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MuLoG, or How to apply Gaussian denoisers

to multi-channel SAR speckle reduction?
Charles-Alban Deledalle, Loı̈c Denis, Sonia Tabti, Florence Tupin

Abstract—Speckle reduction is a longstanding topic in synthetic
aperture radar (SAR) imaging. Since most current and planned
SAR imaging satellites operate in polarimetric, interferometric or
tomographic modes, SAR images are multi-channel and speckle
reduction techniques must jointly process all channels to recover
polarimetric and interferometric information. The distinctive na-
ture of SAR signal (complex-valued, corrupted by multiplicative
fluctuations) calls for the development of specialized methods
for speckle reduction. Image denoising is a very active topic
in image processing with a wide variety of approaches and
many denoising algorithms available, almost always designed
for additive Gaussian noise suppression. This paper proposes a
general scheme, called MuLoG (MUlti-channel LOgarithm with
Gaussian denoising), to include such Gaussian denoisers within
a multi-channel SAR speckle reduction technique. A new family
of speckle reduction algorithms can thus be obtained, benefiting
from the ongoing progress in Gaussian denoising, and offering
several speckle reduction results often displaying method-specific
artifacts that can be dismissed by comparison between results.

Index Terms—SAR, speckle, variance stabilization, ADMM,
Wishart distribution

I. INTRODUCTION

Synthetic aperture radar (SAR) imaging is a widely used

technique for earth observation. It offers complementary in-

formation to the more common optical imaging. Among its

distinctive features, one may cite its all-weather and day-

and-night imaging capabilities [50], the interferometric con-

figurations that give access to 3-D reconstructions for digital

elevation models [55] and displacement estimation [49], [25]

or the polarimetric and tomographic modes that give access to

estimates of the biomass in forested areas [39].

Coherent combination of several radar echoes within each

resolution cell results in interferences and the well-known

speckle phenomenon [31]. Due to speckle, regions with homo-

geneous radar properties display strong fluctuations in SAR

images. Direct estimation of the reflectivity, the interfero-

metric phase or polarimetric properties is unusable given

its prohibitively large variance. Speckle reduction is thus a

longstanding topic in SAR imagery.

Since speckle statistics departs from the additive Gaussian

noise model widely used for processing optical images, a
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whole line of denoising methods have been designed specif-

ically for speckle reduction. Restoration of intensity images

(i.e., single-channel SAR images) remains the first and most

studied case. Many different schemes have been proposed

in this context, see the recent reviews [3] and [15]. Among

the different possible strategies, selection-based methods use

various criteria to identify homogeneous collections of neigh-

boring pixels. Pixels may be selected by locally choosing the

best neighborhood within a fixed set of oriented windows [41].

Another approach consists of selecting connected pixels by

region growing [64]. Patch-comparison has been shown to

provide a robust way to get a (weighted) selection of similar

pixels [19], [15]. Variational methods formulate the estimation

problem as an optimization problem depending on the whole

image. The objective function that is optimized is composed of

two terms: a data-fitting term and a regularization term. Due to

the non-Gaussian distribution of the intensity of SAR images,

the data-fitting term differs from the usual sum of squared

differences that arises from a Gaussian assumption. Several

regularization terms have been considered in the literature,

e.g., total variation (TV) [57], [59], [22], [60], [7], curvelets

[23], Gaussian mixture models [63]. Yet another strategy is

to transform the data so the noise becomes additive and ap-

proximately Gaussian and stationary by using a homomorphic

transform. As further discussed in Sec. II, the log-transformed

intensity is approximately Gaussian distributed and can thus

be restored using a Gaussian denoiser, e.g., based on wavelet

thresholding [68], [1], [6] or on patch redundancy [48].

Although many applications are based on the intensity

provided by a single SAR image (corresponding to the square

of the modulus of the backscattered electromagnetic field), the

SAR data can carry much more information. Indeed, the phase

of a pixel carries information about the acquisition geometry.

Combining two SAR acquisitions with a slightly different

angle allows retrieving information on the elevation of the

points and corresponds to the so-called interferometric mode.

Processing this information can be done by considering the

vector of the two complex SAR signals and their associated

empirical covariance matrix. Another information is provided

by the polarization of the emitted and backscattered wave. By

emitting and receiving the signal with different polarizations

(for instance vertical and horizontal polarizations), a vector

of 4 complex values is recorded for each pixel. This vector

gives valuable information on the backscattering mechanisms

happening inside the pixel (double bounce scattering, volume

scattering, etc.). This polarimetric mode can also be combined

with the interferometric one, giving a D-dimensional complex

vector for each pixel and allowing to retrieve the height of
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different scatterers inside the pixel. Finally, the tomographic

mode exploits a set of interferometric acquisitions to recover

the elevation profile inside the pixel. These multi-channel SAR

data are of high interest for a wide range of applications for

Earth observation. But as for the intensity data, the speckle

phenomenon induces a high variability of the physical param-

eters (interferometric phase, coherence, inter-channel cross-

correlations, etc.).

Not all the aforementioned speckle reduction methods gen-

eralize well to multi-channel SAR images. Selection-based

methods require extending the homogeneity or similarity cri-

teria to multi-variate data. This can be done by using only

part of the information, e.g., the span [64] or the scattering

properties [42], or by exploiting the whole covariance matrices

[10], [20]. Once relevant pixels have been selected, estimation

of polarimetric/interferometric information is straightforward,

e.g., by using a linear mean square error approach [40],

[20] or a weighted maximum likelihood estimator [17], [18].

Extension of variational methods to multi-channel SAR data

is more challenging. A simple remedy is to consider only

restoring the diagonal elements [44] at a price of information

loss about cross-channel correlations. Direct formulation of the

objective function on the full covariance matrices raises several

problems: (i) computational complexity due to the nonconvex-

ity of the data-fitting term; (ii) difficulty to express regularity

properties of the complex-valued terms of the covariance

matrices; (iii) non-stationary variance of speckle that leads to

over/under-smoothing in some areas. These difficulties explain

that very few works were conducted in this direction, with the

exception of recent works on multi-channel TV regularizations

[52], [53], [54]. Finally, while the homomorphic transform

approach is well understood on intensity images, no variance

stabilization transform is known for multi-channel images.

A generic methodology to apply denoising methods from

the “additive Gaussian noise world” to multi-channel SAR data

is definitely lacking. This paper attempts to fill this gap. The

contributions of this paper are the following:

1) to provide a generic method, called MuLoG, to embed a

Gaussian denoiser in a speckle reduction filter;

2) to apply as well to single-channel or to multi-channel

SAR images;

3) to produce estimates of the complex covariance matrices

that capture all polarimetric and/or interferometric infor-

mation,

4) to better account for speckle statistics than other methods

based on a homomorphic transform1;

5) to require no parameter tuning other than possibly within

the Gaussian denoiser.

