On the convergence of gradient descent

Charles Deledalle

November 13, 2018

This document provides two main results of convergence for gradient descent.

1 Convergence

We want to prove the following theorem.

Theorem 1. Let $F: \mathbb{R}^N \to R$ be differentiable with L Lipschitz gradient:

$$\|\nabla x - \nabla y\| \leqslant L\|x - y\|, \quad \forall x \in \mathbb{R}^N \quad and \quad \forall y \in \mathbb{R}^N$$
 (1)

and be lower bounded

$$\inf_{x \in \mathbb{R}^N} F(x) = C > -\infty . \tag{2}$$

Then, provided $0 < \gamma < \frac{2}{L}$, the gradient descent sequence defined as:

$$x^{t+1} = x^t - \gamma \nabla F(x^t) \tag{3}$$

converges to a stationary point:

$$\lim_{t \to \infty} \nabla F(x^t) = 0 \ . \tag{4}$$

Remark 1. F does not need to be convex. Nevertheless, to prove the theorem, we will need to prove that $G(x) = \frac{L}{2} ||x||^2 - F(x)$ is convex. We will need two intermediate lemmas for this.

1.1 Non-decreasing derivative \Rightarrow Convexity (1d)

Lemma 1. Let $g: \mathbb{R} \to \mathbb{R}$ be differentiable with non-decreasing derivative, i.e.:

$$g'(x) \geqslant g'(y), \quad \forall x \geqslant y \in \mathbb{R}$$
 (5)

then g is convex

$$g(\lambda x_1 + (1 - \lambda)x_5) \leqslant \lambda g(x_1) + (1 - \lambda)g(x_5), \quad \forall x_1 \in \mathbb{R}, \forall x_5 \in \mathbb{R} \quad and \quad \lambda \in [0, 1] . \tag{6}$$

Proof. Let $\lambda \in [0,1]$, $x_1 \in \mathbb{R}$ and $x_5 \in \mathbb{R}$.

- If $x_5 = x_1$ or $\lambda = 0$ or $\lambda = 1$ the result is trivial: (6) holds true.
- Consider $x_5 > x_1$ and $0 < \lambda < 1$. Let $x_3 = \lambda x_1 + (1 \lambda)x_5$. We have $x_1 \le x_3 \le x_5$. The mean value theorem claims that there exist x_2, x_4 such that $x_1 \le x_2 \le x_3 \le x_4 \le x_5$ and

$$\frac{g(x_3) - g(x_1)}{x_3 - x_1} = g'(x_2) \quad \text{and} \quad \frac{g(x_5) - g(x_3)}{x_5 - x_3} = g'(x_4)$$
 (7)

Since $x_2 \leqslant x_4$, $g'(x_2) \leqslant g'(x_4)$ by assumption, and then

$$\frac{g(x_3) - g(x_1)}{x_3 - x_1} \leqslant \frac{g(x_5) - g(x_3)}{x_5 - x_3} \tag{8}$$

$$\frac{g(x_3) - g(x_1)}{x_3 - x_1} \leqslant \frac{g(x_5) - g(x_3)}{x_5 - x_3}$$

$$\Rightarrow \frac{g(x_3) - g(x_1)}{(1 - \lambda)(x_5 - x_1)} \leqslant \frac{g(x_5) - g(x_3)}{\lambda(x_5 - x_1)}$$
(by definition of x_3)
(9)

$$\Rightarrow \frac{g(x_3) - g(x_1)}{(1 - \lambda)} \leqslant \frac{g(x_5) - g(x_3)}{\lambda} \qquad \text{(since } x_5 > x_1)$$

$$\Rightarrow \lambda g(x_3) - \lambda g(x_1) \leqslant (1 - \lambda)g(x_5) - (1 - \lambda)g(x_3)$$
 (since $0 < \lambda < 1$)

$$\Rightarrow g(x_3) \leqslant \lambda g(x_1) + (1 - \lambda)g(x_5) \tag{12}$$

Then (6) holds true.

• If $x_1 < x_5$, the exact same reasoning applies.

Then g is convex.

Remark 2. The reciprocal holds true.

Monotone gradient \Rightarrow Convexity (Nd)

Lemma 2. Let $G: \mathbb{R}^N \to \mathbb{R}$ be differentiable with monotone gradient, i.e.

$$\langle \nabla G(x) - \nabla G(y), x - y \rangle \geqslant 0, \quad \forall x \in \mathbb{R}^N \quad and \quad \forall y \in \mathbb{R}^N$$
 (13)

then G is convex, i.e.:

$$G(\lambda x + (1 - \lambda)y) \le \lambda G(x) + (1 - \lambda)G(y), \quad \forall x \in \mathbb{R}^N, \forall y \in \mathbb{R}^N \quad and \quad \lambda \in [0, 1].$$
 (14)

Proof. Let $x \in \mathbb{R}^N$ and $d \in \mathbb{R}^N$. Let $h : \mathbb{R} \to \mathbb{R}$ be defined as

$$h(t) = G(x + td), \quad \text{for all } t \in \mathbb{R}$$
 (15)

We have

$$h'(t) = \frac{\partial G(x+td)}{\partial t} = \frac{\partial G(x+td)}{\partial x+td} \frac{\partial x+td}{\partial t} = \left[\nabla G(x+td)\right]^T d = \langle \nabla G(x+td), d\rangle \tag{16}$$

Let $t_1 > t_2$. By assumption

$$\langle \nabla G(x + t_1 d) - \nabla G(x + t_2 d), (t_1 - t_2) d \rangle \geqslant 0 \tag{17}$$

$$\Rightarrow \langle \nabla G(x + t_1 d) - \nabla G(x + t_2 d), d \rangle \geqslant 0$$
 (since $t_1 \geqslant t_2$)

$$\Rightarrow h'(t_1) \geqslant h'(t_2) \tag{19}$$

Then, using Lemma 1, h is convex. Then for all $t_1 \in \mathbb{R}$, $t_2 \in \mathbb{R}$ and $\lambda \in [0,1]$

$$G(x + (\lambda t_1 + (1 - \lambda)t_2)d) \le \lambda G(x + t_1d) + (1 - \lambda)G(d + t_2d)$$
(20)

$$\Rightarrow G(\lambda(x+t_1d)+(1-\lambda)(x+t_2d)) \leqslant \lambda G(x+t_1d)+(1-\lambda)G(x+t_2d)$$
(21)

In particular it holds for $t_1 = 0$, $t_2 = 1$ and d = y - x, which concludes the proof.

Remark 3. The reciprocal holds true.

1.3 Convexity \Rightarrow Lower bounded by linear functions

Lemma 3. Let $G: \mathbb{R}^N \to \mathbb{R}$ be differentiable and convex then:

$$G(y) \geqslant \underbrace{G(x) + \langle \nabla G(x), y - x \rangle}_{1st \ order \ Taylor \ expansion}, \quad \forall x \in \mathbb{R}^N \quad and \quad y \in \mathbb{R}^N . \tag{22}$$

Proof. Let $x \in \mathbb{R}^N$ and $d \in \mathbb{R}^N$. By definition of convexity, for all $t \in (0,1]$

$$G(x+td) \le (1-t)G(x) + tG(x+d) \tag{23}$$

$$\Rightarrow G(x+td) - G(x) \leqslant -tG(x) + tG(x+d) \tag{24}$$

$$\Rightarrow \quad \frac{G(x+td)-G(x)}{t} \leqslant G(x+d)-G(x) \tag{25}$$

Since it is true for all $t \in (0,1]$, it is also true for $t \to 0$ since G is differentiable and then continuous on \mathbb{R}^N . Remark that by definition

$$\lim_{t \to 0} \frac{G(x+td) - G(x)}{t} = \nabla G(x)^T d \tag{26}$$

Consider d = y - x and then

$$\nabla G(x)^T d \leqslant G(x+d) - G(x) \tag{27}$$

$$\Rightarrow \nabla G(x)^T (y - x) \leqslant G(y) - G(x) \tag{28}$$

$$\Rightarrow G(x) + \nabla G(x)^{T} (y - x) \leqslant G(y) . \tag{29}$$

1.4 Lipschitz gradient \Rightarrow Upper-bounded by quadratic functions

Lemma 4. Let $F: \mathbb{R}^N \to \mathbb{R}$ be differentiable with L Lipschitz gradient:

$$\|\nabla F(x) - \nabla F(y)\| \leqslant L\|x - y\|, \quad \forall x, y, \tag{30}$$

then

 $F(y) \leqslant \underbrace{F(x) + \langle \nabla F(x), y - x \rangle}_{1st \ order \ Taylor \ expansion} + \underbrace{\frac{L}{2} \|y - x\|^2}_{Residual \ bound} . \tag{31}$

