algorithm is almost an order of magnitude faster.
The three strategies introduced in this work are general enough
to be applied individually or in any combination to accelerate
other related algorithms. For example, the random subsampling
strategy is a general technique that could be reused in any
algorithm that considers overlapping patches to process images;
the flat tail spectrum approximation can accelerate any method
that needs Gaussian log-likelihood or multiple Mahalanobis
metric calculations; finally, the binary search tree for Gaussian
matching can be included in any algorithm based on a GMM
prior model and can be easily adapted for vector quantization
techniques that use a dictionary.

For reproducibility purposes, we release our software on
GitHub along with a few usage demonstrations (available at
https://goo.gl/xjqKUA).

II. EXPECTED PATCH LOG-LIKELIHOOD (EPLL)

We consider the problem of estimating an image x ∈ RN
(N is the number of pixels) from noisy linear observations
y = Ax + w, where A : RN → RM is a linear operator
and w ∈ RM is a noise component assumed to be white and
Gaussian with variance σ2. In a standard denoising problem
A is the identity matrix, but in more general settings, it can

account for loss of information or blurring. Typical examples
for operator A are: a low pass filter (for deconvolution),
a masking operator (for inpainting), or a projection on a
random subspace (for compressive sensing). To reduce noise
and stabilize the inversion of A, some prior information is used
for the estimation of x. The EPLL introduced by Zoran and
Weiss [43] includes this prior information as a model for the
distribution of patches found in natural images. Specifically, the
EPLL defines the restored image as the maximum a posteriori
estimate, corresponding to the following minimization problem:

argmin
x

P

2σ2
||Ax− y||2 −

∑

i∈I
log p (Pix) (1)

where I = {1, . . . , N} is the set of pixel indices, Pi : RN →
RP is the linear operator extracting a patch with P pixels
centered at the pixel with location i (typically, P = 8×8),
and p(.) is the a priori probability density function (i.e.,
the statistical model of noiseless patches in natural images).
While the first term in eq. (1) ensures that Ax is close to
the observations y (this term is the negative log-likelihood
under the white Gaussian noise assumption), the second term
regularizes the solution x by favoring an image such that all its
patches fit the prior model of patches in natural images. The
authors of [43] showed that this prior can be well approximated
(upon removal of the DC component of each patch) using a
zero-mean Gaussian Mixture Model (GMM) with K = 200
components, that reads for any patch z ∈ RP , as

p (z) =
K∑

k=1

wk
1

(2π)P/2|Σk|1/2
exp

(
−1

2
ztΣ−1

k z

)
, (2)

where the weights wk (such that wk > 0 and
∑
k wk = 1)

and the covariance matrices Σk ∈ RP×P are estimated using
the Expectation-Maximization algorithm [12] on a dataset
consisting of 2 million “clean” patches extracted from the
training set of the Berkeley Segmentation (BSDS) dataset [30].

Half-quadratic splitting: Problem (1) is a large non-convex
problem where A couples all unknown pixel values x and
the patch prior is highly non-convex. A classical workaround,
known as half-quadratic splitting [15], [25], is to introduce N
auxiliary unknown vectors zi ∈ RP , and consider instead the
penalized optimization problem that reads, for β > 0, as

argmin
x,z1,...,zN

P

2σ2
||Ax− y||2

+
β

2

∑

i∈I
||Pix− zi||2 −

∑

i∈I
log p (zi) . (3)

When β → ∞, the problem (3) becomes equivalent to the
original problem (1). In practice, an increasing sequence of β
is considered, and an alternating optimization scheme is used:
{
ẑi ← argmin

zi

β

2
||Pix̂− zi||2 − log p (zi)

}

i=1..N

(4)

x̂← argmin
x

P

2σ2
||Ax− y||2 +

β

2

∑

i∈I
||Pix− ẑi||2. (5)
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TABLE I
COMPARISON OF THE EXECUTION TIME OF OUR IMPLEMENTATION OF EPLL WITH AND WITHOUT PROPOSED ACCELERATIONS. EXPERIMENT CONDUCTED

ON 40 IMAGES EACH OF SIZE 481× 321 IN DENOISING SETTING. PROFILING WAS CARRIED OUT USING MATLAB (R2014B) ON A PC WITH INTEL(R)
CORE(TM) I7-4790K CPU @4.00GHZ AND 16 GB RAM. EXECUTION TIMES ARE REPORTED AS AVERAGE NUMBER OF SECONDS PER IMAGE (S) AND

PERCENTAGE OF THE TOTAL TIME (%).

Step Without accelerations With the proposed accelerations
(Gaussian selection) 38.27s 95 % 0.21s 67 %
(Patch estimation) 0.95s 2 % 0.04s 13 %
(Patch extraction) 0.43s 1 % 0.02s 6 %
(Patch reprojection) 0.15s 0 % 0.01s 4 %
Others 0.52s 1 % 0.03s 10 %
Total 40.32s 0.31s

Algorithm 1 The five steps of an EPLL iteration [43]
for all i ∈ I

z̃i ← Pix̂ (Patch extraction)

k?i ← argmin
16ki6K

logw−2
ki

+ log
∣∣∣Σki+

1
β
IdP

∣∣∣+

z̃ti

(
Σki+

1
β
IdP
)−1

z̃i (Gaussian selection)

ẑi ←
(
Σk?i

+ 1
β
IdP
)−1

Σk?i
z̃i (Patch estimation)

x̃←
(∑

i∈I
PtiPi

)−1
∑

i∈I
Pti ẑi (Patch reprojection)

x̂←
(
AtA+ βσ2IdN

)−1 (Aty + βσ2x̃
)

(Image estimation)

Algorithm: Subproblem (5) corresponds to solving a linear
inverse problem with a Tikhonov regularization, and has an
explicit solution often referred to as Wiener filtering:

x̂ =

(
AtA+

βσ2

P

∑

i∈I
PtiPi

)−1(
Aty +

βσ2

P

∑

i∈I
Pti ẑi

)
,

(6)

where PtiPi is a diagonal matrix whose i-th diagonal element
corresponds to the number of patches overlapping the pixel
of index i. This number is a constant equal to P (assuming
proper boundary conditions are used), which allows to split
the computation into two steps Patch reprojection and Image
estimation as shown in Alg. 1. Note that the step Patch
reprojection is simply the average of all overlapping patches.
In contrast, subproblem (4) cannot be obtained in closed
form as it involves a term with the logarithm of a sum of
exponentials. A practical solution proposed in [43] is to keep
only the component k?i maximizing the likelihood for the given
patch assuming it is a zero-mean Gaussian random vector
with covariance matrix Σki + 1

β IdP . With this approximation,
the solution of (4) is also given by Wiener filtering, and the
resulting algorithm iterates the steps described in Alg. 1. The
authors of [43] found that using T = 5 iterations, with the
sequence β = 1

σ2 {1, 4, 8, 16, 32}, for the initialization x̂ = y,
provides relevant solutions in denoising contexts for a wide
range of noise level values σ2.

A. Complexity via eigenspace implementation

The algorithm summarized in the previous section may
reveal cumbersome computations as it requires performing
numerous matrix multiplications and inversions. Nevertheless,
as the matrices Σk are known prior to any calculation, their

eigendecomposition can be computed offline to improve the
runtime. If we denote the eigendecomposition (obtained offline)
of Σk = UkSkU

t
k, such that Uk ∈ RP×P is unitary and Sk is

diagonal with positive diagonal elements ordered in decreasing
order, steps Gaussian selection and Patch estimation can be
expressed in the space of coefficients c as
{
c̃ki ← U t

kz̃i

}
k=1..K
i=1..N

O(NKP 2) (7)

{
k?i ← argmin

16k6K
ιk +

P∑

j=1

(
log νkj +

[c̃ki ]2j
νkj

)}

i=1..N

O(NKP ) (8){
[ĉi]j ← γ

k?i
j [c̃

k?i
i ]j

}
j=1..P
i=1..N

O(NP ) (9)
{
ẑi ← Uk?i

ĉi

}

i=1..N

O(NP 2) (10)

where [c̃]j denotes the j-th entry of vector c̃, ιk = −2 logwk,
νkj = [Sk]jj + 1

β , and γkj = [Sk]jj/ν
k
j with [Sk]jj the j-

th entry on the diagonal of matrix Sk. The complexity of
each operation is indicated on its right and corresponds to the
number of operations per iteration of the alternate optimization
scheme. The steps Patch extraction and Patch reprojection
share a complexity of O(NP ). Finally, the complexity of
step Image estimation depends on the transform A. In many
scenarios of interest, AtA can be diagonalized using a fast
transform and the inversion ofAtA+βσ2IdN can be performed
efficiently in the transformed domain (since IdN is diagonal
in any orthonormal basis). For instance, it leads to O(N)
operations for denoising or inpainting, and O(N logN) for
periodical deconvolutions or super-resolution problems, thanks
to the fast Fourier transform (these are the settings we have
adopted in this paper). If A cannot be easily diagonalized,
this step can be performed using conjugate gradient (CG)
method, as done in [43], at a computational cost that depends
on the number of CG iterations (i.e., on the conditioning of
AtA + βσ2IdN ). In any case, as shown in the next section,
this step has a complexity independent of P and K and is
one of the faster operations in the image restoration problems
considered in this paper.

B. Computation time analysis

In order to uncover the practical computational bottlenecks
of EPLL, we have performed the following computational
analysis. To identify clearly which part is time consuming, it is



4

10 20 30 40 50 60

0.1

0.4 95% 5%

Index of eigen dimension

E
ig
en
va
lu
e

Original spectrum
Flat tail approx.
0.95-Threshold rk

10 20 30 40 50 60

10−3

10−1 95% 5%

Index of eigen dimension

E
ig
en
va
lu
e

Fig. 1. Flat tail approximation: (a) with eigenvalues display on linear and (b)
logarithmic scale. The rk = 15 first eigen components explains ρ=95% of
the variability.

important to make the algorithm implementation as optimal as
possible. Therefore, we refrain from using the MATLAB code
provided by the original authors [43] for speed comparisons.
Instead, we use a MATLAB/C version of EPLL based on the
eigenspace implementation described above, where some steps
are written in C language and interfaced using mex functions.
This version, which we refer to as EPLLc, provides results
identical to the original implementation while being 2-3 times
faster. The execution time of each step for a single run of
EPLLc is reported in the second column of Table I. Reported
times fit our complexity analysis and clearly indicate that the
Step Gaussian selection causes significant bottleneck due to
O(NP 2K) complexity.

In the next section, we propose three independent mod-
ifications leading to an algorithm with a complexity of
O(NPr̄ logK/s2) with two constants 1 6 s2 6 P and
1 6 r̄ 6 P that control the accuracy of the approximations
introduced. The algorithm, in practice, is more than 100 times
faster as shown by its runtimes reported in the third column.

III. FAST EPLL: THE THREE KEY INGREDIENTS

We propose three accelerations based on (i) scanning only a
(random) subset of the N patches, (ii) reducing the number of
mixture components matched, and (iii) projecting on a smaller
subspace of the covariance eigenspace. We begin by describing
this latter acceleration strategy in the following paragraph.

A. Speed-up via flat tail spectrum approximation

To avoid computing the P coefficients of the vector c̃ki in
eq. (7), we rely on a flat-tail approximation. The k-th Gaussian
model is said to have a flat tail if there exists a rank rk such
that for any j>rk, the eigenvalues are constant: [Sk]j,j =λk.

Denoting by Ūk ∈ RP×rk (resp. Ū
c
k ∈ RP×rck ) the matrix

formed by the rk first (resp. rck=P−rk last) columns of Uk,
we have Ū

c
k(Ū

c
k)t=IdP−ŪkŪ

t
k. It follows

(Σk + 1
β IdP )−1 = Ūk(S̄k + 1

β Idrk)−1Ū
t
k

+ (λk + 1
β )−1(IdP − ŪkŪ

t
k), (11)

(Σk + 1
β IdP )−1Σk = Ūk(S̄k + 1

β Idrk)−1S̄kŪ
t
k

+ λk(λk + 1
β )−1(IdP − ŪkŪ

t
k), (12)

where S̄k ∈ Rrk×rk is the diagonal matrix formed by the rk
first rows and columns of Sk. Steps Gaussian selection and
Patch estimation can thus be rewritten as{

c̃ki ← Ū
t
kz̃i

}
k=1..K
i=1..N

O(NKPr̄) (13)
{
k?i ← argmin

16k6K
ιk + rck log νkP +

||z̃i||2
νkP

+

rk∑

j=1

(
log νkj +

[c̃ki ]2j
νkj
−

[c̃ki ]2j
νkP

)}

i=1..N

O(NKr̄) (14)

{
[ĉi]j ← (γ

k?i
j −γ

k?i
P )
[
c̃
k?i
i

]
j

}
j=1..rk?

i
i=1..N

O(NPr̄) (15)
{
ẑi ← Ūk?i

ĉi+γ
k?i
P z̃i

}

i=1..N

O(NPr̄) (16)

where νkP =λk+ 1
β , γkP =λk/ν

k
P . As ||z̃i||2 can be computed

once for all k, the complexity of each step is divided by
P/r̄, where r̄= 1

K

∑K
k=1 rk is the average rank after which

eigenvalues are considered constant.
In practice, covariance matrices Σk are not flat-tail but can

be approximated by a flat-tail matrix by replacing the lowest
eigenvalues by a constant λk. To obtain a small value of r̄
(hence a large speed-up), we preserve a fixed proportion ρ∈
(0, 1] of the total variability and replace the smallest eigenvalues
accounting for the remaining 1−ρ fraction of the variability
by their average (see Fig. 1): rk is the smallest integer such
that Tr(S̄k) > ρTr(Sk). Choosing ρ=0.95 means that 5% of
the variability, in the eigendirections associated to the smallest
eigenvalues, is assumed to be evenly spread in these directions.
In practice, the choice of ρ=0.95 leads to an average rank of
r̄=19.6 (for P = 8× 8 ) for a small drop of PSNR as shown
in Fig. 4. Among several other covariance approximations that
we tested, for instance, the one consisting in keeping only the
rk first directions, the flat tail approximation provided the best
trade-off in terms of acceleration and restoration quality. The
analyses showing the superiority of the proposed approximation
over the more common approach of keeping only the first rk
directions, and the effect of ρ on image quality are included
in the supplementary document.

B. Speed-up via a balanced search tree

As shown in Table I, the step Gaussian selection has a
complexity of O(NP 2K), reduced to O(NPKr̄) using the
flat tail spectrum approximation. This step remains the biggest
bottleneck since each query patch has to be compared to all
the K components of the GMM. To make this step even more
efficient, we reduce its complexity using a balanced search
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Fig. 2. (left) Our obtained search tree (with numbers of nodes for each level).
(right) Four patches well represented by each of the eight nodes along the
branch highlighted in red in the tree. These patches are randomly sampled
from the generative model encoded at each node of the branch (patches on
the same column are generated from the same random seed).

tree. As described below, such a tree can be built offline by
adopting a bottom-up strategy that repeatedly collapses the
original GMM to models with fewer components, until the
entire model is reduced to a single Gaussian model.

We progressively combine the GMM components from one
level to form the level above, by clustering the K components
into L < K clusters of similar ones, until the entire model is
reduced to a single component. The similarity between two
zero-mean Gaussian models with covariance Σ1 and Σ2 is
measured by the symmetric Kullback-Leibler (KL) divergence

KL(Σ1,Σ2) = 1
2 Tr(Σ−1

2 Σ1 + Σ−1
1 Σ2 − 2IdP ). (17)

Based on this divergence, at each level n, we look for a partition
Ωn of the K Gaussian components into L clusters (with about
equal sizes) minimizing the following optimization problem

argmin
Ωn

L∑

l=1

∑

k1,k2∈Ωn
l

KL(Σk1 ,Σk1), (18)

such that
⋃L
l=1 Ωnl = [K] and Ωnl1 ∩l1 6=l2 Ωnl2 = ∅, where Ωnl is

the l-th set of Gaussian components for the GMM at level n.
This clustering problem can be approximately solved using the
genetic algorithm of [24] for the Multiple Traveling Salesmen
Problem (MTSP). MTSP is a variation of the classical Traveling
Salesman Problem where several salesmen visit a unique set
of cities and return to their origins, and each city is visited by
exactly one salesman. This attempts to minimize the total
distance traveled by all salesmen. Hence, it is similar to
our original problem given in eq. (18) where the Gaussian
components and the clusters correspond to K cities and L
salesmen, respectively. Given the clustering at level n, the new
GMM at level n− 1 is obtained by combining the zero-mean
Gaussian components such that, for all 1 6 l 6 L:

wn−1
l =

∑

k∈Ωn
l

wnk and Σn−1
l =

1

wn−1
l

∑

k∈Ωn
l

wnkΣ
n
k , (19)

where Σn
k and wnk are the corresponding covariance matrix and

weight of the k-th Gaussian component at level n. Following
this scheme, the original GMM of K = 200 components is
collapsed into increasingly more compact GMMs with K=64,
32, 16, 8, 4, 2 and 1 components. The main advantage of using

(a) Regular patch subsampling at (i0, j0)

(b) Stochastic patch subsampling at (i, j)

Fig. 3. Illustration of patch subsampling. Instead of extracting all patches,
only a subset of patches is extracted either (a) regularly or (b) with some
randomizations. Patches are represented by 8×8 squares and the red intensity
represents the number of patches overlapping the corresponding pixel.

MTSP compared to classical clustering approaches, is that this
procedure can be adapted easily to enforce approximately equal
sized clusters, simply by enforcing that each salesman visits
at least 3 cities for the last level and 2 for the other ones.

We also experimented with other clustering strategies such as
the hierarchical kmeans-like clustering in [17] and hierarchical
agglomerative clustering. With no principled way to enforce
even-sized clusters, these approaches, in general, lead to
unbalanced trees (with comb structured branches) which
result in large variations in computation times from one
image to another. Although they all lead to similar denoising
performances, we opted for MTSP based clustering to build our
Gaussian tree in favor of obtaining a stable speed-up profile
for our resulting algorithm. Please refer to the supplementary
document for timing comparisons of MTSP vs. other tree
building strategies.

In Fig. 2 we show that the tree obtained using MTSP-based
clustering is almost a binary tree (left) and also display the
types of patches it encodes along a given path (right). Such a
balanced tree structure lets one avoid testing each patch against
all K components. Instead, a patch is first compared to the
two first nodes in level 1 of the tree, then the branch providing
the smallest cost is followed and the operation is repeated at
higher levels until a leaf has been reached. Using this balanced
search tree reduces the complexity of step Gaussian selection
to O(NPr̄ logK).

C. Speed-up via the restriction to a random subset of patches
The simplest and most effective proposed acceleration

consists of subsampling the set I of N patches to improve
the complexity of the four most time-consuming steps, see
Table I. One approach, followed by BM3D [8], consists of
restricting the set I to locations on a regular grid with spacing
s ∈ [1,

√
P ] pixels in both directions, leading to a reduction

of complexity by a factor s2. We refer to this approach as
the regular patch subsampling. A direct consequence is that
|I|=N/s2 and the complexity is divided by s2. However, we
observed that this strategy consistently creates blocky artifacts
revealing the regularity of the extraction pattern. A random
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sampling approach, called "jittering", used in the computer
graphics community [7] is preferable to limit this effect. This
procedure ensures that each pixel is covered by at least one
patch. The location (i0, j0) of a point of the grid undergoes a
random perturbation, giving a new location (i, j) such that

i0 −
⌊√

P−s
2

⌋
6 i 6 i0 +

⌊√
P−s
2

⌋

and j0 −
⌊√

P−s
2

⌋
6 j 6 j0 +

⌊√
P−s
2

⌋
, (20)

where b·c denotes the flooring operation. We found experimen-
tally that independent and uniform perturbations offered the
best performance in terms of PSNR and visual quality against
all other tested strategies. In addition, we also resample these
positions at each of the T iterations and add a (random) global
shift to ensure that all pixels have the same expected number
of patches covering them.

Figure 3 illustrates the difference between a regular grid and
a jittered grid of period s=6 for patches of size P =8×8. In
both cases, all pixels are covered by at least one patch, but the
stochastic version reveals an irregular pattern.

Nevertheless, when using random subsampling, a major
bottleneck occurs when AtA is not diagonal because the
inversion involved in eq. (6) cannot be simplified as in Alg. 1.
Using a conjugate gradient is a practical solution but will negate
the reduction of complexity gained by using subsampling. To
the best of our knowledge, this is the main reason why patch
subsampling has not been utilized to speed up EPLL. Here, we
follow a different path. We opt for approximating the solution
of the original problem (involving all patches) rather than
evaluating the solution of an approximate problem (involving
random subsample of patches). More precisely, we speed up
Alg. 1 by replacing the complete set of indices by the random
subset of patches. In this case, step Patch reprojection consists
of averaging only this subset of overlapping restored patches.
This novel and nuanced idea avoids additional overhead and
attains dramatic complexity improvements compared to the
standard approach. Note that even in the case of some inverse
problems, such as deblurring, super-resolution, inpainting and
devignetting, this strategy can still be used in order to avoid
conjugate gradient and maintain a large speed-up.

Experiments conducted on our validation dataset show that
this strategy used with s=6 leads to an acceleration of about
36× with less than a 0.2dB drop in PSNR. In comparison, for
a similar drop of PSNR, the regular patch subsampling can
only achieve a 9× acceleration with s=3 (plots included in
the supplementary).

D. Performance analysis

Figure 4 shows the image restoration performance and speed-
up obtained when the three ingredients are applied separately
or in combination. The results are averaged over 40 images
from the test set of BSDS dataset [30] that is set aside for
validation purposes. The speed-up is calculated with respect to
the EPLLc implementation which is labeled “original” in Fig. 4.
Among the three ingredients, random subsampling or jittering
(labeled “subsampling”) leads to the largest speed-up (32×),
while the usage of the search tree provides more than 7× faster
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Fig. 4. (top) Average speed-up and (bottom) average PSNR for our three
accelerations, and all possible combinations of them, on the 40 images of the
BSDS validation set.

processing. The average speed-up obtained when combining
all three ingredients is around 179× on our validation set
consisting of images of size 481×321, for an average drop
of PSNR less than 0.5dB. Note that most of the runtime
gain is achieved by combining binary search tree and random
subsampling (166×), while the flat tail acceleration leads to a
modest acceleration of less than 10%. Nevertheless, we include
it in our approach because it introduces another parameter (ρ)
that addresses the bottleneck presented by the dimensionality
(P 2) in a unique way. Adjusting ρ lets a practitioner choose
an appropriate operating point suitable for their need in the
speed-vs-quality trade-off space without losing too much in
terms of quality.

IV. RELATED METHODS

To the best of our knowledge, there are only two other
approaches [39], [35] that have attempted to accelerate EPLL.
Unlike our approach, these methods focus on accelerating only
one of the steps of EPLL namely the Gaussian selection step.
Both use machine learning techniques to reduce its runtime.

In [39], the authors use a binary decision tree to approximate
the mapping z̃i 7→ k∗i performed in step Gaussian selection. At
each node k and level n of the tree, the patch z̃i is confronted
with a linear separator in order to decide if the recursion should
continue on the left or right child given by

〈ank , z̃i〉+ bnk > 0 (21)

where (ank , b
n
k ) are the parameters of the hyperplane for the k-th

node at level n. These separators are trained offline on all pairs
of (z̃i, k

∗
i ) obtained after the first iteration of EPLL for a given

β and noise level σ. Once a leaf has been reached, its index
provides a first estimate for the index k∗i . To reduce errors due
to large variations among the neighboring pixels, this method
further employs a Markov random fields on the resulting map
of Gaussian components which runs in O(NK) complexity.
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Hence, their overall approach reduces the complexity of step
Gaussian selection fromO(NKP 2) toO(N(PD+K)), where
D = 12 is the depth of the learned decision tree.

In [35], the authors approximate the Gaussian selection step,
by using a gating (feed-forward) network with one hidden layer

z̃i 7→ ιk+

Q∑

j=1

(
log νkj +ωkj (d̃i)

2
j

)
with d̃i = V tz̃i (22)

where Q is the size of the hidden layer. The matrix V ∈ RP×Q
encodes the weights of the first layer, ωk corresponds to the
weights of the hidden layer and they are learned discriminatively
to approximate the exact posterior probability:

z̃i 7→ ιk+
P∑

j=1

(
log νkj +

(c̃ki )2
j

νkj

)
with c̃ki = U t

kz̃i (23)

that we encounter in eq. (7) and (8). Theoretically, a new
network will need to be trained for each type of degradations,
noise levels and choices of β (recall that νkj = (Sk)jj + 1

β ).
However, the findings of [35] indicate that applying a network
learned on clean patches and with 1

β = 0 is effective regardless
of the type of degradation or the value of β. Their main
advantage can be highlighted by comparing eq. (22) and (23)
where complexity is reduced from O(NKP 2) to O(NQ(K +
P )). The authors utilize this benefit by choosing Q = 100.

Unlike these two approaches, our method does not try to learn
the Gaussian selection rule directly (which depends on both
the noise level through 1/β and the prior model through the
GMM). Instead, we simply define a hierarchical organization
of the covariance matrices Σk. In other words, while the two
other approaches try to infer the posterior probabilities (or
directly the maximum a posteriori), our approach provides
an approximation to the prior model. During runtime, this
approximation of the prior is used in the posterior for the
Gaussian selection task. Please note that the value of β does
not play a role in determining the prior. This allows us to
use the same search tree independently of the noise level,
degradations, etc. Given that the main advantage of EPLL is
that the same model can be used for any type of degradations, it
is important that this property remains true for the accelerated
version. Last but not least, the training of our search tree takes
a few minutes while the training steps for the above mentioned
approach take from several hours to a few days [39].

Apart from methods that accelerate EPLL, [20] and [19]
are two works that use strategies sharing similarities to
our proposed flat-tail and binary search tree approximations,
respectively. In [20], the authors use a flat-tail GMM to model
distribution of noisy patches. Since the GMM is learned directly
on noisy patches, the constant value of the tail corresponds
to the noise variance. This allows to improve inference when
learning on noisy datasets, estimating the noise level, and
retrieving the intrinsic dimension of each cluster. This is
different from our approach which uses GMM priors learned
on clean patch and provides flat-tail approximation using mean
of least significant coefficients. In [19], the authors introduce
a general data structure called covariance tree (CovTree). A
CovTree is constructed by first building a binary space partition
tree on patches (data points) and patches in each node are then

modeled using a Gaussian distribution. While the resulting tree
of Gaussians do share some similarities with our binary search
tree, the learning process is very different. The covariance tree
is built directly on data points, our approach is applied on
an already learned GMM. In addition, unlike CovTree, our
proposed strategy can handle any number of components (not
just powers of two) and also encodes all parameters of mixture
components including the mixing weights.

In the next section, we show that our proposed accelera-
tions produce restoration results with comparable quality to
competing methods while requiring a smaller amount of time.

V. NUMERICAL EXPERIMENTS

In this section, we present the results obtained on various
image restoration tasks. Our experiments were conducted on
standard images of size 512 × 512 such as Barbara, Boat,
Couple, Fingerprint, Lena, Mandrill and on 60 test images of
size 481×321 from the Berkeley Segmentation Dataset (BSDS)
[30] (the original BSDS test set contains 100 images, the other
40 was used for validation purposes while setting parameters
ρ and s). For denoising, we compare the performance of our
fast EPLL (FEPLL) to the original EPLL algorithm [43] and
BM3D [8]. For the original EPLL, we have included timing
results given by our own MATLAB/C implementation (EPLLc)
and the MATLAB implementation provided by the authors
(EPLLm). We also compare our restoration performance and
runtime against other fast restoration methods introduced to
achieve competitive trade-off between runtime efficiency and
image quality. These methods include RoG [35] (a method
accelerating EPLL based on feedforward networks described
in Sec. IV), and CSF [36] (a fast restoration technique using
random field-based architecture).

For deblurring experiments, we additionally compare with
field-of-experts (FoE)-based non-blind deconvolution [5] de-
noted as iPiano. We contacted the corresponding author of
[39] and got confirmation that the implementation of their
algorithm (briefly described in IV) is not publicly available.
Due to certain missing technical details, we were unable to
reimplement it faithfully. However, the results reported in [39]
indicate that their algorithm performs in par with BM3D in
terms of both PSNR and time. Hence, BM3D results can be
used as a faithful proxy for the expected performance of Wang
et al.’s algorithm [39].

To explicitly illustrate the quality vs. runtime tradeoff of
FEPLL, we include results obtained using a slightly slower
version of FEPLL referred to as FEPLL′, that does not use the
balanced search tree and uses a flat tail spectrum approximation
with ρ = 0.98. Please note that FEPLL′ is not meant to be
better or worse than FEPLL, it is just another version running
at a different PSNR/time tradeoff which allows us to compare
our algorithm to others operating in different playing fields.

Finally, to illustrate the versatility of FEPLL, we also include
results for other inverse problems such as devignetting, super-
resolution, and inpainting. Additional results can be found in
the supplementary.

Parameter settings: In our experiments, we use patches
of size P = 8× 8, and the GMM provided by Zoran et
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TABLE II
PSNR, SSIM AND EXECUTION TIME ON THE BSDS TEST SET (AVERAGE ON 60 IMAGES OF SIZE 481×321), AND ON SIX STANDARD IMAGES (EACH OF

SIZE 512×512 AND RESULTS AVERAGED OVER 10 INDEPENDENT NOISE REALIZATIONS) FOR THE PROPOSED FEPLL AND FEPLL′ , EPLL (WITH TIMING
GIVEN FOR BOTH EPLLM [43] AND OUR EPLLC), BM3D [8], CSF [36], ROG [35] AND DNCNN [41] WITH 3 DIFFERENT LEVELS OF NOISE.

σ Algo. Berkeley Barbara Boat Couple Fingerprint Lena Mandrill

PSNR/SSIM

5

FEPLL 36.8 /.959 36.9 /.958 36.6 /.930 36.6 /.944 35.4 /.984 38.2 /.941 35.1 /.959
FEPLL′ 37.1 /.962 37.1 /.959 36.7 /.933 36.8 /.946 35.5 /.984 38.3 /.943 35.2 /.960
EPLL 37.3 /.963 37.6 /.962 36.8 /.933 37.3 /.950 36.4 /.987 38.6 /.944 35.2 /.960
RoG 37.1 /.959 36.7 /.954 36.5 /.920 37.2 /.946 36.4 /.987 38.3 /.939 35.1 /.956
BM3D 37.3 /.962 38.3 /.964 37.3 /.939 37.4 /.949 36.5 /.987 38.7 /.944 35.3 /.959
CSF3×3 36.8 /.952 37.0 /.955 36.7 /.929 37.1 /.945 36.2 /.986 38.2 /.938 34.8 /.953
DnCNN 34.5 /.915 35.5 /.937 34.4 /.878 34.5 /.893 32.9 /.968 36.3 /.907 32.3 /.899

20

FEPLL 29.1 /.812 29.0 /.852 30.2 /.802 29.9 /.813 27.6 /.908 32.3 /.863 26.4 /.784
FEPLL′ 29.3 /.831 29.5 /.866 30.3 /.814 30.1 /.825 27.8 /.916 32.4 /.864 26.5 /.802
EPLL 29.5 /.836 29.8 /.872 30.6 /.821 30.4 /.834 28.3 /.924 32.6 /.869 26.7 /.807
RoG 29.4 /.828 28.4 /.838 30.5 /.815 30.3 /.827 28.3 /.922 32.5 /.865 26.5 /.794
BM3D 29.4 /.824 31.7 /.904 30.8 /.824 30.7 /.842 28.8 /.928 33.0 /.876 26.6 /.794
CSF3×3 29.0 /.805 28.3 /.821 30.2 /.802 29.9 /.812 28.0 /.916 31.8 /.837 26.1 /.778
DnCNN 30.0 /.847 31.0 /.896 31.1 /.831 31.0 /.848 28.8 /.930 33.4 /.883 27.0 /.815

60

FEPLL 24.5 /.614 23.6 /.636 25.5 /.644 25.1 /.629 22.2 /.722 27.4 /.742 21.4 /.468
FEPLL′ 24.5 /.620 23.8 /.648 25.5 /.646 25.1 /.636 22.4 /.745 27.3 /.733 21.6 /.499
EPLL 24.8 /.631 24.0 /.660 25.8 /.659 25.4 /.649 22.6 /.755 27.6 /.747 21.7 /.506
RoG 24.6 /.623 23.3 /.626 25.6 /.654 25.2 /.640 22.4 /.739 27.4 /.747 21.5 /.482
BM3D 24.8 /.637 26.3 /.757 25.9 /.671 25.6 /.666 23.8 /.801 28.2 /.778 21.7 /.500
CSF3×3 22.0 /.489 21.4 /.490 22.7 /.502 22.5 /.505 21.2 /.727 23.4 /.511 20.2 /.466
DnCNN 25.3 /.665 24.9 /.717 26.4 /.686 26.0 /.683 23.1 /.781 28.5 /.790 22.1 /.555

Time (in seconds)
FEPLL 0.27 0.38 0.38 0.37 0.36 0.38 0.38
FEPLL′ 0.96 1.28 1.28 1.28 1.26 1.27 1.28
EPLLc 43.82 71.14 71.24 71.31 71.28 71.23 71.31
EPLLm 82.68 145.15 143.68 144.30 144.13 144.15 143.86
RoG 1.16 1.92 1.92 1.93 1.91 1.93 1.92
BM3D 1.60 2.52 2.68 2.59 2.17 2.61 2.64
CSF3×3 0.87 1.09 1.09 1.13 1.09 1.09 1.08
CSFgpu

3×3 0.38 0.39 0.39 0.39 0.39 0.39 0.39
DnCNN 2.09 3.57 3.55 3.60 3.60 3.60 3.61
DnCNNgpu 0.28 0.63 0.63 0.64 0.63 0.64 0.64

(a) Reference x

22.1 / .368

(b) Noisy image y

30.6 / .872 (1.68s)

(c) BM3D result x̂

30.6 / .873 (44.88s)

(d) EPLLc result x̂

30.2 / .862 (0.36s)

(e) FEPLL result x̂

Fig. 5. Illustration of a denoising problem with noise standard deviation σ = 20. Part of: (a) the original image (b) its noisy version (c-e) denoised results of
competitive methods with PSNR/SSIM and time (inset).

al. [43] with K = 200 components. The 200-components
GMM is progressively collapsed into smaller GMMs with
K=64, 32, 16, 8, 4, 2 and 1, and then all Gaussians of the tree
are modified offline by flat-tail approximations with ρ=0.95.
The final estimate for the restored image is obtained after 5
iterations of our algorithm with β set to λσ−2{1, 4, 8, 16, 32}
where λ = min{N−1||AtA||2F ||A||−2

2 , 250σ2}. For denoising,
where A is identity, λ = 1 which boils down to the setting
used by Zoran et al. [43]. For inverse problems, we found
that the initialization x̂ = (AtA+ 0.2σ2/λ∇)−1Aty, with ∇

the image Laplacian, provides relevant solutions whatever the
linear operator A and the noise level σ2. While the authors of
[43] do not provide any further direction for setting β and the
initialization in general inverse problems, our proposed setting
leads to competitive solutions irrespective of A and σ2. For
BM3D [8], EPLLm [43], RoG [35], CSF [36] and iPiano [5]
we use the implementations provided by the original authors
and use the default parameters prescribed by them.

Denoising: Table II shows the quantitative performances
of FEPLL on the denoising task compared to EPLLm [43],
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Fig. 6. (a) PSNR and (b) SSIM versus time for different restoration methods
in a denoising problem with noise standard deviation σ = 20. PSNR, SSIM
and time are averaged on the 60 BSDS test images, each of size 481× 321.
Optimal methods tend to be in the top-left corner.

EPLLc (our own MATLAB/C implementation), RoG [35]
BM3D [8], CSF [36] and DnCNN [42]. We evaluate the
algorithms under low-, mid- and high-noise settings by using
Gaussian noise of variance 52, 202 and 602, respectively. The
result labeled “Berkeley” is an average over 60 images from the
BSDS testing set [30]. All numbers are averages obtained on
10 independent noise realizations. Figures 6 provide graphical
representations of these performances in terms of PSNR/SSIM
versus computation time for the BSDS images for the noise
variance setting σ2 = 202. In this figure, we have also
included a recent approach based on weighted nuclear norm
minimization (WNNM) [18]. On average, FEPLL results are
0.5dB below regular EPLL and BM3D; however, FEPLL is
approximately 7 times faster than BM3D, 170-200 times faster
than EPLLc and over 350 times faster than EPLLm. FEPLL
outperforms the faster CSF algorithm in terms of both PSNR
and time. In this case, FEPLL is even faster than the GPU
accelerated version of CSF (CSFgpu). Our approach is 4 times
faster than RoG with a PSNR drop of 0.1-0.3dB. Nevertheless,
if we slow down FEPLL to FEPLL′, we can easily neutralize
this quality deficit while still being faster than RoG. While
DnCNN offers better results, DnCNN (CPU) is about 10×
slower than FEPLL (also CPU). Our FEPLL (CPU) is also
slightly faster than DnCNN (GPU). WNNM offers comparable
results to FEPLL’ but is about 500× slower. Note that these
accelerations are obtained purely based on the approximations
and no parallel processing is used. Also, in most cases, a loss

TABLE III
PSNR, SSIM AND EXECUTION TIME ON THE BSDS TEST SET (AVERAGE OF
60 IMAGES OF SIZE 481×321), AND ON STANDARD IMAGES (AVERAGE OF 6
IMAGES OF SIZE 512×512) FOR THE PROPOSED FEPLL AND FEPLL′ , CSF
[36], ROG [35] AND CHEN ET AL.’S [5] METHOD THAT IS CALLED iPiano IN
THEIR IMPLEMENTATION. THE BLUR KERNEL USED IS THE ONE PROVIDED
IN ALONG WITH IPIANO IMPLEMENTATION AND NOISE IS SET TO σ = 0.5.

Algo. Berkeley Classic
PSNR/SSIM Time (s) PSNR/SSIM Time (s)

iPiano 29.5 / .824 29.53 29.9 / .848 59.10
CSFpw 30.2 / .875 0.50 (0.14*) 30.5 / 0.870 0.47 (0.14*)
RoG 31.3 / .897 1.19 31.8 / .915 2.07
FEPLL 33.1 / .928 0.40 32.8 / .931 0.46
FEPLL’ 33.2 / .930 1.01 33.0 / .933 1.82

of 0.5dB may not affect the visual quality of the image. To
illustrate this, we show a sample image denoised by BM3D,
EPLL and FEPLL in Fig. 5.

Deblurring: Table III shows the performance of FE-
PLL when used for deblurring as compared to RoG [35],
iPiano [5] and CSF [36]. Once again, FEPLL uses Alg. 1
with operator A in the Image estimation step defined by
Ax = F−1[F [h]�F [x]], where F is the fast Fourier transform
and F−1 its inverse, � indicates element-wise product and
h is the blur kernel. For these experiments, we use the blur
kernel provided by Chen et al. [5] along with their algorithm
implementation. The results under the label “Berkeley” are
averaged over 60 images from the BSDS test dataset [30].
The results labeled “Classic” is averaged over the six standard
images (Barbara, Boat, Couple, Fingerprint, Lena and Mandrill).
FEPLL consistently outperforms its efficient competitors both
in terms of quality and runtime. Although the GPU version of
CSF is faster, the restoration quality obtained by CSF is 2-3dB
lower than FEPLL. The proposed algorithm outperforms RoG
by 1-1.8dB while running 3 and 5 times faster on “Berkeley”
and “Classic” datasets, respectively.

The superior qualitative performance of FEPLL is demon-
strated in Fig. 7. For brevity, we only include the deblurring
results obtained from the top competitors of FEPLL algorithm
in terms of both quality and runtime. As observed, FEPLL
provides the best quality vs. runtime efficiency trade-off.
In contrast, a deblurring procedure using the regular EPLL
is around 350 times slower than FEPLL with the original
implementation [43]. Specifically, on the sample image shown
in Fig. 7, EPLL provides a qualitatively similar result (not
shown in the figure) with a PSNR of 32.7 dB and SSIM of
0.922 in 142 seconds.

Other inverse problems: Unlike BM3D, EPLL and FEPLL
are more versatile and handle a wide range of inverse problems
without any change in formulation. In Fig. 8, we show the
results obtained by FEPLL on problems such as (a) devignetting,
which involves a progressive loss of intensity, (b) super-
resolution and (c) inpainting. To show the robustness of our
method, the input images of size 481×321 were degraded with
zero-mean Gaussian noise with σ= 2. All of the restoration
results were obtained within/under 0.4 seconds and with the
same set of parameters explained above (cf. Parameter settings).
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(a) Reference x / Blur kernel
24.9 / .624

(b) Blurry image y

31.4 / .891 (0.17∗s)

(c) CSFpw result x̂

32.2 / .910 (1.17s)

(d) RoG result x̂

32.7 / .924 (0.46s)

(e) FEPLL result x̂

Fig. 7. Illustration of a deblurring problem with noise standard deviation σ = 0.5. Part of: (a) the original image and the blur kernel (inset), (b) blurry version
(c-e) deblurred results of competitive methods with PSNR/SSIM and time (inset). The ’*’ indicates runtime on GPU while others are CPU times.

VI. CONCLUSION

In this paper, we accelerate EPLL by a factor greater than
100 with negligible loss of image quality (less than 0.5dB).
This is achieved by combining three independent strategies: a
flat tail approximation, matching via a balanced search tree,
and stochastic patch sampling. We show that the proposed
accelerations are effective in denoising and deblurring problems,
as well as in other inverse problems such as super-resolution
and devignetting. An important distinction of the proposed
accelerations is their genericity: the accelerated EPLL prior
can be applied to many restoration tasks and various signal-
to-noise ratios, in contrast to existing accelerations based on
learning techniques applied to specific conditions (such as
image size, noise level, blur kernel, etc.) and that require an
expensive re-training to address a different problem.

Since the speed-up is achieved solely by reducing the
algorithmic complexity, we believe that further inclusion of
accelerations based on parallelization and/or GPU implemen-
tations will allow for real-time video processing. Moreover,
the acceleration techniques introduced in this work are general
strategies that can be used to speed up other image restoration
and/or related machine learning algorithms. For reproducibility
purposes, the code of FEPLL is made available on GitHub1.
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This document gives additional results and analysis of FEPLL algorithm described on “Accelerating
GMM-based patch priors for image restoration: Three ingredients for a 100× speed-up”.

1 Additional analysis

Flat tail approximation based acceleration First, we demonstrate the superiority of the
proposed flat tail approximation over the commonly used approach of ignoring the least significant
eigendirections. In Supplemental Figure 1, we show that the näıve approach of zeroing out (or
ignoring) coefficients of the least significant eigendirections is inferior to the proposed approach of
replacing these coefficients by the mean. Our approach can provide reasonably good performance
even for very low values of ρ. For example, when ρ = 0.20 our approach leads to a PSNR of 27.5
compared to 25.1 obtained by the zeroing out strategy.

In a second experiment, we analyze the influence of the parameter ρ ∈ (0, 1] used in the flat
tail approximation. Supplemental Figure 2 shows the curve of PSNR as a function of speed-up for
varying values of ρ. This experiment is repeated twice either with or without enabling the other two
accelerations. Visual results highlight that as ρ decreases to zero, residual noise starts appearing
around salient structures. From these experiments, the choice of ρ = 0.95 leads to a good trade-off in
terms of speed and visual quality for a drop of PSNR lower than 0.2dB.