We introduce our generic methodology by first considering

(single-channel) intensity images (Sec. II), then the extension

to multi-channel SAR images (Sec. III). We discuss imple-

mentation issues (Sec. IV) before illustrating the proposed

methodology with several Gaussian denoisers and different

types of multi-channel SAR images (Sec. V).

1note that these other methods are only applicable to intensity SAR images
(i.e., single-channel)

II. SPECKLE REDUCTION FOR SAR INTENSITY IMAGES

A. Statistics of univariate SAR images

a) Intensity: Univariate SAR images are by nature

complex-valued and only the modulus (a.k .a., the amplitude)

is informative. The square of the modulus (a.k .a., the in-

tensity) is nevertheless easier to manipulate and, according

to Goodman’s model [31], it follows a gamma distribution

G(R;L) with a probability density given by

pI(I|R) =
LLIL−1

Γ(L)RL
exp

(

−L I

R

)

, (1)

where I ∈ R+ is the observed intensity, R ∈ R+ is the

underlying reflectivity (related to the radar cross-section),

L > 0 is the number of looks, and Γ the gamma function.

Note that we denote by R+ the set of positive real values. The

intensity I can be decomposed as a product of the reflectivity

R and of a speckle component S distributed under a standard

gamma distribution (S ∼ G(1;L)):

I = R× S, E[I] = R and Var[I] =
R2

L
. (2)

As the variance depends on the expectation, fluctuations

are said to be signal dependent. The top graph in Fig.2(a)

illustrates how a simple rectangle signal (solid curve) gets

corrupted by speckle: the gray area shows values between

the first and third quartiles, the dots represent the expectation

and the dashed line a single noisy realization. The signal-

dependent nature of the fluctuations can be observed: the

difference between first and third quartiles is larger when

the underlying signal values are high. Last but not least, the

gamma distribution has a heavier right-tail characterizing the

typical bright outliers observed in SAR intensity images.

b) Logarithm: The log-transform y = log I ∈ R is often

employed to convert multiplicative fluctuations to additive

ones. From the gamma distribution (1), y follows the Fisher-

Tippett distribution defined as

py(y|x) =
LL

Γ(L)
eL(y−x) exp

(
−Ley−x

)
, (3)

where x = logR ∈ R. The Fisher-Tippett distribution, denoted

by FT (x;L), models additive corruptions as [69]

y = x+ s , (4)

E[y] = x− logL+Ψ(L) , (5)

and Var[y] = Ψ(1, L) , (6)

where s ∼ FT (0;L), Ψ(·) is the digamma function and

Ψ(·, L) is the polygamma function of order L. The log

transform stabilizes the variance, i .e., the fluctuations are

made signal independent. Equation (5) shows that the noise

has a non-zero mean. If noise is assumed zero-mean during a

speckle-reduction step performed on log-transformed data, a

subsequent debiasing step is then necessary.

The bottom graph in Fig.2(a) displays the intensities in

decibels (i.e., 10 · log10 of the intensity). By comparing with

the top curve, variance stabilization can be observed, as well as

the bias between the expectation of log-transformed intensities

(black dots) and ground truth signal (solid curve).
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B. Homomorphic approach

We now consider I and R as images, such that I ∈ R
n
+, and

R ∈ R
n
+, where n is the number of pixels. Let y ∈ R

n and

x ∈ R
n be the entry-wise logarithm of I and R respectively,

i .e., such that yk = log Ik and xk = logRk. A classical

approach to estimate R is thus to approach the Fisher-Tippett

distribution by a non-centered Gaussian distribution, which

leads to the following estimation procedure

x̂ = fΨ(1,L)(y) + (logL−Ψ(L))1n
︸ ︷︷ ︸

debiasing

, (7)

where fσ2 : Rn → R
n is a denoiser for images contaminated

by zero-mean additive white Gaussian noise N (0;σ2Id). Typ-

ically, f can be a regularized least-square solver expressed as

fσ2(y) ∈ argmin
x∈Rn

1

2σ2
||y − x||2 +R(x) , (8)

where, within the Maximum A Posteriori (MAP) framework,

R(x) = − log px(x) is a prior term enforcing some regularity

on the solution. Finally, the estimate R̂ is defined as R̂k =
exp x̂k for all pixel index k. This process is summarized on

Fig.1, top row. We illustrate the restored 1D signals obtained

by applying L2+TV minimization [58] within a homomorphic

procedure on Fig.2(b).

The homomorphic approach has been extensively used, e.g.,

for wavelet prior in [68], for patch-based priors as in KSVD

[26] or for non-local filtering [48]. While for large values

of L the Fisher-Tippett distribution approaches the Gaussian

distribution, the two distributions differ significantly for low

values of L. In particular, the Fisher-Tippett is asymmetrical

with a heavier left-tail. Hence, this approximation often leads

to remaining dark stains on the resulting images (see also

Fig. 6(d)).

C. Variational approach

Rather than applying the homomorphic approach in order

to reduce the original problem to the Gaussian case, an

alternative proposed in [4], [22] is to consider directly the

gamma distribution of I ∈ R
n
+ leading to a MAP solver of

the form (Fig.1 second row):

R̂ ∈ argmin
R∈R

n
+

− log pI(I|R) +R(R) , (9)

where − log pI(I|R) = L

n∑

k=1

logRk +
Ik
Rk

+Cst.

Cst. denoting a constant for the optimization problem. Not

only is this minimization constrained to positive-valued im-

ages, but the objective function is also nonconvex. This

nonconvexity enforces some robustness to the bright outliers

originating from the right tail of the gamma distribution.

As a consequence, when standard iterative solvers are used

(e.g ., gradient descents [4], or the forward-backward algo-

rithm [11]), the solution depends on the initialization and

the internal parameters of the solver, even if R is chosen

convex. Convexification by replacing the original objective

function by its convex hull [36] simplifies the minimization

at the cost of a loss of accuracy of the statistical model. In

particular, the convex hull does not capture the right tail of the

gamma distribution, leading to remaining bright outliers on

the resulting images. For some Markov prior regularization,

namely convex pairwise regularizations, the global optimum

can be obtained in finite time [35]. This optimization method

has been applied in the 1D illustration of Fig.2(c). It can

be observed that, since large fluctuations in bright areas are

more strongly penalized than the small fluctuations in low-

level areas, speckle is reduced predominantly in the brightest

areas. In the restored signal, the remaining noise variance is

made uniform, i.e., signal-independent, in linear scale. Thus,

small details with an identical signal to noise ratio will be

more likely suppressed if placed in areas of large average

value. This phenomenon is also observed on images: speckle

noise is reduced more strongly in brighter areas [22], [60],

and bright punctual targets are found to be spread out.