Proof. Let $G(x) = \frac{L}{2} ||x||^2 - F(x)$, for all x. Remark that

$$\nabla G(x) = Lx - \nabla F(x) . \tag{32}$$

By assumption, we have for any x, y:

$$\|\nabla F(x) - \nabla F(y)\| \leqslant L\|x - y\| \tag{33}$$

$$\Rightarrow \|\nabla F(x) - \nabla F(y)\| \|x - y\| \leqslant L \|x - y\|^2 \qquad \text{(Multiply both sides by } \|x - y\|\text{)} \tag{34}$$

$$\Rightarrow \langle \nabla F(x) - \nabla F(y), x - y \rangle \leqslant L \|x - y\|^2$$
 (Cauchy-Schwartz inequality) (35)

$$\Rightarrow \langle \nabla F(x) - \nabla F(y), x - y \rangle \leqslant L\langle x - y, x - y \rangle \tag{36}$$

$$\Rightarrow \langle -[Lx - \nabla F(x)] + [Ly - \nabla F(y)], x - y \rangle \leqslant 0 \tag{37}$$

$$\Rightarrow \langle [Lx - \nabla F(x)] - [Ly - \nabla F(y)], x - y \rangle \geqslant 0 \tag{38}$$

$$\Rightarrow \langle \nabla G(x) - \nabla G(y), x - y \rangle \geqslant 0 \tag{39}$$

Since the last inequality hold for any x, y, using Lemma 2, it means that G is convex. Next, based on Lemma 3, we get

$$G(y) \geqslant G(x) + \nabla G(x)^{T} (y - x) \tag{40}$$

$$\Rightarrow \frac{L}{2} \|y\|^2 - F(y) \geqslant \frac{L}{2} \|x\|^2 - F(x) + (Lx - \nabla F(x))^T (y - x) \tag{41}$$

$$\Rightarrow \quad \frac{L}{2} \|y\|^2 - F(y) \geqslant \frac{L}{2} \|x\|^2 - F(x) + L\langle x, y - x \rangle - \langle \nabla F(x), y - x \rangle \tag{42}$$

$$\Rightarrow \frac{L}{2} \|y\|^2 + \frac{L}{2} \|x\|^2 - L\langle x, y \rangle \geqslant F(y) - F(x) - \langle \nabla F(x), y - x \rangle \tag{43}$$

$$\Rightarrow \frac{L}{2} \|x - y\|^2 \geqslant F(y) - F(x) - \langle \nabla F(x), y - x \rangle \tag{44}$$

Remark 4. If fact there is an equivalence between (30) and (31), see for instance https://xingyuzhou.org/blog/notes/Lipschitz-gradient.

1.5 Proof of Theorem 1

Proof. Since F is differentiable with L Lipschitz gradient, based on Lemma 4, we have

$$F(x^{t+1}) \leqslant F(x^t) + \langle \nabla F(x^t), x^{t+1} - x^t \rangle + \frac{L}{2} \|x^{t+1} - x^t\|^2$$
(45)

By definition of gradient descent

$$x^{t+1} - x^t = \gamma \nabla F(x^t) \tag{46}$$

Then

$$F(x^{t+1}) \leqslant F(x^t) - \langle \nabla F(x^t), \, \gamma \nabla F(x^t) \rangle + \frac{L}{2} \|\gamma \nabla F(x^t)\|^2 \tag{47}$$

$$\leq F(x^t) - \gamma \|\nabla F(x^t)\|^2 + \frac{L\gamma^2}{2} \|\nabla F(x^t)\|^2$$
 (48)

$$\leqslant F(x^t) - \left(\gamma - \frac{L\gamma^2}{2}\right) \|\nabla F(x^t)\|^2 \tag{49}$$

If $\|\nabla F(x^t)\| = 0$, we found a solution and GD has converged. Otherwise $\|\nabla F(x^t)\| > 0$, and we have

$$\left(\gamma - \frac{L\gamma^2}{2}\right) \|\nabla F(x^t)\|^2 \leqslant F(x^t) - F(x^{t+1}) \tag{50}$$

We need to characterize when the left hand side is positive

$$\gamma - \frac{L\gamma^2}{2} > 0 \Leftrightarrow 1 - \frac{L\gamma}{2} > 0$$
 (since $\gamma > 0$)

$$\Leftrightarrow \quad \frac{L\gamma}{2} < 1 \quad \Leftrightarrow \quad L\gamma < 2 \quad \Leftrightarrow \quad \gamma < \frac{2}{L} \tag{52}$$

Then, since $0 < \gamma < \frac{2}{L}$, we have

$$0 < \left(\gamma - \frac{L\gamma^2}{2}\right) \|\nabla F(x^t)\|^2 \leqslant F(x^t) - F(x^{t+1}) \tag{53}$$

Then $F(x^t)$ is decresing with t. By summing over $t = 0 \dots T$, using telescopic cancellation, and using the assumption that $F(x) \ge C$, we get

$$0 < \underbrace{\left(\gamma - \frac{L\gamma^2}{2}\right)}_{t=0} \sum_{t=0}^{T} \|\nabla F(x^t)\|^2 \leqslant F(x^0) - F(x^{T+1}) \leqslant \underbrace{F(x^0) - C}_{\text{constant wrt } T}, \quad \text{for all } T > 0.$$
 (54)

Thus,
$$0 < \sum_{t=0}^{\infty} \|\nabla F(x^t)\|^2 < \infty$$
 which yields $\lim_{t \to \infty} \|\nabla F(x^t)\| = 0$.

2 Speed of convergence

We want to prove the following theorem.

Theorem 2. Let $F: \mathbb{R}^N \to \mathbb{R}$ be differentiable with L Lipschitz gradient, lower bounded and convex. Then, provided $0 < \gamma < \frac{2}{L}$, the gradient descent sequence defined as:

$$x^{t+1} = x^t - \gamma \nabla F(x^t) \tag{55}$$

converges to a stationary point x^*

$$\nabla F(x^*) = 0 \tag{56}$$

with the speed

$$F(x^t) - F(x^*) \le \frac{\|x^0 - x^*\|^2}{\left(\gamma - \frac{L\gamma^2}{2}\right)t}$$
 (57)

Corollary 1. Under the assumptions of Theorem 2 but with $0 < \gamma < \frac{1}{L}$, the speed becomes

$$F(x^t) - F(x^*) \leqslant \frac{2L\|x^0 - x^*\|^2}{t}$$
 (58)

2.1 Convexity + Lipschitz gradient \Rightarrow Co-coercivity of gradient

Lemma 5. Let $F: \mathbb{R}^N \to \mathbb{R}$ be differentiable with L Lipschitz gradient, and convex. Then we have co-coercivity of the gradient, i.e.:

$$\frac{1}{L} \|\nabla F(x) - \nabla F(y)\|^2 \leqslant \langle \nabla F(x) - \nabla F(y), x - y \rangle \tag{59}$$

Proof. Let $x \in \mathbb{R}^N$, $y \in \mathbb{R}^N$ and $z \in \mathbb{R}^N$. Since F has L Lipschitz gradient, we obtain by Lemma 4:

$$F(z) \leqslant F(x) + \langle \nabla F(x), z - x \rangle + \frac{L}{2} ||z - x||^2$$

$$\tag{60}$$

$$\Rightarrow F(z) - F(x) \leqslant \langle \nabla F(x), z - x \rangle + \frac{L}{2} ||z - x||^2$$
(61)

Since F is convex, we obtain by Lemma 3:

$$F(z) \geqslant F(y) + \langle \nabla F(y), z - y \rangle \tag{62}$$

$$\Rightarrow F(y) - F(z) \leqslant -\langle \nabla F(y), z - x \rangle - \langle \nabla F(y), x - y \rangle \tag{63}$$

$$\Rightarrow F(y) - F(z) + \langle \nabla F(y), x - y \rangle \leqslant -\langle \nabla F(y), z - x \rangle \tag{64}$$

Adding (61) and (64) leads to

$$F(y) - F(x) + \langle \nabla F(y), x - y \rangle \leqslant \underbrace{\langle \nabla F(x) - \nabla F(y), z - x \rangle + \frac{L}{2} \|z - x\|^2}_{=H(z)}$$

$$(65)$$

Since the right hand side is true for all z, we want to find z that minimizes this quantity in order to get the tightest upper-bound. We have

$$\nabla H(z) = L(z-x) + \nabla F(x) - \nabla F(y)$$
 and $\operatorname{Hessian}[H(z)] = L \cdot \operatorname{Id}$ (66)

