

Can we estimate the risk solely from $x^{\star}(y,\lambda)$?

Risk estimation

• Assume $y \mapsto \Phi x^{\star}(y, \lambda)$ is weakly differentiable (a fortiori uniquely defined).

Prediction risk estimation via SURE

► The Stein Unbiased Risk Estimator (SURE):

$$SURE(y,\lambda) = \|y - \Phi x^{\star}(y,\lambda)\|^2 - \sigma^2 Q + 2\sigma^2 \operatorname{tr}\left(\frac{\partial \Phi x^{\star}(y,\lambda)}{\partial u}\right)$$

is an unbiased estimator of the prediction risk [Stein, 1981]: $\mathbb{E}_{w}(\mathrm{SURE}(y,\lambda)) = \mathbb{E}_{w}(\|\Phi x_{0} - \Phi x^{\star}(y,\lambda)\|^{2}) .$

Projection risk estimation via GSURE

- Let $\Pi = \Phi^*(\Phi\Phi^*)^+ \Phi$ be the orthogonal projector on $\ker(\Phi)^{\perp} = \operatorname{Im}(\Phi^*)$,
- Denote $x_{\mathrm{ML}}(y) = \Phi^*(\Phi\Phi^*)^+ y$,
- ► The Generalized Stein Unbiased Risk Estimator (GSURE):

$$\operatorname{GSURE}(y,\lambda) = \|x_{\mathrm{ML}}(y) - \Pi x^{\star}(y,\lambda)\|^2 - \sigma^2 \operatorname{tr}((\Phi\Phi^*)^+) + 2\sigma^2 \operatorname{tr}\left((\Phi\Phi^*)^+\right)$$

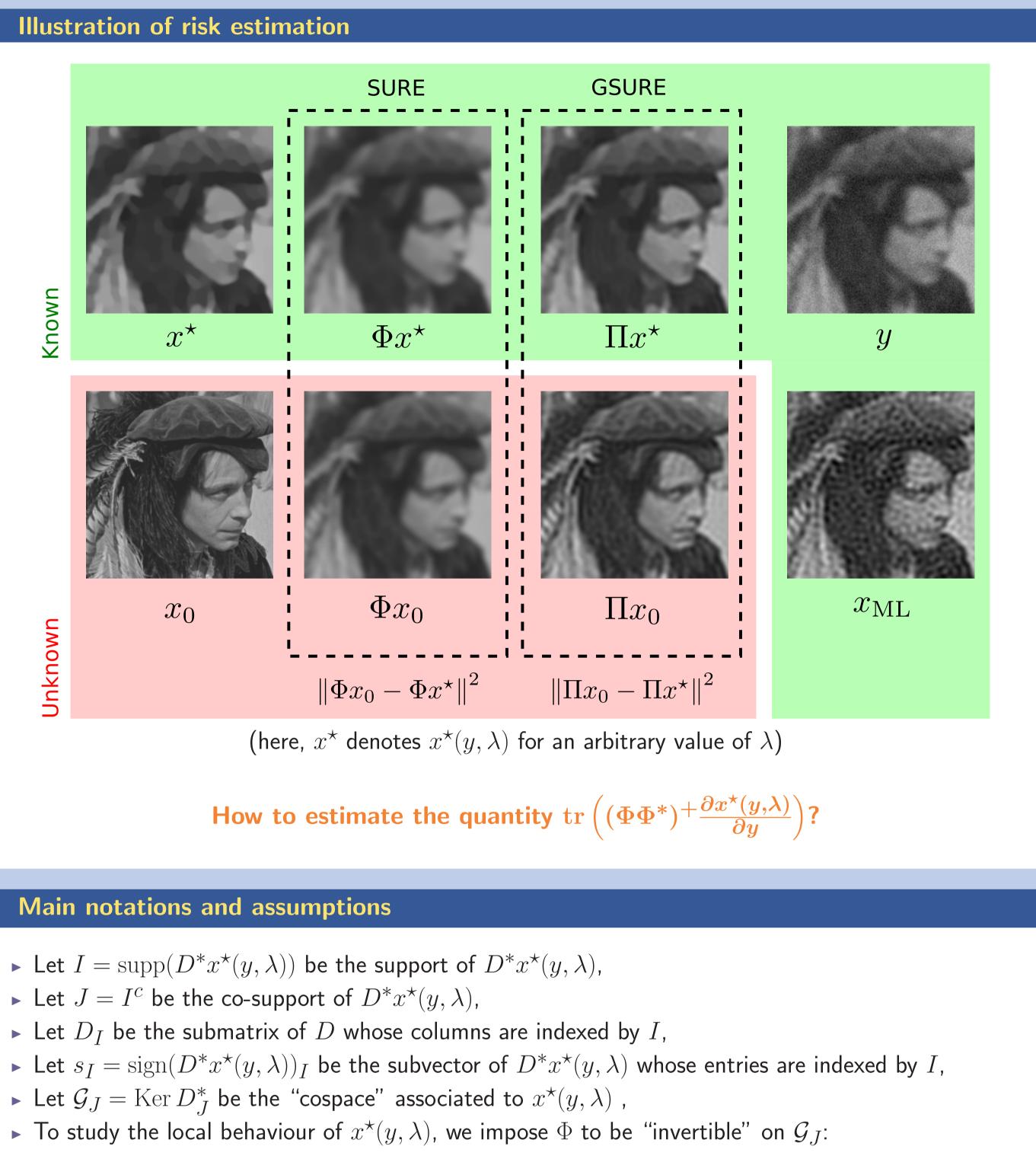
is an unbiased estimator of the projection risk [Vaiter et al., 2012]

