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This document provides two main results of convergence for gradient descent.

1 Convergence

We want to prove the following theorem.

Theorem 1. Let F : RN — R be differentiable with L Lipschitz gradient:

Ve —Vy| < L|z —y|, VreRY and vyeRY (1)

and be lower bounded
inf F(z)=C> —oc0 . 2
nf, (x) 00 (2)

Then, provided 0 < v < %, the gradient descent sequence defined as:

ot =2t —yVF(zt) (3)
converges to a stationary point:
. t\
tli)rgoVF(x)—O. (4)

Remark 1. F' does not need to be convex. Nevertheless, to prove the theorem, we will need to prove that

G(z) = £|z|* — F(z) is convex. We will need two intermediate lemmas for this.

1.1 Non-decreasing derivative = Convexity (1d)
Lemma 1. Let g : R — R be differentiable with non-decreasing derivative, i.e.:
g(x)29'(y), VezyeR (5)
then g is convex
g Az + (1 — Nas) < Ag(z1) + (1 — Ng(ws), Vi €R, Vs €R and M €[0,1]. (6)
Proof. Let A € [0,1], 21 € R and z5 € R.
o If x5 =21 or A =0 or A =1 the result is trivial: (6) holds true.

e Consider x5 > x1 and 0 < A < 1. Let 3 = Az1 + (1 — N)as. We have 21 < 23 < x5. The mean value
theorem clains that there exist xo, x4 such that x1 < 22 < 23 <24 < x5 and
g(z3) — g(z1) = ¢'(x5) and g(z5) — g(x3)

/
= 7
o DI~ g (w) 7



Since x5 < 24, ¢'(x2) < ¢'(x4) by assumption, and then

g(w3) — g(x1) < g(ws) — g(3)
I3 — 1 = Is — I3
glxs) —g(x1) _ g(@s) — g(x3)
(L=XN(zs —a1) A5 — 1)

(by definition of x3)

= g(mzl) : igfﬂl) < g(xs) ;9(553) (since x5 > x1)
= Ag(z3) — Ag(z1) < (1 = N)g(xs) — (1 — N)g(xs) (since 0 < A < 1)

= g(x3) < Ag(z1) + (1 — A)g(s)
Then (6) holds true.
e If 1 < x5, the exact same reasoning applies.
Then g is convex.

Remark 2. The reciprocal holds true.

1.2 Monotone gradient = Convexity (INd)

Lemma 2. Let G : RY — R be differentiable with monotone gradient, i.e.
(VG(x) = VG(y), z—y) >0, VzxecRY and VycRY
then G is convex, i.e.:
GOz + (1 —=Ny) <AG(z)+ (1 -NG(y), YeeRN ¥y ecRY and Nel0,1].
Proof. Let z € RN and d € RY. Let h: R — R be defined as
h(t) = G(z +td), forallteR

We have

i OG(x+td)  OG(x+td) Ox +td T,
B (t) = 5 = e T id s [VG(z + td)]” d = (VG(z + td), d)

Let t1 > t5. By assumption

(VG(z 4 t1d) — VG( + tod), (t1 — t2)d) =0
= (VG(z+t1d) — VG(z +tad), d) > 0 (since t1 > to)
= RB(t1) = 1 (ts)

Then, using Lemma 1, h is convex. Then for all ¢; € R, t3 € R and A € [0, 1]

Gz + Ot + (1 — Nt2)d) < AG (@ + trd) + (1 — N)G(d + tad)
= G\ +td) + (1 - N)(@ +tad)) < AG(z + trd) + (1 = NG (z + tod)

In particular it holds for t; = 0, to = 1 and d = y — x, which concludes the proof.

Remark 3. The reciprocal holds true.



1.3 Convexity = Lower bounded by linear functions

Lemma 3. Let G : RY — R be differentiable and convex then:

G(y) = G(x) + (VG(x), y —x), Yz eRY and yecRY . (22)

1st order Taylor expansion
Proof. Let x € RN and d € RY. By definition of convexity, for all t € (0, 1]

Gz +td) < (1 -t)G(z) + tG(z + d) (23)
= Gz +1td)— G(z) < —tG(z) + tG(x + d) (24)
N G(;E—i—tdt) - G(z) o

<Gz +d)—G(x) (25)

Since it is true for all ¢ € (0,1], it is also true for ¢ — 0 since G is differentiable and then continuous on RY.
Remark that by definition

lim , =VG(x)'d (26)
Consider d = y — = and then
VG(z)'d < Gz + d) — G(x) (27)
= VG(z)"(y—1x) <G(y) — G(x) (28)
= G(x) +VG(@) (y — ) < G(y) (29)
O