Then H is convex and quadratic, and the minimum is reached at:

$$z^* = x - \frac{1}{L} \left(\nabla F(x) - \nabla F(y) \right) \tag{67}$$

Plugging z^* in the previous equation leads to

$$F(y) - F(x) + \langle \nabla F(y), x - y \rangle \leqslant -\frac{1}{L} \langle \nabla F(x) - \nabla F(y), \nabla F(x) - \nabla F(y) \rangle + \frac{1}{2L} \|\nabla F(x) - \nabla F(y)\|^2$$

$$\leqslant -\frac{1}{2L} \|\nabla F(x) - \nabla F(y)\|^2$$

$$(69)$$

We can swap the role of x and y, then

$$F(x) - F(y) + \langle \nabla F(x), y - x \rangle \leqslant -\frac{1}{2L} \| \nabla F(x) - \nabla F(y) \|^2$$

$$\tag{70}$$

Summing both leads to

$$\langle \nabla F(x) - \nabla F(y), x - y \rangle \geqslant \frac{1}{L} \| \nabla F(x) - \nabla F(y) \|^2$$
 (71)

Remark 5. For convex functions, the reciprocal holds true.

Remark 6. A direct consequence is that: $\langle \nabla F(x), x - x^* \rangle \ge \frac{1}{L} \|\nabla F(x)\|^2$.

2.2 Proof of Theorem 2

Proof. Since F is differentiatiable, convex with L Lipschitz gradient, then, by Lemma 5 and using the definition of x^{t+1} , we have

$$\|x^{t+1} - x^*\|^2 = \|x^t - x^* - \gamma \nabla F(x^t)\|^2 \tag{72}$$

$$= \|x^t - x^*\|^2 + \gamma^2 \|\nabla F(x^t)\|^2 - 2\gamma \langle \nabla F(x^t), x^t - x^* \rangle$$
 (73)

$$\leq \|x^t - x^*\|^2 + \left(\gamma^2 - \frac{2\gamma}{L}\right) \|\nabla F(x^t)\|^2$$
 (74)

As $\gamma > 0$, we have that

$$\gamma^2 - \frac{2\gamma}{L} < 0 \Rightarrow \gamma - \frac{2}{L} < 0 \Rightarrow \gamma < \frac{2}{L} \tag{75}$$

Then, since $0 < \gamma < 2/L$, we have $\gamma^2 - \frac{2\gamma}{L} < 0$, and then

$$||x^{t+1} - x^*|| < ||x^t - x^*|| \le \dots \le ||x^0 - x^*||$$
 (76)

By Lemma 3, since F is differentiable and convex we also have

$$F(x^{\star}) \geqslant F(x^t) + \langle \nabla F(x^t), x^{\star} - x^t \rangle \tag{77}$$

$$\Rightarrow F(x^t) - F(x^*) \leqslant \langle \nabla F(x^t), x^t - x^* \rangle \tag{78}$$

$$\Rightarrow F(x^t) - F(x^*) \leqslant \|\nabla F(x^t)\| \|x^t - x^*\|$$
 (Cauchy-Schwartz inequality) (79)

$$\Rightarrow F(x^t) - F(x^*) \leqslant \|\nabla F(x^t)\| \|x^0 - x^*\|$$
(80)

$$\Rightarrow \frac{(F(x^t) - F(x^*))^2}{\|x^0 - x^*\|^2} \leqslant \|\nabla F(x^t)\|^2 \tag{81}$$

$$\Rightarrow -\|\nabla F(x^t)\|^2 \leqslant -\frac{(F(x^t) - F(x^*))^2}{\|x^0 - x^*\|^2}$$
(82)

Since F is differentiable with L Lipschitz gradient, based on Lemma 4, we have

$$F(x^{t+1}) \leqslant F(x^t) + \langle \nabla F(x^t), x^{t+1} - x^t \rangle + \frac{L}{2} \|x^{t+1} - x^t\|^2$$
(83)

$$\Rightarrow F(x^{t+1}) \leqslant F(x^t) - \langle \nabla F(x^t), \gamma \nabla F(x^t) \rangle + \frac{L}{2} \|\gamma \nabla F(x^t)\|^2$$
(84)

$$\Rightarrow F(x^{t+1}) \leqslant F(x^t) - \gamma \|\nabla F(x^t)\|^2 + \frac{L\gamma^2}{2} \|\nabla F(x^t)\|^2$$
(85)

$$\Rightarrow F(x^{t+1}) \leqslant F(x^t) - \left(\gamma - \frac{L\gamma^2}{2}\right) \|\nabla F(x^t)\|^2 \tag{86}$$

In particular, since $F(x^*) \leq F(x)$, we have

$$0 < \gamma < \frac{2}{L} \Rightarrow \gamma < \frac{2}{L} \Rightarrow 1 - \frac{L\gamma}{2} > 0 \Rightarrow \gamma - \frac{L\gamma^2}{2} > 0 \quad \text{(since } \gamma > 0\text{)}$$
(87)

$$\Rightarrow F(x^{t+1}) \leqslant F(x^t) \Rightarrow F(x^{t+1}) - F(x^*) \leqslant F(x^t) - F(x^*)$$
(88)

$$\Rightarrow 1 \leqslant \frac{F(x^t) - F(x^*)}{F(x^{t+1}) - F(x^*)} \Rightarrow -\frac{F(x^t) - F(x^*)}{F(x^{t+1}) - F(x^*)} \leqslant -1$$

$$\tag{89}$$

Injecting (82) into (86) and using the last inequality leads to

$$F(x^{t+1}) \leqslant F(x^t) - \left(\gamma - \frac{L\gamma^2}{2}\right) \frac{(F(x^t) - F(x^*))^2}{\|x^0 - x^*\|^2} \tag{90}$$

$$\Rightarrow F(x^{t+1}) - F(x^*) \leqslant F(x^t) - F(x^*) - \left(\gamma - \frac{L\gamma^2}{2}\right) \frac{(F(x^t) - F(x^*))^2}{\|x^0 - x^*\|^2} \tag{91}$$

$$\Rightarrow \frac{F(x^{t+1}) - F(x^*)}{F(x^t) - F(x^*)} \le 1 - \left(\gamma - \frac{L\gamma^2}{2}\right) \frac{F(x^t) - F(x^*)}{\|x^0 - x^*\|^2} \tag{92}$$

$$\Rightarrow \frac{1}{F(x^t) - F(x^*)} \leqslant \frac{1}{F(x^{t+1}) - F(x^*)} - \frac{\left(\gamma - \frac{L\gamma^2}{2}\right)}{\|x^0 - x^*\|^2} \frac{F(x^t) - F(x^*)}{F(x^{t+1}) - F(x^*)} \tag{93}$$

$$\Rightarrow \frac{1}{F(x^t) - F(x^*)} \leqslant \frac{1}{F(x^{t+1}) - F(x^*)} - \frac{\left(\gamma - \frac{L\gamma^2}{2}\right)}{\|x^0 - x^*\|^2} \tag{94}$$

$$\Rightarrow \frac{\left(\gamma - \frac{L\gamma^2}{2}\right)}{\|x^0 - x^*\|^2} \leqslant \frac{1}{F(x^{t+1}) - F(x^*)} - \frac{1}{F(x^t) - F(x^*)} \tag{95}$$

Summing for $t = 0 \dots T - 1$ and using telescopic cancellation leads to

$$T\frac{\left(\gamma - \frac{L\gamma^2}{2}\right)}{\|x^0 - x^*\|^2} \leqslant \frac{1}{F(x^T) - F(x^*)} - \frac{1}{F(x^0) - F(x^*)} \leqslant \frac{1}{F(x^T) - F(x^*)} \tag{96}$$

$$\Rightarrow F(x^T) - F(x^*) \leqslant \frac{\|x^0 - x^*\|^2}{T\left(\gamma - \frac{L\gamma^2}{2}\right)}$$

$$\tag{97}$$

which concludes the proof

2.3 Proof of Corollary 1

Proof. By assumption, we have

$$\gamma < 1/L \Rightarrow 1 - L\gamma/2 > 1/2 \Rightarrow \gamma(1 - L\gamma/2) > \gamma/2 \quad \text{(since } \gamma > 0)$$
 (98)

$$\Rightarrow \frac{1}{\gamma(1 - L\gamma/2)} < \frac{2}{\gamma} \tag{99}$$

and then

$$F(x^T) - F(x^*) \leqslant \frac{2\|x^0 - x^*\|^2}{T\gamma}$$
 (100)