$$\mathbb{E}_w(\mathrm{GSURE}(y,\lambda)) = \mathbb{E}_w(\|\Pi x_0 - \Pi x^*(y,\lambda)\|^2)$$

(see also [Eldar, 2009, Pesquet et al., 2009, Vonesch et al., 2008] for similar results).

Unbiased Risk Estimation for Sparse Analysis Regularization Charles Deledalle¹, Samuel Vaiter¹, Gabriel Peyré¹, Jalal Fadili³ and Charles Dossal² ¹CEREMADE, Université Paris–Dauphine — ²GREY'C, ENSICAEN — ³IMB, Université Bordeaux I

 $(\mathcal{P}_{\lambda}(y))$



Main notations and assumptions

- ▶ Let $I = \operatorname{supp}(D^*x^*(y,\lambda))$ be the support of $D^*x^*(y,\lambda)$,
- Let $J = I^c$ be the co-support of $D^*x^\star(y,\lambda)$,

- $\mathcal{G}_J \cap \operatorname{Ker} \Phi = \{0\},\$

It allows us to define the matrix

$$A^{[J]} = U(U^* \Phi^* \Phi U)^{-1}$$

where U is a matrix whose columns form a basis of \mathcal{G}_{J} , ► In this case, we obtain an implicit equation:

 $x^{\star}(y,\lambda)$ solution of $\mathcal{P}_{\lambda}(y) \Leftrightarrow x^{\star}(y,\lambda) = \hat{x}(y,\lambda)$

Is this relation true in a neighbourhood of (y, λ) ?

Theorem (Local Parameterization)

- Even if the solutions $x^{\star}(y,\lambda)$ of $\mathcal{P}_{\lambda}(y)$ might be not unique, $\Phi x^{\star}(y,\lambda)$ is uniquely defined.
- If $(y, \lambda) \notin \mathcal{H}$, for $(\bar{y}, \bar{\lambda})$ close to (y, λ) , $\hat{x}(\bar{y}, \bar{\lambda})$ is a solution of $\mathcal{P}(ar{y},ar{\lambda})$ where

$$\hat{x}(\bar{y},\bar{\lambda}) = A^{[J]} \Phi^* \bar{y} - \bar{\lambda} A^{[J]} D_I s_I .$$

► Hence, it allows us writing

$$\frac{\partial \Phi x^{*}(y,\lambda)}{\partial y} = \Phi A^{[J]} \Phi^{*} ,$$

Moreover, the DOF can be estimated by

$$c\left(\frac{\partial \Phi x^{\star}(y,\lambda)}{\partial y}\right) = \dim(\mathcal{G}_J)$$

$$egin{array}{c} x_0^{\hat{}} \ \mathcal{P}_0(y) \end{array}$$

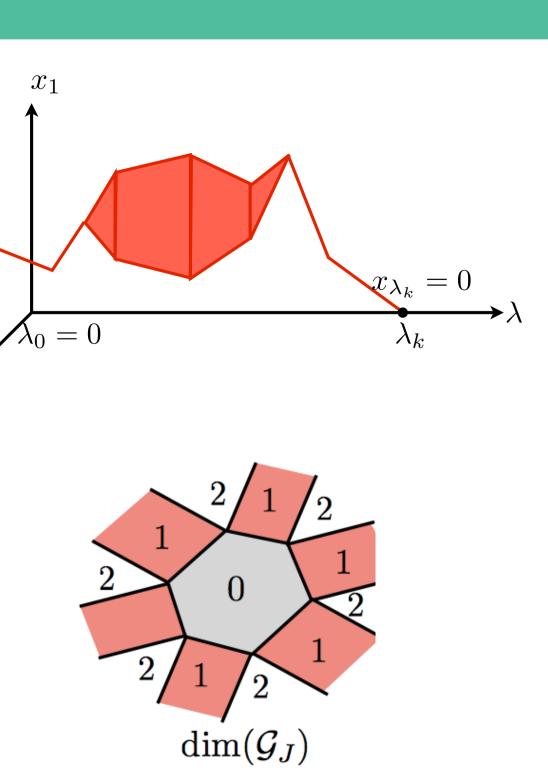


 $_{+}\partial\Phi x^{\star}(y,\lambda))$ ∂y

Can we compute this quantity efficiently?