1.4 Lipschitz gradient = Upper-bounded by quadratic functions
Lemma 4. Let F : RY — R be differentiable with L Lipschitz gradient:

|IVF(z) = VE(y)| < Llz —yl, Va,y, (30)
then

Fly) < F@) +(VE@), y =)+ <yl . (31)
—_——

Residual bound

1st order Taylor expansion

Proof. Let G(z) = £|z|> — F(x), for all z. Remark that

VG(z) =Lz — VF(x) . (32)

By assumption, we have for any =z, y:

IVF(x) = VF(y)| < Ljz - y| (33)

= |VF(z) = VF(y)||lz - y| < L]z — y? (Multiply both sides by [z —y[) (34)

= (VF(x)—-VF(y), z—vy) < L|z —y|? (Cauchy-Schwartz inequality) (35)

= (VF(z)-VF(@y),z—y) < L{z -y, z—y) (36)

= (~[Lz—VF(2)]+[Ly-VF(y)], z—y) <0 (37)
= ([Le = VF(2)] - [Ly = VF(y)], z —y) =2 0 (38)
= (VG(z)-VG(y), z—y) 20 (39)

Since the last inequality hold for any z,y, using Lemma 2, it means that G is convex. Next, based on Lemma
3, we get

G(y) = G(z) + VG(2)" (y — ) (40)



=TIl - Flo) > clel ~ F(&) + (La — VF() (g — o) (41)

= T~ FW) > Flel? ~ F@) + Liz, y ) — (VF(@), y — ) (42)
= Tl + Sl - Lz, v) > F(y) ~ Fla) ~ (VF(), y — ) (43)
= Tyl > F(y) - Fla) ~ (VF(), y—2) (4)

O

Remark 4. If fact there is an equivalence between (30) and (31), see for instance https: //zingyuzhou.
org/blog/notes/Lipschitz-gradient.

1.5 Proof of Theorem 1

Proof. Since F is differentiable with L Lipschitz gradient, based on Lemma 4, we have

L
Fa™) < F(a') +(VF@'), 2" —a®) + S —a'|? (45)

By definition of gradient descent

ot — gt = 4V F(a?) (46)
Then
) < F(a) — (VEG), 7V F () + 5 hVEGP (47)
<P - ANVFE+ L v F @ (18)
<rat) - (v- 1) (19)
If [VF(z')| = 0, we found a solution and GD has converged. Otherwise |[VF(z')| > 0, and we have
(1= 25 ) I9PEIP < Pty - Pt (50
We need to characterize when the left hand side is positive
7—%y2>0<:> 1—%>0 (since v > 0) (51)
= %<1 & Iv<2 & 7<% (52)
Then, since 0 < 7 < %, we have
0< (v-EE) wrer < Pt - Fath) 3)

Then F(z') is decresing with ¢. By summing over ¢t = 0...T, using telescopic cancellation, and using the
assumption that F(z) > C, we get

12\ &

vs (” ) 7) STIVF@)? < F@) - F@™) < F)=C, forallT>0.  (54)

2 — N————

t=0 constant wrt T

constant wrt T
Thus, 0 < Y _[VF(z")|* < 0o which yields Jim IVE(z!)| = 0. O
—00
t=0



2 Speed of convergence

We want to prove the following theorem.

Theorem 2. Let F : RN — R be differentiable with L Lipschitz gradient, lower bounded and convex. Then,
provided 0 < v < %, the gradient descent sequence defined as:

o' =2t — 4V F(zt) (55)
converges to a stationary point x*
VFE(@z*)=0, (56)
with the speed
0 _ .x|2
F(zt) — F(z*) < B el z " (57)
(=)
Corollary 1. Under the assumptions of Theorem 2 but with 0 < v < %, the speed becomes
2L 0 _ .x|2
F(at) - Fat) < 2H2 =21 (58)

t

2.1 Convexity + Lipschitz gradient = Co-coercivity of gradient

Lemma 5. Let F : RV — R be differentiable with L Lipschitz gradient, and convex. Then we have co-
coercivity of the gradient, i.e.:

%HVF(%‘) ~ VF(y)|? <(VF(z) = VF(y), = —y) (59)

Proof. Let x € RN, y € RN and z € RY. Since F has L Lipschitz gradient, we obtain by Lemma 4:
F(2) < F@) 4 {VF(z), z = o) + 5|z~ af? (60)
= F(z)—F(z) < <VF($),zfx>+§Hzf:c||2 (61)

Since F' is convex, we obtain by Lemma 3:

F(z) 2 F(y) + (VF(y), z —y) (62)
= Fy) = F(z) < =(VF({y), z—z) = (VF(y), = —y) (63)
= Fy) = F(z)+(VF(@y), 2 —y) < =(VF(y), z - 2) (64)
Adding (61) and (64) leads to
F(y) = F(z) +(VF(y), z —y) <(VF(z) = VF(y), 2 — 2) + g"z —af? (65)