D. Variational approach on log-transformed data

Another alternative proposed in [59], [60], [7], [23] consists

of formulating the estimation problem in the log domain.

Rather than approximating the likelihood of log-transformed

reflectivities by a Gaussian distribution (as done by homomor-

phic approaches discussed in Sec. II-B), the Fisher-Tippett dis-

tribution (3) is considered. The regularization is also expressed

on the log-transformed reflectivities x ∈ R
n, leading to a MAP

optimization problem of the form:

x̂ ∈ argmin
x̂∈Rn

− log py(y|x) +R(x) , (10)

where − log py(y|x) = L
n∑

k=1

xk + eyk−xk +Cst.

The final estimate is defined as R̂k = exp x̂k for all pixel index

k. Note that even though the solutions of problems (9) and (10)

are different, their definitions only differ in terms of the prior

regularization since log py(y|x) = log pI(exp(y)| exp(x)) +
Cst.. Nevertheless, this change of variable leads to several

advantages compared to (9). First, the optimization is uncon-

strained as x can be any vector of Rn. More importantly, the

data fidelity becomes convex. As a consequence, if R is also

chosen convex, solutions depend neither on the initialization

nor the choice of the internal parameters of the solver. Such

internal parameters only affect the speed of convergence and

thus the number of iterations to perform in practice.

The multiplicative image denoising by augmented La-

grangian (MIDAL) algorithm [7] considers a convex regular-

ization, TV, and minimizes (10) using the alternating direction

method of multipliers (ADMM) algorithm [30], [28], [24] that

repeats, for an internal parameter β > 0, the updates

ẑ ← argmin
z

β

2
||z − x̂+ d̂||2 +R(z) , (11)

d̂← d̂+ ẑ − x̂ , (12)

x̂← argmin
x

β

2
||x− ẑ − d̂||2 − log py(y|x) . (13)

Clearly, the minimization for z in (11) depends on the choice

of R and can be solved by a dedicated regularized least

square solver (corresponding to a Gaussian denoiser). This
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Fig. 1. Several approaches for speckle reduction discussed in this paper. The proposed scheme generalizes the variational approaches based on a log-transform
to multi-channel SAR images. Similarly to homomorphic or variational approaches on log-transformed data, it embeds a Gaussian denoising step.

is schematized on Fig.1, third row. The minimization for x in

(13) amounts to solving n separable convex problems of the

form

argmin
xk

β

2
(xk − ak)

2 + L
(
xk + eyk−xk

)
, (14)

where ak = ẑk + d̂k. The explicit solution is given by the

Lambert W functions [7], or can be computed more efficiently

with a few iterations of Newton’s method as

x̂k ← x̂k −
β(x̂k − ak) + L(1− eyk−x̂k)

β + Leyk−x̂k
. (15)

Using ten iterations is usually enough to offer good per-

formances within a reasonable computational time, see,

e.g ., [63].

As already mentioned, when R is convex, the parameter β
only acts on the speed of convergence. Interestingly, as the

noise variance is independent of the signal, the convergence

is in practice uniform meaning that for a finite number of

iterations the same amount of smoothing will be performed

both in dark and bright regions. Small details with identical

signal to noise ratio will be identically smoothed whatever the

average value of the area.

When R is nonconvex but satisfies some weak conditions

and β is chosen large enough, ADMM still converges to a local

minimum [34]. In this case, the solution depends on both the

initialization and the choice of β. We observe that choosing

β as (1+ 2/L)Var[y]−1, where Var[y] = Ψ(1, L), provides a

similar smoothing whatever the number of iterations and the

initial number of looks L.

This shows that taking the logarithm not only makes the

data fidelity term convex, but also ensures a uniform speed of

convergence of a non-constrained optimization problem. These

are two key practical ingredients that challenge nonconvex

strategies that directly deal with gamma distributed values.

We illustrate on Fig.2(d) that minimization of the total

variation of log-transformed intensities produces a smaller loss

of contrast of bright structures and reduces speckle equally in

all regions.
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Fig. 2. Illustration of speckle reduction by 1D total variation minimization: (a) speckle-corrupted rectangle signal (L = 2), (b) restored reflectivity using
the homomorphic approach and “L2 + TV” minimization in log-domain, (c) restored reflectivity using a variational approach “gamma + TV” in the linear
domain, (d) restored reflectivity using a variational approach “Fisher-Tippett + TV” in the log domain. Expectation and quartiles are computed from 50 000
noisy realizations. Restorations computed by exact discrete optimization [35] with 2 000 quantization levels.

III. EXTENSION TO MULTI-VARIATE SAR IMAGERY

A. Statistics of covariance matrices

As mentioned in the introduction, multi-variate complex

SAR images carry much more information than univariate

SAR images since inter-channel cross-correlations capture

geophysical features (e.g ., height is related to the interfero-

metric phase, geometrical configuration with the polarimetric

properties). All relevant information of these complex-valued

images can be gathered together at each pixel by forming a

D ×D complex covariance matrix C, with D = 2 in single-

baseline SAR interferometry, D = 3 in SAR polarimetry,

D = 6 in PolInSAR (polarimetry + interferometry), and even

larger values of D for multi-baseline interferometry or SAR

tomography [50]. Let us denote by ~ki the vector of D complex

values recorded for a pixel i, then the empirical covariance

matrix C is given by:

C =
1

L

L∑

t=1

~kt.~k
∗

t

where ∗ denotes the Hermitian transpose. Note that the L
vectors ~kt are often extracted from a small window centered

around the pixel of interest leading to a loss of resolution.

If spatial resolution must be preserved, a single-look setting

should be used, i .e., L = 1, resulting to a matrix C with rank

1. Goodman’s model [31] describes speckle in this matrix as

being circular complex Wishart distributed, for L ≥ D:

pC(C|Σ) =
LLD|C|L−D

ΓD(L)|Σ|L exp
(
−L tr(Σ−1C)

)
, (16)

where Σ is the underlying covariance matrix encoding reflec-

tivities and complex correlations, and L ≥ D is the number

of looks. Both C and Σ belong to the open cone of complex

Hermitian positive definite matrices. While fluctuations in

univariate SAR images are multiplicative, the Wishart distribu-

tion, denoted by W(Σ;L) models fluctuations in multivariate

SAR images as

C = Σ
1/2SΣ1/2 , (17)

E[C] = Σ , (18)

Var[Cij ] =
1

L
ΣiiΣjj , (19)

where S ∼ W(Id;L) (see, e.g ., [47])2. Note that the variance

for off-diagonal elements does not depend on Σij but on

Σii and Σjj , which indicates that the fluctuations are not

only intra-channel signal dependent but inter-channel signal

dependent. Interestingly, according to [32], [47], we have the

following relations regarding the determinant and the trace

|C| = |Σ||S| , (20)

trC = tr(ΣS) , (21)

E[trC] = trΣ , (22)

Var[trC] =
1

L
trΣ2 , (23)

and E[tr(C2 −Σ
2)] =

1

L
(trΣ)2 . (24)

B. Limit of a direct variational approach

As for the univariate case, a variational approach consider-

ing the Wishart distribution of C can be expressed as

Σ̂ ∈ argmin

Σ
H
≻0

− log pΣ(Σ|C) +R(Σ) , (25)

where− log pΣ(Σ|C) = L

n∑

k=1

log |Σk|+ tr(Σ−1
k Ck) + Cst.

where Σ
H≻ 0 reads as “Σ is Hermitian positive definite”.

Note that (25) boils down to (9) for D = 1. While estimating

directly the reflectivity in a variational framework in the case

of univariate data requires to enforce a positivity constraint,

optimizing for Σ requires optimizing on the open cone of

complex Hermitian positive definite matrices, which is much

more challenging. Moreover, as noted for the univariate case,

the neg-log-likelihood associated to the Wishart distribution is

highly nonconvex, so that finding a good quality local optimum

is very difficult. This approach is summarized on the second

row of Fig.1.

To circumvent the difficulty arising from the nonconvexity

of the neg-log-likelihood, Nie et al. approximated it by its

convex envelope [52], [53]. In their first algorithm, WisTV

[52], R was chosen as a matricial total-variation regularizer,

2for complex random variables Var[Cij ] = E[|Cij |
2]− |E[Cij ]|

2
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and next in [53] it was replaced by a matricial non-local total-

variation regularizer [29] to better preserve textures. Replacing

the neg-log-likelihood by its convex envelope is a rather crude

approximation since it leads to underestimating the right tail

of the distribution, and thus prevents from being robust against

bright outliers.

The noise components in C are intensively signal depen-

dent, so that speckle suppression is not as strong in all regions.

Last but not least, as for the univariate case, it has been

recently observed that the performance of WisTV can drop

significantly when the dynamic range of the input SAR image

becomes very high [54]. In this latter article, the authors solve

this issue by normalizing each input matrix Ck by a factor

τk defined as a non-linear sigmoid function of their span
1
3 trCk. The output Σ̂k are then rescaled back to their original

range by multiplication by τ−1
k . In addition, they reformulate

(25) into an unconstrained optimization problem by writing

Ck = ΠkΠ
∗

k + ǫId, for a fixed ǫ > 0, and then optimizing

for Πk ∈ R
D×D. The factorization for Πk being non unique,

the resulting energy will necessarily present even more local

minima. To cope with these different issues we have chosen

a different path. We suggest mimicking the univariate case by

making use of the matrix logarithm, thereby extending MIDAL

approach [7] to multi-channel SAR images.

C. The Wishart-Fisher-Tippett distribution

Our objective is to generalize the use of the log transform in

univariate SAR images to multi-variate SAR images. To that

end, we resort to the matrix logarithm defined3,4 as

Σ 7→ Σ̃ = logΣ = E diag(Λ̃)E−1 where Λ̃i = logΛi ,
(27)

E ∈ C
D×D is the matrix whose column vectors are eigen-

vectors (with unit norm) of Σ, Λ ∈ R
D
+ is the vector of

corresponding eigenvalues, such that Σ = E diag(Λ)E−1,

and Λ̃ ∈ R
D. Its inverse transform is the matrix exponential

defined similarly as

Σ̃ 7→ Σ = eΣ̃ = E diag(Λ)E−1 where Λi = exp Λ̃i .
(28)

While Σ lies in the open cone of complex Hermitian positive

definite matrices, Σ̃ lies in the vector space of complex

Hermitian matrices which is isomorphic to R
D2

. The change

3the precise definition is Σ =
∑

∞

n=1

Σ̃
n

!n
but is equivalent to (27) for

Hermitian positive definite matrices.
4the matrix logarithm is not to be confused with the log-determinant

function Σ 7→ log |Σ|, the latter equals to the trace of the former.

of variables C̃ = logC and Σ̃ = logΣ leads to the

distribution of log-transformed matrices C̃:

pC̃(C̃|Σ̃) =
LLDf(C̃)

ΓD(L)
eL tr(C̃−Σ̃) exp

(

−L tr(eC̃e−Σ̃)
)

(29)

with f(C̃) = |Jexp(C̃)|/ exp[D tr(C̃)] a normalization factor

that involves the Jacobian of log transform |Jexp(C̃)| and that

is equal to 1 when D = 1. We call such a distribution the

Wishart-Fisher-Tippett distribution, denoted as WFT (Σ̃;L),
as it generalizes the Fisher-Tippett distribution to the case

where D > 1. The expectation and variance of C̃ do not seem

to be known in closed form in the literature. Nevertheless,

according to [2] its trace (which coincides with the logarithm

determinant of C: tr C̃ = log |C|) has the following statistics

tr C̃ = tr Σ̃+ tr S̃ , (30)

E[tr C̃] = tr Σ̃+

D∑

i=1

Ψ(0, L− i+ 1)−D logL , (31)

and Var[tr C̃] =

D∑

i=1

Ψ(1, L− i+ 1) , (32)

where S̃ ∼ WFT (0;L). This shows that the trace of the

matrix logarithm suffers from additive non-zero-mean signal-

independent corruptions. Note that (30) is a direct consequence

of (20). If follows that the D2 channels of C̃ can reasonably

be assumed to have approximately a stabilized variance (see

Sec. III-G for numerical evidence), which opens the door to

regularization with iterative schemes. Note that we cannot

use the matrix log transform directly as a variance stabiliza-

tion procedure, as done in the univariate homomorphic case,

because we do not have an inversion formula (i.e., a bias

correction formula). We will thus adopt a variational strategy.

D. Log-channel decomposition

As mentioned in the previous paragraph, Σ̃ lies in the vector

space of complex Hermitian matrices that is isomorphic to

R
D2

. In this section, we describe a re-parameterization of

the log-transformed covariance matrix Σ̃ as a vector of D2

reals denoted x. We first define in (26) a unitary transform K
that maps real-valued vectors α of RD2

to Hermitian D ×D
matrices. We also introduce a whitening affine map (A, b)
so that the D2 channels of x are better decorrelated, and a

scaling transform Φ (i .e., a diagonal matrix) to balance the

variance of noise between channels. The transform Ω between
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(a) (b) (c)

Fig. 3. Three two-dimensional sections of the Wishart-Fisher-Tippett negative log likelihood with respect to (x1, x2), (x1, x3) and (x3, x4).