Search tree acceleration In the second supplementary experiment, we analyze the influence of
the clustering method used to successively collapse the GMM model at a given level into a smaller
model at a lower level. We compare the proposed approach based on Multiple Traveling Salesmen
Problem [2] (MTSP) using the symmetric KL divergence as a semi-metric to a hierarchical GMM
clustering algorithm similar to K-means based on KL divergence as proposed in [1] and the standard
hierarchical agglomerated clustering (HAC) using symmetric KL divergence. Supplemental Figure
3 shows that MTSP leads to a well-balanced tree, with a height of 7 (almost a binary tree except
for the last level due to 200 mixture components). In comparison, using [1]’s K-Means inspired
algorithm provides a tree of height 7 but is not balanced and HAC leads to a tree of height 59 with
comb structured branches. Please note that a shorter tree is preferred for a faster Gaussian selection
step. The tree built using the proposed MTSP strategy not only leads to better PSNR/SSIM, but
also provides a more stable computation time for all images of a fixed size (irrespective of content)
due to its balanced structure. This is confirmed in Supplemental Figure 4 that displays box-plots
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Supplemental Figure 1: Comparison between the näıve approach of zeroing out (ignoring) coeffi-
cients of the least significant eigendirections versus the proposed flat-tail approximation approach of
replacing the coefficients with mean. Performance is compared in terms of PSNR obtained while
denoising with different values of ρ (percent energy captured) used for thresholding singular values.
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Supplemental Figure 2: Top: PSNR as a function of speed-up for varying values of the proportion
ρ used in the flat tail approximation when (a) no other accelerations are used and (b) the other two
accelerations are also used. The parameter offering the best speed-up for a drop of at most −0.2dB
is indicated. Bottom: (c) a noisy image with σ=20 and (d-g) FEPLL results obtained for increasing
value of ρ (includes the other two accelerations as well).

obtained from computation time statistics based on five independent runs of the algorithm on 40
different images of the BSDS dataset (all images have the same size). In contrast to our MTSP based
strategy, the trees built using [1]’s method and HAC strategy lead to computation times that vary
drastically depending on the image content.

Stochastic patch sub-sampling The last analysis focuses on the influence of the period 1 6
s 6
√
P used in the stochastic patch sub-sampling. In addition, we also compare against regular

sub-sampling. Supplemental Figure 5 shows the curve of PSNR as a function of speed-up for varying
values of s where P = 8. The experiment has been performed in both cases where either the other
two accelerations are disabled or enabled. Visual results highlight that as s increases to

√
P , blocky

2



artifacts start appearing especially when using a regular patch sub-sampling. In comparison, the
stochastic sub-sampling leads to competing results even for s =

√
P , which corresponds to a regular

grid that is globally shifted by a random shift at each iteration of FEPLL. These experiments show
that the choice of s=6 leads to good trade-off in terms of speed and visual quality for a PSNR drop
of less than 0.2dB.

2 Additional results

Denoising results As the first set of additional results, we provide the visual results obtained on
five of the standard images: Barbara, Boat, Couple, Fingerprint, Lena and Mandrill, in the setting
σ=20. Results are displayed in Supplemental Figure 6.

Deconvolution results As the second set additional results, we show deconvolution results for
five of testing images from the BSDS dataset [3] with a Gaussian blur setting of 3 pixels (standard
deviation 3) and noise level σ=2. Results are displayed in Supplemental Figure 7.

Super-resolution results As the last set of additional results, super-resolution results are given
for five of the testing images from the BSDS dataset [3] for super-resolution by a factor of 3 with a
noise level of σ=2. Note that the sub-sampling operator also includes a small Gaussian blur of 0.5
pixels as well as a Kaiser window apodization for anti-aliasing. See Supplemental Figure 8.
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(a) height: 7 (b) height: 7 (c) height: 59

22.1 / .347 30.4 / .777 (.31s) 30.3 / .768 (.40s) 29.9 / .749 (.46s)

22.1 / .589

(d) Noisy

27.2 / .796 (.30s)

(e) MTSP

27.1 / .783 (.35s)

(f) K-Means

26.8 / .761 (.61s)

(g) HAC

Supplemental Figure 3: Influence of clustering techniques on the search tree and the results. (left)
Multiple Traveling Salesmen Problem [2] (MTSP), (center) Hierarchical K-means like clustering
proposed in [1] and (right) Hierarchical agglomerated clustering (HAC). (a-c) The corresponding
trees. (d-i) The corresponding results on two denoising problems with σ = 20 involving two different
images of size 481×321. PSNR/SSIM and time are indicated for each result.

Supplemental Figure 4: Timing scatter obtained over 5 runs for 40 images using Gaussian
trees built using different clustering methods we tested. “MTSP” refers to the Multiple Traveling
Salesman (proposed), “K-Means” is the method introduced by [1] and “HAC” is a simple Hierarchical
agglomerative clustering approach.
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Supplemental Figure 5: PSNR as a function of speed-up for varying values of (top) the patch
extraction expected period s when (a) no other accelerations are used and (b) the other two
accelerations are also used. Stochastic and regular sub-sampling are compared. The parameter
offering the best speed-up within a drop of at most −0.2dB is indicated. (c) A reference image, (h)
its noisy version with σ = 20 and results obtained for increasing value of s (including the other two
accelerations as well) for (d-g) the stochastic version and (i-l) the regular version.

5



22.1 / .476 29.0 / .854 (0.41s) 29.8 / .873 (82.5s) 31.7 / .904 (3.64s)
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(a) Reference
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Supplemental Figure 6: Denoising results where σ=20 obtained on five standard images, from
top to bottom: Barbara, Boat, Couple, Fingerprint, Lena and Mandrill.
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(a) Reference image x

25.2 / .609

(b) Blurry image y

27.6 / .697 (0.39s)

(c) Deblurred result x̂

Supplemental Figure 7: Illustration of a deblurring problem of a Gaussian convolution of width 3
pixels with a noise of standard deviation σ = 2. (a) The original high-resolution (HR) image x. (b)
The low-resolution (LR) image y = Ax + w and its bicubic interpolation. (c) The super-resolution
result x̂ obtained by our Fast EPLL.
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(b) Bicubic / LR image y
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(c) Super-resolution result x̂

Supplemental Figure 8: Illustration of a super-resolution by a factor ×3 with a noise of standard
deviation σ = 2. (a) The original high-resolution (HR) image x. (b) The low-resolution (LR) image
y = Ax + w and its bicubic interpolation. (c) The super-resolution result x̂ obtained by our Fast
EPLL.
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