=H(z)

Since the right hand side is true for all z, we want to find z that minimizes this quantity in order to get the
tightest upper-bound. We have

VH(z) =L(z—2)+ VF(z) — VF(y) and Hessian[H(z)] =L -1d (66)

Then H is convex and quadratic, and the minimum is reached at:

=2 7 (VF(x) - VF(y)) (67)



Plugging 2* in the previous equation leads to
1 1
Fy) = F) + (VF(y), 2 —y) < =2 (VF(z) = VF(y), VF(2) = VF(y)) + 57 [VF(2) = VF(y)|*  (68)
1
< =57 IVF@) = VE@)|? (69)
We can swap the role of z and y, then
1
F(z) = Fy) + (VF(2), y =) < =57 [VF(2) = VF(y)|* (70)
Summing both leads to

(VE(z) = VF(y), = —y) > %IIVF(w) ~VE@)* . (71)

Remark 5. For convex functions, the reciprocal holds true.

Remark 6. A direct consequence is that: (VF(z), z — 2*) > +|VF(2)[? .

2.2 Proof of Theorem 2

Proof. Since F is differentatiable, convex with L Lipschitz gradient, then, by Lemma 5 and using the
definition of z?t!, we have

Jat*1 — 2|2 = Jat — a" AV E () (72)
—Jat [ 2 VEGIE - 2(VEG), o o) (73)

x 2y
<l - ot (2= 7 ) IwrEop (74)

As v > 0, we have that

2y 2 2
2

sy 20 y< 2 75
R A 7 (75)

Then, since 0 < v < 2/L, we have 2 — 2% < 0, and then
J ™ = 2] <ot —2*] <. <2 — 27 (76)

By Lemma 3, since F' is differentiable and convex we also have

F(z*) > F(2') + (VF(z"), 2* — 2") (77)

= F(2') - F(2*) < (VF(2"), 2' — 2*) (78)

= F(2') — F(2*) < |[VF(")]|z" — 2| (Cauchy-Schwartz inequality) (79)

= F(z') = F(a*) <|VF ("2 — 2*| (80)

(F(z') = F(a%))? 2

<|VF 1

- P <ivre) (s1)
F(z') = F(z¥))?

_ F (12 < _( )

= IVF(z")] [0 — 2|2 (82)

Since F is differentiable with L Lipschitz gradient, based on Lemma 4, we have
L
F(z) < F(z') + (VF(a"), ! —2') + Z[a" — 2|7 (83)

2



= F(@™) <F@') - (VF(@'), /(") + gIIWVF(fEt)II2

Ly?
= F(a"™) < F(') —~|VF@E)]* + TIIVF(l”t)H2

t+1 t Ly? N
= P < PG - (v 25 ) IvEG)
In particular, since F(z*) < F(z), we have
2 2 L~ L~? .
z Z 1= _ = .
O<7<L:>7<L:> 5 >0=7 5 >0 (since v > 0)
= F'™) < F@') = F'™) - F(2*) < F(2') — F(2*)
ty _ * t) *
S 1< F(a*) — F(z*) :>_F(x) F(z*) <1

F™) = Fz*)  F) — F(z*)

Injecting (82) into (86) and using the last inequality leads to

F(xt+1) < F(J:t) _ (’Y _ L;) (F(ﬁfwg :5;(”3;2*))

= ﬂﬁﬂ—F@ﬂsﬂﬁ%ﬁW”‘@‘ez>w$£:§§»

G el ACO _( _W) F(a') - F(z*)

F(at) — F(z*) 2 |20 — z*|?
. L 1 (%) ren-re
F(at) = F(z*) © F(a™*) = F(z*) a0 —2*[? F(a+!) — F(z*)
N 1 _ 1 - (v- %)
F(at) = F(z*) © F(at*1) = F(az*) [0 — a*[?
_ (v-4) ! 1

[0 — 2 S F@) - F@)  F@) - F@)

Summing for t =0...7 — 1 and using telescopic cancellation leads to

T(’y_ LT’YZ> < 1 B 1 < 1
|20 — 2> = F(aT) - F(z*)  F(a%) = F(z*) = F(a”) - F(z¥)
Jz© — ]2
= F@')-F@*) < —
r(-4)

which concludes the proof

2.3 Proof of Corollary 1

Proof. By assumption, we have

v<1/L=1—-Lvy/2>1/2= ~(1—Lv/2) >~/2 (since vy > 0)
1 2

MR 27 R

and then
* ” 2

220 —
F?) - P < 2220 v