(log-transformed) covariance matrices Σ̃ and the vector of

parameter x is:

Σ̃ = Ω(x) = K(AΦx+ b) . (33)

We denote its inverse Ω−1(Σ̃) = Φ−1A−1(K−1(Σ̃) − b)
and introduce the linear operator Ω∗ = ΦA∗K∗, where ∗
denotes the adjoint. The re-parameterized log-transformed data

are noted y ∈ R
D2

and defined by y = Ω−1(C̃), see Fig. 1.

The affine transform (A, b) is chosen such that the channels

xi of the re-parameterized vector are decorrelated and can then

be assumed close to independent:

p
Σ̃
(Σ̃) = px(x) ≈

D2

∏

i=1

pxi(xi) . (34)

The affine transform (A, b) is obtained by principal compo-

nent analysis, as described in Sec. III-G. Moreover, the scaling

matrix Φ is chosen such that the variance of yi is equal to 1

for all channels i, see Sec. III-G.

E. Proposed variational approach

We now extend x and y into images of n real-valued vectors

each of dimension D2. Writing − log pxi(xi) = R(xi) and

using the relations (34) within the MAP framework leads to

the following minimization problem

x̂ ∈ argmin
x

− log py(y|x) +
D2

∑

i=1

R(xi) , (37)

where, from (29), we have

− log py(y|x) = L

n∑

k=1

tr
(

Ω(xk) + eΩ(yk)e−Ω(xk)
)

+Cst. ,

(38)

and the final estimate Σ̂k at pixel index k is defined as Σ̂k =
expΩ(x̂k). Remark that this problem boils down to (10) when

D = 1. Note also the difference in notations between xk a

vector of D2 coefficients at pixel k and xi a scalar image of

n pixels corresponding to the i-th channel of x.

While the direct multivariate variational approach (25) re-

quires optimizing on the cone of complex Hermitian matrices,

a first major advantage is that Problem (37) is unconstrained on

R
D2

. Even though the likelihood term (38) is still nonconvex,

it appears to be much more suitable for optimization with

less local minima. Figure 3 illustrates the evolution of this

term (with D = 2, and n = 1) on three two-dimensional

cross sections of R
4 showing that for each of such sections

the energy appears to be convex. Nevertheless, note that

convexity in low-dimensional spaces does not necessarily

guarantee convexity in higher dimensional spaces. Unlike the

direct multivariate variational approach (25), (38) appears to

be convex in many scenarios, e.g ., in the univariate case (10),

and more generally when x̂k is restricted to the vectorial sub-

space where Ω(x̂k) commutes with Ω(yk), hence satisfying

eΩ(yk)e−Ω(x̂k) = eΩ(yk−x̂k). Convexity, in this case, follows

from the fact that the trace is linear, hence convex, the function

x̂k → tr eΩ(−x̂k+yk) is a convex spectral function [27], [43],

and Ω is affine.

As for the mono-dimensional case, we will thus consider

the ADMM algorithm which iteratively performs the updates

ẑ ← argmin
z

β

2
||z − x̂+ d̂||2 +

D2

∑

i=1

R(zi) , (39)

d̂← d̂+ ẑ − x̂ , (40)

x̂← argmin
x

β

2
||x− ẑ − d̂||2 − log py(y|x) . (41)

Since the noise variance is approximately stabilized and close

to 1 on each channel (see, III-G), a single value for β can be

chosen for all channels. With such a choice, the same amount

of smoothing is reached in practice in all regions after a finite

number of iterations.

Equation (39) is separable on the different channels, and

can then be solved by applying D2 times a regularized least-

square solver. Equation (41) amounts to solving n separable

problems of the form

argmin
xk

β

2
||xk − ak||2 + L tr

(

Ω(xk) + eΩ(yk)e−Ω(xk)
)

(42)

where ak = ẑk + d̂k. As for the univariate case, we will

consider Newton’s method to solve this optimization problem.

Its gradient is given by

β(xk − ak) +

LΩ∗

(

Id−
∫ 1

0

e(u−1)Ω(xk)eΩ(yk)e−uΩ(xk)du

)

, (43)
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∆k,i
∞

=

β(xi
k − aik) + L

[

Ω∗

(

Id−
∫ 1

0

e(u−1)Ω(xk)eΩ(yk)e−uΩ(xk)du

)]i

∣
∣
∣
∣
β + LΩ∗

∫ 1

0

e(u−1)Ω(xk)eΩ(yk)e−uΩ(xk)du

∣
∣
∣
∣

i
. (35)

∆k,i
Q =

β(xi
k − aik) + L

[

Ω∗

(

Id− 1

Q

Q
∑

q=1

e(uq−1)Ω(xk)eΩ(yk)e−uqΩ(xk)

)]i

∣
∣
∣
∣
∣
β + LΩ∗

1

Q

Q
∑

q=1

e(uq−1)Ω(xk)eΩ(yk)e−uqΩ(xk)

∣
∣
∣
∣
∣

i
, uq =

q − 1
2

Q
. (36)

Dimension D
2 4 6 8 10 12 14 16

‖
∆

1
0
0
‖
/
‖
x
‖

10
-5

10
-4

10
-3

10
-2

∆
0

∆
1

∆
2

∆
4

∆
8

∆
16

Fig. 4. Evolution with respect to the matrix dimension D of the error
||∆100||/||x|| after 10 iterations of Newton’s method for which the update
∆∞ is replaced by ∆Q, for Q = {0, 1, 2, 4, 8, 16}. For each D, the results
are averaged over 100 realizations of C (with L = D), each realization is
obtained from a different version of Σ (also randomly generated).

see the development in Appendix A. By mimicking the uni-

variate case, we consider the following approximation for the

Hessian

diag

(

βId+ LΩ∗

∫ 1

0

e(u−1)Ω(xk)eΩ(yk)e−uΩ(xk)du

)

, (44)

leading to the quasi-Newton iteration

x̂i
k ← x̂i

k −∆k,i
∞

, (45)

where ∆k,i
∞

is defined in eq. (35). Note that the expression

becomes the exact Newton iteration when Ω(xk) and Ω(yk)
are commuting matrices. As for the univariate case, we notice

that ten iterations is enough to offer good performance with a

reasonable computational time.

The update matrix ∆k,i
∞

, defined in eq. (35), requires nu-

merical integration. We use Riemann integral approximation

with Q rectangles as defined in eq. (36). Of course, the

smaller Q, the faster the iteration (45). Figure 4 shows the

evolution of ||∆100||/||x̂|| with respect to D (with L = D and

β = 10L) after 10 iterations of Newton’s method where ∆∞

is substituted by ∆Q, for Q = {1, 2, 4, 8, 16}. We furthermore

define ∆0 by substituting the integral by exp(Ω(yk−xk)) as

a crude approximation of the gradient (and exact in the case

where Ω(x̂k) commutes with Ω(yk)). Ideally, the algorithm

would reach the optimum solution such that ∆∞ ≈ ∆100 = 0
(as for the univariate case). This error is quite small whatever

Q and D. For low values of D, the error is reduced by about

a factor 10 each time Q is multiplied by 4. The increase of the

error with D is due to an accumulation of numerical errors of

the exponential matrix function, all the more important when

Q gets larger. This experiment reveals that Q = 1 is a good

choice in practice, reaching a relative error of about 2 · 10−3

whatever D ∈ [2, 16] while requiring a reasonable computation

time.

F. Adaptation to advanced filters

As in the univariate case, we notice that ADMM converges

when the regularizer R is chosen as nonconvex. More remark-

ably, as observed in many contexts, e.g ., [67], [13], [65],

[14], [56], [8], replacing the minimization problem in (39)

by the solution of a Gaussian denoiser – a scheme known

as plug-and-play – leads to appealing results. The resulting

algorithm, coined MUlti-channel LOgarithm with Gaussian

denoising (MuLoG), is given as

ẑi ← fβ−1/2(x̂i − d̂i), for i = 1, . . . , D2 , (46)

d̂← d̂+ ẑ − x̂ , (47)

x̂← argmin
x

β

2
||x− ẑ − d̂||2 − log py(y|x) , (48)

where fσ2 is again a denoiser for images contaminated by

zero-mean white Gaussian noise N (0;σ2Id), and (48) is

solved as mentioned in the previous paragraph. This plug-and-

play ADMM algorithm5 is proven to converge6 [9] as soon as

fσ2 is a bounded denoiser, i.e., satisfying for all x

||fσ2(x)− x||2 ≤ nσ2C (49)

for some constant C independent of n and σ. As mentioned

in [9], this is a weak condition which can be expected from

most denoisers. In particular, this condition implies that fσ2

should tend to the identity when σ tends to 0. We depict this

algorithm on the last row of Fig.1.

5this requires to add a small update of β during the iterations, according
to the rule given in [9].

6convergence holds in our case by continuity of the gradient of (37), which

implies that the gradient is Lipschitz in any compact subsets of RD2
×n.
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G. Calibration

In practice, the operators A, b and Φ are obtained from

the log matrix of the input image C with n pixels. Let

{α1, . . . ,αn} be the collection of n vectors extracted from the

matrix logarithm of the input image as αk = K−1(C̃k). We

thus define b = 1
n

∑n
k=1 αk and A the matrix whose columns

are the eigenvectors (with unit norm) of 1
n

∑n
k=1(αk −

b)(αk − b)t. As a result, the vector A−1(αk − b) is the

representation of αk in the principal component analysis of

{α1, . . . ,αn} known to maximize inter-channel decorrelation,

and thus leads to (34). By assuming the noise variance is

stabilized on each channel of A−1(α − b), we define the

diagonal matrix Φ as diag(σ̂2
1 , . . . , σ̂

2
D), where σ̂2

1 , . . . , σ̂
2
D are

obtained by estimating separately the variance of the noise on

each channel of A−1(α− b). This procedure ensures that the

noise variance is about 1 on each channel of y. In practice,

we resort to the median absolute deviation estimate (MAD)

[33] for this task, but other strategies could be used, such as

[45], [46], [62].

Figure 5 displays the nine components of y for an image

of 3× 3 matrices C. While the noise variance in C is clearly

signal-dependent, the amplitudes of the fluctuations in the

different channels of y appear fairly constant whatever the

underlying signal Σ. Nevertheless, the noise is not signal-

independent, we can observe that some regions are a smidgen

noisier than others. Remark also that the noise variance is

also about the same for all channels. Then, we can reasonably

claim from this experiment that our log channel decomposition

approximately stabilizes the noise variance.

Thanks to this approximate stabilization, we notice that

choosing 6 iterations with β = 1 + 2/L provides satisfying

solutions in all tested situations, whatever the dimension D,

the number of looks L and the embedded Gaussian denoiser.

The initialization is chosen as x̂ = y, ẑi = f1(y
i) and

d̂ = ẑ− x̂. We always choose Q = 1 according to Sec. III-E.

When L < D, the matrix Ck is rank deficient, and

the likelihood term (38), though convex when restricted to

commutative matrices, is however no longer strictly convex

and has an infinite number of minimizers. Worse, its logarithm

C̃k is undefined which prevents the computation of A, b

and Φ used in our log-channel decomposition. To deal with

these issues a practical solution is to perform a small diagonal

loading of the input matrices Ck to enforce their positive

definite property. After trying several other alternatives, we

found that satisfying results were reached by performing a

spatially varying re-scaling of the off-diagonal elements as

(Ck)
new
i,j ←

|∑l wk,l(Cl)i,j |
√∑

l wk,l(Cl)ii
∑

l wk,l(Cl)jj
(Ck)i,j , (50)

where wk,l are the weights of a Gaussian kernel with band-

width 1 pixel. This procedure inevitably introduces some bias

in the solution, but this bias does not seem to be significant.

IV. EFFICIENT MATRIX LOG AND EXP TRANSFORMS

Our algorithm requires to compute several times n matrix

logarithms, matrix exponentials, and matrix-by-matrix prod-

ucts. It is thus important to make these operations as fast as

(a) Log channels

(b) Underlying image (c) Observed image

Fig. 5. (a) the nine log channels x1, . . . ,x9, with approximate unit stabilized
variance, of (c) the image C generated from (b) the image Σ displayed with
a RGB representation based on its decomposition in Pauli’s basis.

possible. Our first attempt to call n times Matlab’s functions

logm, expm and mtimes leads to very slow computations.

It is, in fact, important to use a vectorial implementation of

these functions. When D = 2, we can write the matrix C and

C̃ as

C =

(
a c∗

c b

)

and C̃ =

(
ã c̃∗

c̃ b̃

)

, (51)

and the relation between both are given, for C̃ = logC, as






ã = [(a− b+ δ)ℓ1 − (a− b− δ)ℓ2] /(2δ) ,

b̃ = [(b− a+ δ)ℓ1 − (b− a− δ)ℓ2] /(2δ) ,
c̃ = c(ℓ1 − ℓ2)/δ ,

(52)

and, for C = exp C̃, as






a =
[

(ã− b̃+ δ̃)e1 − (ã− b̃− δ̃)e2

]

/(2δ̃) ,

b =
[

−(ã− b̃− δ̃)e1 − (ã− b̃+ δ̃)e2

]

/(2δ̃) ,

c = c̃(e1 − e2)/δ̃ ,

(53)

where δ =
√

4|c|2 + (a− b)2, ℓ1 = log
[
(a + b + δ)/2

]
,

ℓ2 = log
[
(a + b − δ)/2

]
, δ̃ =

√

4|c̃|2 + (ã− b̃)2, e1 =

exp
[
(ã+ b̃+ δ̃)/2

]
and e2 = exp

[
(ã+ b̃− δ̃)/2

]
. With these

established relations, we can compute the matrix logarithm and

matrix exponential in a vectorial way, starting by computing

for the n pixels the coefficient ã, and next b̃ and finally

c̃. We have implemented this vectorial procedure in Matlab

(using the element-wise operators .* and ./). and observed

an acceleration by a factor larger than 600 compared to calling

n times the dedicated Matlab’s function. We were also able

to derive closed form formula for the case where D = 3,
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(a) “Speckle-free” image (b) Simulated speckle (PSNR=17.75, SSIM=0.696) (c) NL-SAR (PSNR=20.13, SSIM=0.829)

(d) Homomorphic with TV (PSNR=17.88, SSIM=0.730) (e) Homomorphic with DDID (PSNR=19.71, SSIM=0.790) (f) Homomorphic with BM3D (PSNR=19.29, SSIM=0.778

(g) MuLoG with TV (MIDAL) (PSNR=18.32, SSIM=0.759) (h) MuLoG with DDID (PSNR=19.68, SSIM=0.839) (i) MuLoG with BM3D (PSNR=20.22, SSIM=0.828)
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Number of looks L
5 10 15 20 25 30

S
S
IM

0.8

0.9

1

Noisy

NL-SAR

Homomorphic with DDID

MuLoG with DDID

(k) With DDID
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MuLoG with BM3D

(l) With BM3D

Fig. 6. (a) A “speckle-free” SAR image, (b) its simulated version with single-look speckle (L = 1), Results of speckle reduction with (c) NL-SAR [20],
(d-f) MuLoG embedding respectively TV, DDID and BM3D, (g-i) the homomorphic approach embedding respectively TV, DDID and BM3D. (j-l) Measure
of performance on this image in terms of PSNR (the larger the better) and SSIM (the larger the better) metrics as a function of the number of looks L.

leading in this case to an acceleration by a factor 75. The

formulas being too long to be inserted in this paper, we invite

the interested reader to refer to [16]. The same workaround is

applied for the matrix-by-matrix product.

V. NUMERICAL EXPERIMENTS

a) Considered Gaussian denoisers: In this section, nu-

merical experiments are conducted based on three Gaussian

denoisers. First, we consider the classical isotropic total-

variation (TV) [58], i.e., R(xi) = λ
∑n

k=1 ||(∇xi)k|| which

corresponds to the multivariate extension of [7]. The parameter

λ has been tuned to 0.7 and kept the same for all data-sets,

whatever the dimension D or the number of looks L. This can

be achieved only because noise components in the different

channels have all been stabilized to a variance of 1. Next,

we consider DDID [38], a recent hybrid method based on

bilateral filtering and shrinkage of Fourier coefficients. Finally,

we consider BM3D [12], a ten-years algorithm, reaching

remarkable results with fast computation, based on patch

similarity and three-dimensional wavelet shrinkage. The inner

parameters of these two latter algorithms have been kept the

same as the one provided in the authors’ implementation.

b) Simulations in the univariate case: Figure 6 reports

the results of a simulated experiment in the SAR amplitude

context (D = 1). Speckle has been generated on top of

a 409 × 409 “speckle-free” SAR image7 of the CNES in

Toulouse, France (obtained by ONERA’s RAMSES sensor).

These images having large dynamic ranges, they have been

saturated and gamma-corrected for display purposes. Speckle

with levels from L = 1 to 32 have been considered. The

performance of MuLoG is compared to the homomorphic

approach when both embed the aforementioned Gaussian de-

7Speckle in this 1 meter ground-resolution image has been reduced by a
factor 100 by averaging a 10 centimeters ground-resolution image.
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(a) Original interferometric image (b) MuLoG with TV (multivariate extension of [7])

(c) MuLoG with DDID (d) MuLoG with BM3D

Fig. 7. (a) A single-look interferometric image (D = 2, L = 1) of Toulouse (France) sensed by RAMSES ( c©ONERA). Estimation with our proposed multi-
variate framework MuLoG for (b) Total-Variation (TV), (c) DDID and (d) BM3D. For each image, the four log channels are displayed on top x1,x2,x3,x4,

below are the trace trC, the phase argC12 and the coherence |C12|/
√

|C11C22| respectively.

noisers. As a baseline, the performance are also compared to a

recent patch-based speckle reduction technique: NL-SAR [20].

In the single-look case (L = 1), close-ups of size 256×80 are

given for visual inspection. PSNR is first used as a quantitative

measure of amplitude reconstruction quality8. In this high

dynamic range setting, PSNR values are extremely sensitive to

a small discrepancy, all the more for tiny bright structures. As a

consequence, it may appear irrelevant, for instance, by ranking

MIDAL worst than the noisy image itself9. For this reason, we

have also included SSIM [66] values. Visual inspection and

quantitative criteria seem to indicate that MuLoG provides

more relevant solutions than the homomorphic approach. In

particular, the homomorphic approach tends to oversmooth

bright targets and leaves residual dark stains, revealing its lack

of robustness against the heavy left tail of the Fisher-Tippet

distribution. Overall, results obtained with MuLoG are on a

par with those of NL-SAR, while displaying small variations

depending on the chosen Gaussian denoiser. Visual analysis

of the output produced by each variant of MuLoG may be

useful to discard structures appearing only with one Gaussian

8Since images are not 8bit, the standard PSNR has been modified with a
peak value defined as the 99th quantile of the “speckle-free” SAR image.

9TV regularization produces a systematic loss of contrast (see, [61], [21]),
even stronger for punctual bright structures.

denoiser as artifacts.

c) Results in the multivariate case: Figures 7, 8 and 9

give three illustrations of MuLoG in real speckle reduction

contexts. Figure 7 corresponds to a 256×256 airborne single-

look SAR interferometric image (D = 2, L = 1) of a

building in Toulouse, France (sensed by RAMSES). Figure 8

corresponds to a 250×250 spaceborne single-look SAR inter-

ferometric image (D = 2, L = 1) of the dam of Serre-Ponçon,

France (sensed by TerraSAR-X). Figure 9 corresponds to a

512× 512 airborne SAR polarimetric image (D = 3, L = 1)

of the city of Kaufbeuren, Germany (sensed by F-SAR).

In the sub-figures (b) are displayed the results for the

isotropic total-variation (TV) regularization. In this case,

ADMM finds a local minimum of (37). We can observe that

the solution in each channel inherits from the well-known

behavior of the univariate TV regularization: the solution

appears piece-wise constant, small details and low contrasted

features are lost, and a slight bias can be observed.