$$U^*,$$

$$(A) \triangleq A^{[J]} \Phi^* y - \lambda A^{[J]} D_I s_I .$$



Computation of GSURE

▶ One has for $Z \sim \mathcal{N}(0, \mathrm{Id}_P)$,

$$\operatorname{tr}\left((\Phi\Phi^*)^+\frac{\partial\Phi}{\partial\Phi}\right)$$

where, for any $z \in \mathbb{R}^P$, $\nu = \nu(z)$ solves the following linear system

Numerical example

Super-resolution using (anisotropic) Total-Variation

(b) $x^{\star}(y,\lambda)$ at the optimal λ

Compressed-sensing using multi-scale wavelet thresholding

(c) x_{ML}

(d) $x^{\star}(y,\lambda)$ at the optimal λ

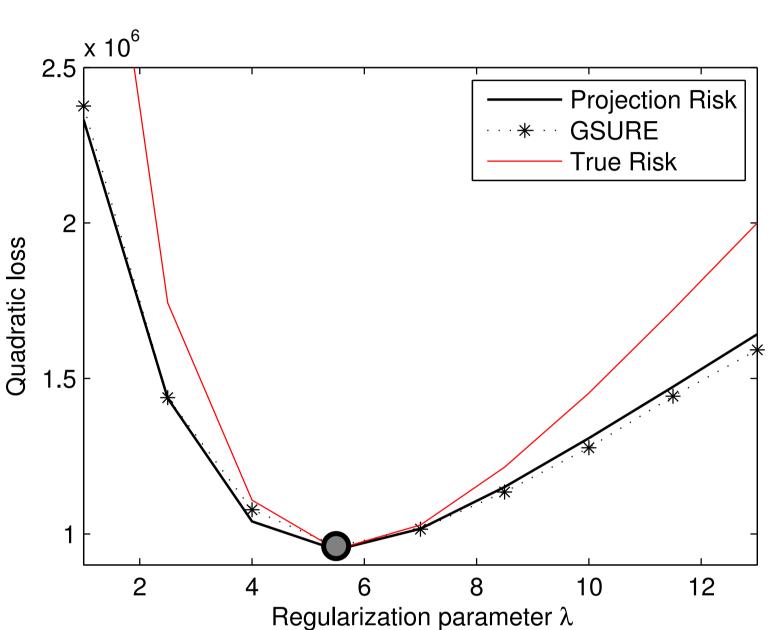
References

- Eldar, Y. C. (2009). Generalized SURE for exponential families: Applications to regularization. IEEE Transactions on Signal Processing, 57(2):471-481.
- Pesquet, J.-C., Benazza-Benyahia, A., and Chaux, C. (2009). A SURE approach for digital signal/image deconvolution problems. *IEEE Transactions on Signal Processing*, 57(12):4616–4632.
- **Stein**, C. (1981). Estimation of the mean of a multivariate normal distribution. *The Annals of Statistics*, 9(6):1135–1151.
- Vaiter, S., Deledalle, C., Peyré, G., Dossal, C., and Fadili, J. (2012). Local behavior of sparse analysis regularization: Applications to risk estimation. Arxiv preprint arXiv:1204.3212.
- Vonesch, C., Ramani, S., and Unser, M. (2008). In *ICIP*, pages 665–668. IEEE.

 $\frac{\partial \Phi x^{\star}(y,\lambda)}{\partial u} \bigg) = \mathbb{E}_Z(\langle \nu(Z), \, \Phi^*(\Phi \Phi^*)^+ Z \rangle)$

$$\begin{pmatrix} v^* \Phi & D_J \\ D^*_J & 0 \end{pmatrix} \begin{pmatrix} \nu \\ \tilde{\nu} \end{pmatrix} = \begin{pmatrix} \Phi^* z \\ 0 \end{pmatrix} .$$

► In practice, with law of large number, the empirical mean is replaced for the expectation. \blacktriangleright The computation of $\nu(z)$ is achieved by solving the linear system with a conjugate gradient solver.





Perspectives: How to efficiently minimizes $GSURE(y, \lambda)$ wrt λ ?

Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint.