
MooseTEXmanual

Charles Deledalle

February 25, 2015

MooseTEX is open-source software for UNIX-like systems (such as Linux and MacOS-X) to make the
most of your LATEX project by helping you generate high quality documents in PDF format, and if
required DVI and PS formats. MooseTEX aims to be used for any kind of project such as articles, letters,
reports, theses, presentations or posters.

Contents

1 License 2

2 Description of MooseTEX 2
2.1 Prerequisites . 3
2.2 Basics of MooseTEX . 3
2.3 Image generation: directives and command line . 4
2.4 Fix missing dependencies or make your own dependencies 5
2.5 Vacuuming useless images . 6
2.6 Prebuilt directory . 6
2.7 Recommendations . 6

3 Installation of MooseTEX 7
3.1 Software dependencies . 7

3.1.1 On Ubuntu (tested on Quantal Quetzal, version 12.10) 8
3.1.2 On MacOS-X . 9

3.2 Installation for super users . 9
3.3 Installation for non super users . 10

4 Generate documents with MooseTEX 10
4.1 Configuration . 10
4.2 Utilization . 11

4.2.1 In a terminal . 11
4.2.2 From GNU/Emacs (tested on versions 23.3.1 and 23.4.1) 13
4.2.3 From Kile (tested on version 2.1.2) . 13
4.2.4 From Geany (tested on version 1.22) . 14

5 Related projects 15

6 Known issues 15

1

1 License

This software is governed by the CeCILL license under French law and abiding by the rules of distribution
of free software. You can use, modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL ”http://www.cecill.info”.

As a counterpart to the access to the source code and rights to copy, modify and redistribute granted
by the license, users are provided only with a limited warranty and the software’s author, the holder of
the economic rights, and the successive licensors have only limited liability.

In this respect, the user’s attention is drawn to the risks associated with loading, using, modifying
and/or developing or reproducing the software by the user in light of its specific status of free software,
that may mean that it is complicated to manipulate, and that also therefore means that it is reserved
for developers and experienced professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software’s suitability as regards their requirements in conditions enabling
the security of their systems and/or data to be ensured and, more generally, to use and operate it in the
same conditions as regards security.

The fact that you are presently reading this means that you have had knowledge of the CeCILL license
and that you accept its terms.

2 Description of MooseTEX

Based on the technology of Makefile(s), the purpose of MooseTEX is “to determine automatically how
(re)generate all pieces of a (large) LaTeX project in the fastest way”. For doing so, MooseTEX also
includes a suite of conversion tools to generate each of such pieces. More specifically, MooseTEX :

• Provide (or aim at providing) human readable error messages when compilation errors occur,

• Generate references, citations and tables of contents automatically in a single run of MooseTEX ,

• Regenerate files only when required by detecting the dependencies with/between

– TeX files (with extension .tex),

– Styles files (with extension .sty),

– BibTeX files (with extension .bib) and

– images

• Convert images to .pdf or .eps from the following native formats

– Blender (with extension .blend)

– Dia (with extension .dia)

– Geogebra (with extension .ggb)

– Gimp (with extension .xcf)

– GLE (with extension .gle)

– Gnuplot (with extension .gnuplot)

– Inkscape (with extension .svg)

– Python (with extension .py or .pickle)

– Matlab (with extension .m or .fig)

– Octave (with extension .oct or .octave)

– Umbrello (with extension .xmi)

– R (with extension .R)

– Scilab (with extension .sce or .scg)

– XFig (with extension .fig)

– all formats dealt with LibreOffice

– all formats dealt with ImageMagick

while it ensures (or aims at ensuring) that:

– Fonts are embedded,

– Boundingbox are correctly defined,

2

– Vectorial images remain vectorial,

– Quality of bitmap images and encapsulated bitmap images is preserved.

Note that MooseTEX is non-intrusive. It does not change the way you use LATEX and is, as a con-
sequence, compatible with your older projects. You can also use MooseTEX within collaborative LATEX
projects without imposing the use of MooseTEX to other collaborators.

The following describes MooseTEX and how to install, configure and use it. This document
does not teach LATEX . For documentation about LATEX , the reader can consult [Knuth, 1984,
Lamport and Bibby, 1986].

2.1 Prerequisites

In order to work properly, MooseTEX requires that your LATEX project be composed of one or several
main .tex files starting with the command \documentclass. These main .tex files should be located
in the root directory of your project, denoted by <PROJECT>. They may include other .tex files located
in <PROJECT> or in any of its sub-directories. All your source image files should be in a single directory,
denoted by <IMAGESSRCDIR> (or potentially placed in sub-directories of <IMAGESSRCDIR>), which cannot
be the same as <PROJECT>. The directory denoted by <IMAGESDSTDIR>, where generated images will be
placed, can be any directory except <IMAGESSRCDIR> (in particular, it can be <PROJECT>).

2.2 Basics of MooseTEX

When running MooseTEX , with the command moosetex it will first analyze all .tex and .sty files placed
in <PROJECT> (or its sub-directories) and images placed in <IMAGESDIR> (or its sub-directories) such that
it will

• Detect unused images,

• Detect the dependencies of .tex and .sty files to other .tex and .sty files as well as image files,

• Detect the dependencies of .svg files to other image files.

Then, for each .tex file starting with the command \documentclass, it will generate a .pdf file with the
same name and in the same directory by generating or updating all required images in advance. There
are two ways to generate the .pdf file:

1. by asking MooseTEX to use successively the commands latex, dvips, ps2pdf, or

2. by asking MooseTEX to use the command pdflatex.

If you choose method 1, images will be generated in .eps format and your documents will also be available
in .dvi and .ps. If you choose method 2, images will be generated in .pdf format and your documents
will be available only in .pdf.

All generated images from images in <IMAGESSRCDIR> will be placed into <IMAGESDSTDIR>. Im-
ages placed in sub-directories of <IMAGESSRCDIR> will be placed into sub-directories of <IMAGESDSTDIR>
with the same sub-directory name. For instance if you have a file <IMAGESSRCDIR>/foo/bar.svg,
MooseTEX will generate <IMAGESDSTDIR>/foo/bar.xxx (where either xxx = pdf or xxx = eps). In this
case, your .tex file should be of the form

...

\usepackage{graphicx}

\graphicspath{{<IMAGESDSTDIR>/},{<IMAGESPREBUILTDIR>/}}

...

\includegraphics{foo/bar}

...

Be careful, do not precise extensions for images, do not add subdirectories in your graphicspath, and do
not prefix images by <IMAGESDSTDIR>/. For instance

3

...

\usepackage{graphicx}

\graphicspath{{<IMAGESDSTDIR>/}} % Correct

\graphicspath{{<IMAGESDSTDIR>/foo}} % Incorrect

...

\includegraphics{foo/bar} % Correct

\includegraphics{foo/bar.svg} % Incorrect

\includegraphics{foo/bar.pdf} % Incorrect

\includegraphics{foo/bar.eps} % Incorrect

\includegraphics{bar} % Incorrect

\includegraphics{<IMAGESDSTDIR>/foo/bar} % Incorrect

...

2.3 Image generation: directives and command line

MooseTEX converts an image to .pdf or .eps by using its own conversion tool available in command line
as moosetex convert. You can use this tool independently of a LATEX project to convert specific image
formats into .pdf or .eps formats (see Section 4.2).

MooseTEX automatically ensure that fonts are embedded and the bounding box is the smallest pos-
sible. In some particular cases, you may want to give MooseTEX some extra directives for the post-
processing of these files. These directives can be given as optional argument of the conversion command
line tool or placed in the file <IMAGESSRCDIR>/directives.conf. There are directives to control the “res-
olution”, the margins, the generation pipeline. . . In each line, the file <IMAGESSRCDIR>/directives.conf
should contain a regular expression, corresponding to the file names for which the directive applies, and
the corresponding command line options. For instance, if <IMAGESSRCDIR>/directives.conf contains
the following

foo/bar1 --size=512x512

foo/bar2 --margin=-10,10,-10,10

foo/bar[2-3] --matlab-print-to=svg

the files <IMAGESSRCDIR>/foo/bar1.yyy, . . . , <IMAGESSRCDIR>/foo/bar4.yyy will be automatically
generated as <IMAGESDSTDIR>/foo/bar1.xxx, . . . , <IMAGESDSTDIR>/foo/bar5.xxx (where yyy is any
available format and either xxx = pdf or xxx = eps) equivalently as if you have manualy typed

moosetex convert --size=512x512 \

<IMAGESSRCDIR>/foo/bar1.yyy <IMAGESDSTDIR>/foo/bar1.xxx

moosetex convert --margin=-10,10,-10,10 --matlab-print-to=svg \

<IMAGESSRCDIR>/foo/bar2.yyy <IMAGESDSTDIR>/foo/bar2.xxx

moosetex convert --matlab-print-to=svg \

<IMAGESSRCDIR>/foo/bar3.yyy <IMAGESDSTDIR>/foo/bar3.xxx

moosetex convert <IMAGESSRCDIR>/foo/bar4.yyy <IMAGESDSTDIR>/foo/bar4.xxx

In the above example, <IMAGESDSTDIR>/foo/bar1.xxx will have a resolution of 512 × 512 (unit: pt),
<IMAGESDSTDIR>/foo/bar2.xxx will have margins (−100, 100,−100, 100) (unit: pt). Note that the unit
can be specified in squared brackets (see Sextion 4.2). For some software such as Gnuplot, Octave,
Matlab, R, Scilab, the resolution is set before the image is cropped, but next MooseTEX rescales the
image after cropping to fit the required one. If no resolution directive is given, MooseTEX preserves the
original one for image formats dealt with ImageMagick otherwise the default size is set to 400× 300 pt.

The --matlab-print-to=svg directive is dedicated to Matlab. It forces Matlab to first export the
image in .svg (using plot2svg) before generating it into the targeted format. This can be usefull since
exports in .eps or .pdf might sometimes be unsatisfactory with Matlab (but also can sometimes be in
.svg). In the same vein, you can use the directive --matlab-print-to=eps[export fig] which will
force Matlab to first export the image in .eps (using export fig). Do not hesitate to play with this
option to improve the rendering of your Matlab figures.

4

Note that changing a directive will force the regeneration of all images whose names match the regular
expression.

Note that when using MooseTEX independently of a LATEX project (to convert all such formats to
.pdf or .eps format), you can specify in command line to use a specific directive file (see Section 4.2).

2.4 Fix missing dependencies or make your own dependencies

If you have specific dependencies that MooseTEX does not manage yet, you can specify to MooseTEX the
way to take into account these dependencies. To this end, you can add a file Makefile.deps in the
directory <PROJECT>/.moosetex with dependencies described in the form of a standard Makefile (see
“The GNU Make Manual”). There are two typical examples:

1. for dependencies not detected by MooseTEX ,

2. for formats not dealt by MooseTEX ,

but they are many other situations for which you can use the Makefile.deps feature.

Missing dependencies. It might happen that MooseTEX does not detect a dependency. For instance,
when defining non-trivial commands as in the following document.tex file

...

\newcommand{\myfig}[2]{\includegraphics{#1#2}}

...

\myfig{holidays}{2012}

...

which refers to an image <IMAGESDSTDIR>/holidays2012.pdf or <IMAGESDSTDIR>/holidays2012.eps

that will not be generated by MooseTEX . MooseTEX indeed does not detect the dependency because
it was expected to find the sequence of characters “holidays2012” in document.tex. Hence, when
compiling, the following error will occur

Following LaTeX/BibTeX warnings/errors occured

==

./document.tex:36: LaTeX Error: File ‘<IMAGESDSTDIR>/holidays2012.pdf’ not found.

See the LaTeX manual or LaTeX Companion for explanation.

Type H <return> for immediate help.

...

l.42

I could not locate the file with any of these extensions:

.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPEG,.JBIG2,.JB2

Try typing <return> to proceed.

--

More details in ./document.log

Assume that this images should be generated from a .svg image <IMAGESSRCDIR>/holidays2012.svg,
then, with the following Makefile.deps file

$(TEX_CACHE)/document.tex: <IMAGESDSTDIR>/holidays2012.$(TARGET_FORMAT)

MooseTEX will generate the .pdf image <IMAGESDSTDIR>/holidays2012.pdf or the .eps image
<IMAGESDSTDIR>/holidays2012.eps from <IMAGESSRCDIR>/holidays2012.svg using the suitable gen-
eration rule. However, at this step, MooseTEX will still believe you are not using this image and will
generate the following warning message:

Following MooseTeX warnings occured

===================================

5

Unused image <IMAGESDSTDIR>/holidays2012.svg

Type ’moosetex vacuum’ to move the useless images to the trash directory

By placing a file used in the directory <PROJECT>/.moosetex with the following entry

...

<IMAGESDSTDIR>/holidays2012.svg

...

it will prevent MooseTEX to show such warning message.

User specific formats. Let say that you are dealing with files of format FOO with file extension .foo

(that are not dealt by MooseTEX). With the following Makefile.deps file

<IMAGESDSTDIR>/myimage.$(TARGET_FORMAT): foo/myimmage.foo

@mkdir -p <IMAGESDSTDIR>

@foo2$(TARGET_FORMAT) $< $@

$(TEX_CACHE)/document.tex: <IMAGESDSTDIR>/myimage.$(TARGET_FORMAT)

MooseTEX will generate the images <IMAGESDSTDIR>/myimage.pdf or <IMAGESDSTDIR>/myimage.eps

from foo/myimage.foo using your own program foo2pdf or respectively foo2eps. It is important that
your FOO files are not placed in <IMAGESSRCDIR> or its sub-directories that are reserved for images that
MooseTEX deals with.

2.5 Vacuuming useless images

MooseTEX auto-detects images that are never used, i.e., placed in <IMAGESSRCDIR> and that never appear
in LATEX commands. This often occurs, to have a bunch of figures and images that you were using but
you do not need anymore. MooseTEX has a vacuum function that allows you to move all unused images
to the “trash” directory <IMAGESTRASHDIR>.

2.6 Prebuilt directory

When working collaboratively, some collaborators may not have all pieces of software that you have. For
instance, on your system, MooseTEX uses Matlab to convert Matlab figures to .pdf or .eps formats.
Your collaborators may not have Matlab installed, but they still want to generate the document using
MooseTEX . Of course, you could share the directory <IMAGESDSTDIR> with them but this would be
too intensive for your versioning program, and it could break the dependencies. Instead, just share
<IMAGESSRCDIR> and <IMAGESPREBUILTDIR> in which you have placed only figures that they cannot
regenerate. When MooseTEX cannot find a program to generate a .pdf or .eps file, it looks at this last
directory to see if this target is present.

2.7 Recommendations

We encourage users of MooseTEX to respect the following convention

Directory Name
<IMAGESSRCDIR> srcimages

<IMAGESDSTDIR> images

<IMAGESTRASHDIR> trashimages

<IMAGESPREBUILTDIR> prebuiltimages

6

3 Installation of MooseTEX

First of all, get the latest version X.X of MooseTEX . You can either

• Download the archive moosetex-X.X.tar.gz from http://www.math.u-bordeaux1.fr/

~cdeledal/moosetex.php, decompress it and go to the directory moosetex-X.X by typing
in a terminal:

> tar -zxvf moosetex-X.X.tar.gz

> cd moosetex-X.X

• OR, clone the git repository by typing in a terminal:

> git clone https://bitbucket.org/charles_deledalle/moosetex.git

> cd moosetex

If you already cloned the repository in the past and you want to update MooseTEX to its latest
version, go back to the local repository and update it by typing

> cd moosetex

> git pull

• OR, if you are a Debian/Ubuntu user, download the package moosetex X.X arch.deb from http:

//www.math.u-bordeaux1.fr/~cdeledal/moosetex.php, and install it with GDebi or the Ubuntu
Software Center. By doing so, MooseTEX will be automatically installed, your next step is so to go
to Section 4.

After checking dependencies as described in Section 3.1, if you are a super user (meaning you can be
root on your system) go to Section 3.2 otherwise go to Section 3.3

In the following, we are assuming that you are using bash. In this case, make sure that the configu-
ration file .bashrc is sourced when opening a new shell instance. This is the default behavior, but not
every-time (for instance on Mac OS X). In this case, add at the end of the file $HOME/.bash profile the
following line:

source $HOME/.bashrc

3.1 Software dependencies

First check the following software are installed:

command software feature status
bash GNU FSF shell interpreter used for homemade commands R
gcc GNU FSF. compile some homemade commands R
latex TeX Live generate .dvi file from .tex file R
dvips TeX Live generate .ps file from .dvi file R
ps2pdf GhostScript generate .pdf file from .ps file R
pdflatex TeX Live generate .pdf file from .tex file R
bibtex TeX Live generate .bbl file form .aux and .bib R
mispipe Moreutils pipe used for homemade commands R
pdftops Poppler crop and embed fonts R
pdfcrop pdfcrop crop .pdf files R
convert ImageMagick convert various image types R
epstool epstool conversion tool used for octave C
flock Util-linux lock program used for multi-threading C
inkscape (≥0.47) Inkscape convert .svg files (for geogebra/matlab/scilab) C
Xvfb Xvfb silent GUI conversion C
– – (for geogebra/gle/umbrello/matlab/python/scilab) C

Legend: (R) required, (C) recommended

7

http://www.math.u-bordeaux1.fr/~cdeledal/moosetex.php
http://www.math.u-bordeaux1.fr/~cdeledal/moosetex.php
http://www.math.u-bordeaux1.fr/~cdeledal/moosetex.php
http://www.math.u-bordeaux1.fr/~cdeledal/moosetex.php

Next install the following as needed

command software feature status
blender Blender convert .blend files O
dia Dia convert .dia files O
geogebra (≥4.4) Geogebra convert .ggb files (requires Xvfb & Inkscape) O
gimp Gimp convert .xcf files O
gle GLE convert .gle files O
gnuplot Gnuplot convert .gnuplot files O
octave Octave convert .octave files (≥3.8 requires epstool) O
python Pyhton generation from figure plt.gcf() in .pickle file O
– – generation from figure plt.gcf() in .py scripts O
matlab Matlab convert Matlab’s .fig files O
– – generation from figure gcf in .m scripts O
umbrello Umbrello convert .xmi files (requires Xvfb) O
R R convert .R files O
scilab (≥5.5) Scilab convert .scg files (requires Inkscape) O
– – generation from .sce scripts (requires Inkscape) O
fig2dev XFig convert XFig’s .fig files O
soffice LibreOffice convert various document types O

Legend: (O) optional

The above software have to be located in the directories that appear in your environment variable PATH.
This is mandatory for required commands. For optional commands, this is mandatory if you want to
enable their associated features. Recommended commands are optional commands that we recommend
for improved work flow and stability. For instance, if you want to enable the Matlab figure conversion,
typing in your shell:

> which matlab

should give you the path where Matlab is installed (e.g., /Applications/MATLAB R2013a.app/bin/matlab).
If it is not the case, edit the file $HOME/.bashrc and add at the end of the file something like:

export PATH=/Applications/MATLAB_R2013a.app/bin/:$PATH

If you are using aliases (if you do not know what is aliases, skip this step), you can instead put the
following line in your $HOME/.bashrc:

export PATH=$(dirname ‘echo ${BASH_ALIASES[matlab]}‘):$PATH

Then, save the file, and type in your shell:

> source $HOME/.bashrc

3.1.1 On Ubuntu (tested on Quantal Quetzal, version 12.10)

In order to install the required dependencies, just type in a terminal:

> sudo apt-get install gcc texlive-base texlive-latex-extra texlive-extra-utils

poppler-utils imagemagick moreutils

To enable an optional feature, for instance conversion of Gimp’s .xcf files, type something like:

> sudo apt-get install gimp

Some applications might not be available with apt-get. For instance, you will have to install Matlab on
your own and make sure it is accessible by command line by updating your environment variable PATH.

8

3.1.2 On MacOS-X

Using XCode, Mactex and Macports (tested on Lion, version 10.7.5): We recommend MacOS-
X users to install XCode (available at https://developer.apple.com/xcode/), Macports (available at
http://www.macports.org/) and Mactex (available at http://www.tug.org/mactex/). Then, in order
to install the required dependencies, just type in a terminal:

> sudo port install poppler moreutils imagemagick

To enable an optional feature, for instance conversion of Gimp’s .xcf files, type something like:

> sudo port install gimp2

Using XCode and Fink (tested on Lion, version 10.7): Another solution consist in in-
stalling XCode (available at https://developer.apple.com/xcode/) and Fink (available at http:

//www.finkproject.org/). Then, in order to install the required dependencies, just type in a terminal:

> sudo fink install texlive-base tetex-macosx xpdf moreutils

To enable an optional feature, for instance conversion of Gimp’s .xcf files, type something like:

> sudo fink install gimp2

Some applications might not be available with neither Macports or Fink. For instance, you may
install Blender directly from www.blender.org and install Matlab on your own. Make sure they are
accessible by command line by updating your environment variable $PATH.

If you use Geogebra, we recommend to install an X11 based Java (for instance using SoyLatte http:

//landonf.bikemonkey.org/static/soylatte), otherwise Geogebra’s GUI might show up during the
generation (because the native Mac OS X Java uses the Mac display that cannot be used with Xvfb).
Next create a file geogebra available through your $PATH containing something like

#!/bin/bash

/some_path_to_soylatte/bin/java -Xms32m -Xmx1024m -jar \

/Applications/GeoGebra.app/Contents/Java/geogebra.jar "$@"

and provide the execution rights as

> chmod 755 geogebra

Once you have checked your dependencies, you can compile and install MooseTEX in two ways: as a
super user or as a non super user.

3.2 Installation for super users

Configure and compile MooseTEX by typing in a terminal:

> ./configure

> make

> sudo make install

This will install MooseTEX in /usr/.

9

https://developer.apple.com/xcode/
http://www.macports.org/
http://www.tug.org/mactex/
https://developer.apple.com/xcode/
http://www.finkproject.org/
http://www.finkproject.org/
http://landonf.bikemonkey.org/static/soylatte
http://landonf.bikemonkey.org/static/soylatte

3.3 Installation for non super users

Configure and compile MooseTEX by typing in a terminal:

> ./configure --prefix=<PREFIX>

> make

> make install

This will install MooseTEX in a directory denoted by <PREFIX>.

You will need to update your environment path variable by adding the following line in $HOME/.bashrc

(create this file if it does not exist already):

export PATH=<PREFIX>/bin:$PATH

Then, save the file, and type in your shell:

> source $HOME/.bashrc

If you want to enable bash completions, you might need to add the following line in
$HOME/.bash completion (create this file if it does not exist already):

. <PREFIX>/share/moosetex/bash_completion.sh

Then, save the file, and type in your shell:

> source $HOME/.bash_completion

4 Generate documents with MooseTEX

4.1 Configuration

If you have never used MooseTEX for your LATEX project, first run MooseTEX from the directory
<PROJECT> of your project by typing in a terminal:

> cd <PROJECT>

> moosetex

The following will appear

/\/__/_/\ /_/__/\/\ Welcome to MooseTeX

\ ____/ / author Charles Deledalle

’----_____ ____----’

| 0 0 _

| The easy way to use LaTeX

_/ /

/o) (o/l _ CeCILL license

\=====//

Configuration of your current project

=====================================

Configuration of LaTeX generation

Do you want to compile using:

1. latex -> dvips -> ps2pdf, or

2. pdflatex.

Please enter your answer (1/2) [2]:

10

Answer a few questions concerning the way you want MooseTEX to compile your LATEX project. More
details about these options are given in Section 2. In brackets are given the default options that will be
used if you just press ENTER by leaving the answer blank. Choosing default options requires that your
project be organized as it is suggested in Section 2.7. Once you have finished answering the questions,
you can proceed to the generation of your documents as described in the next section.

Note that if you want to reconfigure your project, you can do it easily by typing

> moosetex configure

4.2 Utilization

We assume in this section that you have already configured MooseTEX as described in the previous
section. MooseTEX works natively in command line. You may nevertheless use MooseTEX from your
favorite editors as described in the following subsections.

4.2.1 In a terminal

In order to generate all documents and linked images in the desired format as described in Section 2, go
to the directory of your project and type:

> moosetex

If everything generate well, you might see something like

Document generation

===================

Loading...

Generated files Comments

===

image.svg Start generation

doc.tex Start generation

doc.aux Generate bibliography

doc.tex Bibliography, references or table of contents generation

doc.tex Citations generation

doc.tex => bibtex 1 run(s)

doc.tex => latex 3 run(s)

* Compilation succeed

===

MooseTEX has other options that can be listed by typing moosetex help:

Usage: moosetex [options] [subcommand] [file1.tex ... fileN.tex]

Generate all LaTeX documents placed in the current directory

(or only file1.tex ... fileN.tex if specified).

Available commands:

> moosetex Run generation.

> moosetex configure (Re)configure.

> moosetex vacuum Move the unused images to the trash directory

> moosetex clean Remove intermediate files.

> moosetex distclean Remove all generated files.

> moosetex purge Remove all generated files and configuration files.

> moosetex convert [options] input-file output-file

Convert one or several images to eps or pdf format.

11

For more information type "moosetex convert --help".

> moosetex update Update list of available software.

> moosetex version Print the version number and exit.

> moosetex help Print this message and exit.

Available options:

--backward|-b Change before doing anything to the first backward

directory being a MooseTex project.

Current directory is selected if none are found.

-C DIRECTORY Change of directory before doing anything.

--default|-d Use default answer whatever the question.

--force|-f FILE Force regenerating FILE (if used).

--nocolor Suppress color output.

Enjoy!

We invite the reader to refer to Section 2 for more details about these options.

In order to convert a specific image to .eps or .pdf format as described in Section 2, type:

> moosetex convert input-image.yyy output-image.xxx

where yyy is the format of the input image and either xxx = pdf or xxx = eps. You can also convert
all files of a directory in either xxx = pdf or xxx = eps to a destination directory by typing

> ls input_directory/* | moosetex convert --batch-input-to=xxx output_directory/

The convert command has other options that can be listed by typing moosetex convert --help:

Usage: moosetex convert [options] input-file output-file

moosetex convert [options] --batch-input-to=FORMAT output-dir

Convert one or several images to eps or pdf format.

Available options:

--batch-input-to=FORMAT Convert each file given on standard input to

FORMAT=eps|pdf and place the result in output-dir.

--matlab-print-to=FORMAT Specify to convert via

FORMAT=eps|pdf|svg|eps[export_fig]|pdf[export_fig]

using Matlab’s print function for eps and pdf,

Juerg Schwizer’s plot2svg function for svg and

Oliver Woodford’s export_fig function for

eps/pdf[export_fig] (default eps).

--margin=L,T,R,B Specify targeted margins (default 0,0,0,0).

--prebuiltdir=DIR Look for pre-built output in DIR in case of failure.

--size=WxH Specify targeted size.

--use-directives=FILE Provide a MooseTeX’s image directive file.

--help Print this message and exit

Examples:

moosetex convert example.dia example.eps

ls *.xcf | moosetex convert --batch-input-to=pdf results/

Enjoy!

We invite the reader to refer to Section 2 for more details about these options.

12

4.2.2 From GNU/Emacs (tested on versions 23.3.1 and 23.4.1)

Press alt or escape followed by x, type compile and validate by pressing enter (in short, M-x compile).
Insert next to the following command:

Compile command: moosetex

You can also use MooseTEX options using the command lines described in the previous section. If you
want to configure MooseTEX from GNU/Emacs, you should use C-u M-x compile instead to enable the
interactive mode.

This can be made simpler/automatic if you add to your configuration file $HOME/.emacs (typically at
the end) the following commands:

;; MooseTeX

(add-hook ’latex-mode-hook

(lambda ()

(unless (or (file-exists-p "makefile")

(file-exists-p "Makefile"))

(set (make-local-variable ’compile-command) "moosetex -b"))))

(add-hook ’LaTeX-mode-hook

(lambda ()

(unless (or (file-exists-p "makefile")

(file-exists-p "Makefile"))

(set (make-local-variable ’compile-command) "moosetex -b"))))

(defadvice compile (before ad-compile-smart activate)

(when (or (derived-mode-p ’latex-mode) (derived-mode-p ’LaTeX-mode))

(ad-set-arg 1 t)))

(defun recompile ()

(interactive)

(set (make-local-variable ’compilation-read-command-state)

’compilation-read-command)

(set (make-local-variable ’compilation-read-command) nil)

(call-interactively ’compile)

(set (make-local-variable ’compilation-read-command)

’compilation-read-command-state))

(global-set-key [f5] ’compile)

(global-set-key [f6] ’recompile)

(global-set-key [f7] ’next-error)

This will directly enter the moosetex command when typing M-x compile, allow you to configure
MooseTEX without typing instead C-u M-x compile and provide you three shortcuts to compile, re-
compile and move to the next error by pressing respectively the keys [f5], [f6] and [f7].

4.2.3 From Kile (tested on version 2.1.2)

Go to the tab Settings and select ’Configure Kile...’. In the section ’Tools > Build’ create a new
tool with a short descriptive name MooseTeX and leave the default behavior to <Custom>. Next, enter
the following:

13

switch to the tab ’Advanced’:

and switch to the tab ’Menu’:

If MooseTEX was installed with default configuration, you should find the icons in /usr/share/pixmaps/,
otherwise they are placed in <PREFIX>/share/pixmaps/. Press next the button ’OK’.

You can now generate your LATEXdocuments with MooseTEX by selecting or clicking on MooseTeX in
the Compile menu:

4.2.4 From Geany (tested on version 1.22)

Go to the tab Build and select ’Set Build Commands’. In the section ’LaTeX source file Commands’

modify the entries as follows

14

Press next the button ’Compile the current file’ in the toolbar or press F8.

5 Related projects

• autolatex (http://www.arakhne.org/autolatex/)

• latexmk (http://users.phys.psu.edu/~collins/software/latexmk-jcc/)

• pretty print latex (http://www.stefant.org/web/projects/software/pplatex.html)

• rubber (https://launchpad.net/rubber/)

6 Known issues

• There is no guarantee that the pipelines 1 and 2 produce the same .pdf file.

• The quality of generated images strongly depends on the versions of the used programs. Please, try
as much as possible to update your system.

• Depending on their versions, Scilab, Octave and Umbrello might have some instabilities (with
potential crash).

• Could not find an implementation of flock for MacOS-X (hence, prevents the use of multi-
threading). Apparently flock might be available with XCode 5 (but I haven’t tried yet)

References

[Knuth, 1984] Knuth, D. (1984). The texbook. Reading, Mass.

[Lamport and Bibby, 1986] Lamport, L. and Bibby, D. (1986). LATEX: A document preparation system,
volume 260. Citeseer.

15

http://www.arakhne.org/autolatex/
http://users.phys.psu.edu/~collins/software/latexmk-jcc/
http://www.stefant.org/web/projects/software/pplatex.html
https://launchpad.net/rubber/

	1 License
	2 Description of MooseTeX
	2.1 Prerequisites
	2.2 Basics of MooseTeX
	2.3 Image generation: directives and command line
	2.4 Fix missing dependencies or make your own dependencies
	2.5 Vacuuming useless images
	2.6 Prebuilt directory
	2.7 Recommendations

	3 Installation of MooseTeX
	3.1 Software dependencies
	3.1.1 On Ubuntu (tested on Quantal Quetzal, version 12.10)
	3.1.2 On MacOS-X

	3.2 Installation for super users
	3.3 Installation for non super users

	4 Generate documents with MooseTeX
	4.1 Configuration
	4.2 Utilization
	4.2.1 In a terminal
	4.2.2 From GNU/Emacs (tested on versions 23.3.1 and 23.4.1)
	4.2.3 From Kile (tested on version 2.1.2)
	4.2.4 From Geany (tested on version 1.22)

	5 Related projects
	6 Known issues