In the sub-figures (c) and (d) are displayed the results for

DDID [38] and BM3D [12]. In these cases, our proposed

algorithm does not explicitly minimize a given energy but we

can observe that it converges in practice to relevant solutions.

As for TV, we can observe that the solution in each channel

inherits from the behavior of the original method: in this case
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(a) Original interferometric image (b) MuLoG with TV (multivariate extension of [7])

(c) MuLoG with DDID (d) MuLoG with BM3D

Fig. 8. (a) A single-look interferometric image (D = 2, L = 1) of Serre-Ponçon (France) sensed by TerraSar-X (image courtesy to Airbus Defence and
Space). Estimation with our proposed multi-variate framework MuLoG for (b) Total-Variation (TV), (c) DDID and (d) BM3D. For each image, the four log

channels are displayed on top x1,x2,x3,x4, below are the trace trC, the phase argC12 and the coherence |C12|/
√

|C11C22| respectively.

(a) Noisy image (b) MuLoG with TV (c) MuLoG with DDID (d) MuLoG with BM3D (e) NL-SAR

Fig. 9. (a) A single-look interferometric image (D = 3, L = 1) of Kaufbeuren (Germany) sensed by F-SAR ( c©DLR). Estimation with (b) NL-SAR [20]
our proposed multi-variate framework MuLoG for (c) Total-Variation (TV), (d) DDID and (e) BM3D. For each image, the nine log channels are displayed

on top x1, . . . ,x9, below are a RGB representation of Σ̂ based on its decomposition in Pauli’s basis.
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the small details and low contrasted features are well restored

but some known typical artifacts (small oscillating features)

of these two methods can be observed as well.

Finally, we display in sub-figure 9(e) the result of NL-SAR

[20] in the SAR polarimetric context. It provides a baseline

for assessing the relative performance of MuLoG against a

recent patch-based speckle reduction technique dedicated to

SAR imagery. Compared to the different MuLoG versions,

NL-SAR provides slightly over-smoothed results but is free of

systematical oscillating artifacts inherent of DDID and BM3D.

d) Computation time analysis: Table I reports the com-

putation time of our proposed approach with different embed-

ded Gaussian denoisers, different image sizes and different co-

variance matrix sizes. Our implementation uses parallelization

obtained by running eq. (46) in parallel on the D2 channels,

and running eq. (48) on different subsets of the n pixels. Our

experiments were conducted on a processor with 4 cores. In

this experiment, we observe that the total computation time

is always faster than running successively 6 × D2 times the

original algorithm.

This paper only deals with the problem of applying Gaus-

sian filters to multi-variate SAR data. A deeper study com-

paring their relative performance or comparing them to state-

of-the-art multi-variate SAR filters is out of the scope of this

paper. However, we believe that this study should be performed

in a future work and is of main interest for the community.

For this reason, we have released a Matlab script10, under

CECILL license, that takes as input a multivariate SAR image,

its number of looks and a Gaussian denoiser provided by the

user, and outputs the filtered SAR image.

VI. CONCLUSION

While a large diversity of speckle reduction methods exist

for intensity images, only few can be extended to process

multi-channel SAR images. In particular, the extension of

variational methods leads to challenging optimization prob-

lems due to the nonconvexity of the neg-log-likelihood and

the positive definiteness constraint on the covariance matrices.

Furthermore, signal and channel dependent variance lead to

restoration results with an uneven suppression of speckle. This

paper introduced a general scheme based on a matrix logarithm

transform to approximately stabilize speckle variance and

produce close to independent channels. Each channel can then

be processed with a user-defined Gaussian denoiser. Upon

re-iterating, a good fit of the restored multi-channel image

with the Wishart distribution of input covariance matrices is

enforced.

Special care is paid to ensure that the method requires

no parameter tuning other than possibly within the Gaussian

denoiser, and that these parameters, if any, can be tuned once

for all. The resulting generic method can then include Gaus-

sian denoisers selected by the user and tremendously extends

the set of available speckle reduction methods applicable to

multi-channel SAR images. We believe that this offers several

10http://www.math.u-bordeaux.fr/∼cdeledal/mulog

notable advantages: (i) the SAR imaging community will

directly benefit from upcoming progress made in the field of

image denoising; (ii) several images with reduced speckle can

be produced by very different denoising algorithms, and these

images can be compared to discard artifacts and confirm weak

structures; (iii) this family of speckle reduction methods can

serve as a reference to benchmark future specialized speckle

reduction algorithms. This motivated the release of an open-

source code implementing our method10.

APPENDIX A

GRADIENT OF THE NEG LOG LIKELIHOOD

In this section, we establish the part of formula (43)

corresponding to the gradient of tr
(
Ω(x) + eΩ(y)e−Ω(x)

)
. To

this end, recall that for a real valued differentiable function f ,

df(x) = tr[g(x)dx]⇔ ∇xf(x) = g(x)∗ . (54)

where g is a matrix valued function whose dimension depends

on that of x, and ∗ denotes the adjoint operator. Since Ω(x) =
K(AΦx+ b) is affine, this directly implies that

∇x tr Ω(x) = Φ∗A∗K∗ = Ω∗ . (55)

We now use that for any matrix valued function h, we have

(proven in [37], [5] according to [51])

deh(x) =

∫ 1

0

euh(x)(dh(x))e(1−u)h(x)du . (56)

It follows that, for any matrix L, we have

d tr
[

Leh(x)
]

= tr
[

L(deh(x))
]

, (57)

=tr

[

L

∫ 1

0

euh(x)(dh(x))e(1−u)h(x)du

]

, (58)

=

∫ 1

0

tr
[

Leuh(x)(dh(x))e(1−u)h(x)
]

du , (59)

=

∫ 1

0

tr
[

e(1−u)h(x)Leuh(x)(dh(x))
]

du , (60)

=tr

[(∫ 1

0

e(1−u)h(x)Leuh(x)du

)

(dh(x))

]

. (61)

Choosing h(x) = −Ω(x) and L = eΩ(y) leads to

∇x tr(eΩ(y)e−Ω(x)) = −Ω∗

∫ 1

0

e(u−1)Ω(x)eΩ(y)e−uΩ(x)du ,

(62)

the integral term being Hermitian since it reads as the integral

of Hermitian matrices

∫ 1
2

0

e(u−1)Ω(x)eΩ(y)e−uΩ(x) + e−uΩ(x)eΩ(y)e(u−1)Ω(x)

︸ ︷︷ ︸

Hermitian

du .

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers as

well as the associate editor for their comments, criticisms and

encouragements. We also thank the Centre National d’Études
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