The 18th IEEE International Conference on Image Processing

Brussels, Belgium, September 11 - 14, 2011

Patch similarity under non Gaussian noise

Charles Deledalle¹, Florence Tupin¹, Loïc Denis²

 1 Institut Telecom, Telecom ParisTech, CNRS LTCI, Paris, France 2 Observatoire de Lyon, CNRS CRAL, UCBL, ENS de Lyon, Université de Lyon, Lyon, France

September 13, 2011

Motivation

Increasing use of patches to model images

- Texture synthesis,
- Inpainting,
- Image editing,
- Denoising,

- Super-resolution,
- Image registration,
- Stereo vision,
- Object tracking.

Image model based on the natural redundancy of patches

Patch similarity

Motivation

Increasing use of patches to model images

- Texture synthesis,
- Inpainting,
- Image editing,
- Denoising,

- Super-resolution,
- Image registration,
- Stereo vision,
- Object tracking.

(a) Microscopy

(b) Astronomy

(c) SAR polarimetry

Motivation

Increasing use of patches to model images

- Texture synthesis,
- Inpainting,
- Image editing,
- Denoising,

- Super-resolution,
- Image registration,
- Stereo vision,
- Object tracking.

How to compare noisy patches?

How to take into account the noise model?

C. Deledalle, F. Tupin, L. Denis (Telecom ParisTech)

Patch similarity

- 1 Limits of the Euclidean distance
- 2 Variance stabilization approach
- B How to adapt properly to the noise distribution?
- Evaluation of similarity criteria

1 Limits of the Euclidean distance

- 2 Variance stabilization approach
- I How to adapt properly to the noise distribution?
- 4 Evaluation of similarity criteria

Gaussian noise assumption

• A pair (x_1, x_2) of noisy patches can be decomposed as:

Beyond Gaussian noise

- Noise can be non-Gaussian, e.g., Poisson or Gamma distributed,
- Non-additive decomposition for Poisson noise:

Why the Euclidean distance under Gaussian noise?

Euclidean distance estimates the dissimilarity between noise-free patches:

$$\mathbb{E}\left\|\left\|\mathbf{A}^{2}-\mathbf{B}^{2}\right\|_{2}^{2}=\left\|\mathbf{A}^{2}-\mathbf{B}^{2}\right\|_{2}^{2}+2\times PatchSize\times\sigma^{2},$$

(a) When $\theta_1 = \theta_2 = \theta_{12}$, the residue is statistically small and independent on θ_{12} :

$$\left\| - \left\| \right\|_{2}^{2} = \left\| \left\| \right\|_{1}^{2} < \tau \right\|_{1}^{2}$$

(3) When $\theta_1 \neq \theta_2$, the residue is statistically higher:

$$\left\| - \prod_{n=1}^{2} \right\|_{2}^{2} = \left\| \left\| \sum_{n=1}^{2} \right\|_{1} > \tau \right\|_{1}$$

Limit of the Euclidean distance with Poisson noise

Iculidean distance does not estimate the dissimilarity between noise-free patches:

(a) When $\theta_1 = \theta_2 = \theta_{12}$, the residue cannot be controlled and is dependent on θ_{12} :

$$\left\| \right\|_{2}^{2} = \left\| \right\|_{1}^{2}$$

③ Then, when $\theta_1 \neq \theta_2$, there is no guarantee that the residue is statistically higher:

$$- \left\| \right\|_{2}^{2} = \left\| \left\| \right\|_{1}^{2} + \left\| \right\|_{1}^{2} \right\|_{1}^{2}$$

Limits of the Euclidean distance

2 Variance stabilization approach

Bow to adapt properly to the noise distribution?

4 Evaluation of similarity criteria

Variance stabilization approach

- Use an application s which stabilizes the variance for a specific noise model,
- Evaluate the Euclidean distance between the transformed patches:

$$\left| s \left(\begin{array}{c} s \\ s \end{array} \right) - s \left(\begin{array}{c} s \\ s \end{array} \right) \right\|_{2}^{2} = \left\| \begin{array}{c} s \\ s \end{array} - \left\| \begin{array}{c} s \\ s \end{array} \right\|_{2}^{2}, \quad (1)$$

Variance stabilization approach

- Use an application s which stabilizes the variance for a specific noise model,
- Evaluate the Euclidean distance between the transformed patches:

$$\left| s \left(\begin{array}{c} \\ \end{array} \right) - s \left(\begin{array}{c} \\ \end{array} \right) \right\|_{2}^{2} = \left\| \begin{array}{c} \\ \end{array} - \left\| \begin{array}{c} \\ \end{array} \right\|_{2}^{2}, \quad (1)$$

Example

• Gamma noise (multiplicative) and the homomorphic approach:

$$\mathbf{s}(X) = \log X \Rightarrow \operatorname{Var}[\mathbf{s}(X)] = \operatorname{Var}[\log X] = \Psi(1, L)$$
(2)

where L is the shape parameter of the gamma distribution.

• Poisson noise and the Anscombe transform:

$$\mathbf{s}(X) = 2\sqrt{X + \frac{3}{8}} \Rightarrow (\theta \gtrsim 4 \Rightarrow \operatorname{Var}[\mathbf{s}(X)] = 1)$$
 (3)

Why does it seem to work?

Suclidean distance estimates the dissimilarity between transformed noise-free patches:

$$\mathbb{E}\left\|s\left(s_{1}^{2}\right)-s\left(s_{2}^{2}\right)\right\|_{2}^{2}=\left\|s_{1}^{2}-s_{2}^{2}\right\|_{2}^{2}+Constant,$$

2 When $\theta_1 = \theta_2 = \theta_{12}$, the residue is statistically small:

$$\left\| - \right\|_{2}^{2} = \left\| \right\|_{1} < \tau$$

③ Then, when $\theta_1 \neq \theta_2$, the residue is statistically higher:

$$\left\| {\begin{array}{*{20}c} \\ 2\end{array}} \right\|_2 = \left\| {\begin{array}{*{20}c} \\ 1\end{array}} \right\|_1 > \tau$$

Variance stabilization approach

Limits

- Only heuristic,
- No optimality results,
- Does not take into account the statistics of the transformed data,
- Does not exist for all noise distribution models.

(a) Image with impulse noise

(b) SAR cross correlation

Limits of the Euclidean distance

2 Variance stabilization approach

Bow to adapt properly to the noise distribution?

4 Evaluation of similarity criteria

Definitions and properties

• A similarity criterion can be based on the hypothesis test (i.e., a parameter test):

$$\begin{split} \mathcal{H}_0: \boldsymbol{\theta}_1 = \boldsymbol{\theta}_2 \equiv \boldsymbol{\theta}_{12} & (\text{null hypothesis}), \\ \mathcal{H}_1: \boldsymbol{\theta}_1 \neq \boldsymbol{\theta}_2 & (\text{alternative hypothesis}). \end{split}$$

Its performance can be measured as:

$$\begin{split} P_{FA} &= \mathbb{P}(\text{answer dissimilar}; \boldsymbol{\theta}_{12}, \mathcal{H}_0) \qquad (\text{false-alarm rate}), \\ P_D &= \mathbb{P}(\text{answer dissimilar}; \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \mathcal{H}_1) \qquad (\text{detection rate}). \end{split}$$

• The likelihood ratio (LR) test minimizes P_D for any P_{FA} :

 $L(\mathbf{x}_1, \mathbf{x}_2) = \frac{p(\mathbf{x}_1, \mathbf{x}_2; \boldsymbol{\theta}_{12}, \mathcal{H}_0)}{p(\mathbf{x}_1, \mathbf{x}_2; \boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \mathcal{H}_1)}. \quad \leftarrow \text{ given by the noise distribution model}$

 \rightarrow Problem: θ_{12} , θ_1 and θ_2 are unknown.

Generalized likelihood ratio (GLR)

- Estimate θ_{12} , θ_1 and θ_2 with the maximum likelihood estimate (MLE),
- Define the (negative log) generalized likelihood ratio test:

$$\begin{aligned} -\log GLR(\mathbf{x}_1, \mathbf{x}_2) &= -\log \frac{\sup_{\mathbf{t}} p(\mathbf{x}_1, \mathbf{x}_2; \boldsymbol{\theta}_{12} = \mathbf{t}, \mathcal{H}_0)}{\sup_{\mathbf{t}_1, \mathbf{t}_2} p(\mathbf{x}_1, \mathbf{x}_2; \boldsymbol{\theta}_1 = \mathbf{t}_1, \boldsymbol{\theta}_2 = \mathbf{t}_2, \mathcal{H}_1)} \\ &= -\log \frac{p(\mathbf{x}_1; \boldsymbol{\theta}_1 = \hat{\mathbf{t}}_{12}) p(\mathbf{x}_2; \boldsymbol{\theta}_2 = \hat{\mathbf{t}}_{12})}{p(\mathbf{x}_1; \boldsymbol{\theta}_1 = \hat{\mathbf{t}}_1) p(\mathbf{x}_2; \boldsymbol{\theta}_2 = \hat{\mathbf{t}}_2)} \end{aligned}$$

Generalized likelihood ratio (GLR)

- Estimate θ_{12} , θ_1 and θ_2 with the maximum likelihood estimate (MLE),
- Define the (negative log) generalized likelihood ratio test:

$$\begin{aligned} -\log GLR(\mathbf{x}_1, \mathbf{x}_2) &= -\log \frac{\sup_{\mathbf{t}} p(\mathbf{x}_1, \mathbf{x}_2; \boldsymbol{\theta}_{12} = \mathbf{t}, \mathcal{H}_0)}{\sup_{\mathbf{t}_1, \mathbf{t}_2} p(\mathbf{x}_1, \mathbf{x}_2; \boldsymbol{\theta}_1 = \mathbf{t}_1, \boldsymbol{\theta}_2 = \mathbf{t}_2, \mathcal{H}_1)} \\ &= -\log \frac{p(\mathbf{x}_1; \boldsymbol{\theta}_1 = \hat{\mathbf{t}}_{12}) p(\mathbf{x}_2; \boldsymbol{\theta}_2 = \hat{\mathbf{t}}_{12})}{p(\mathbf{x}_1; \boldsymbol{\theta}_1 = \hat{\mathbf{t}}_1) p(\mathbf{x}_2; \boldsymbol{\theta}_2 = \hat{\mathbf{t}}_2)} \end{aligned}$$

Maximal self similarity

Generalized likelihood ratio (GLR)

- Estimate θ_{12} , θ_1 and θ_2 with the maximum likelihood estimate (MLE),
- Define the (negative log) generalized likelihood ratio test:

$$\begin{aligned} -\log GLR(\mathbf{x}_1, \mathbf{x}_2) &= -\log \frac{\sup_{\mathbf{t}} p(\mathbf{x}_1, \mathbf{x}_2; \boldsymbol{\theta}_{12} = \mathbf{t}, \mathcal{H}_0)}{\sup_{\mathbf{t}_1, \mathbf{t}_2} p(\mathbf{x}_1, \mathbf{x}_2; \boldsymbol{\theta}_1 = \mathbf{t}_1, \boldsymbol{\theta}_2 = \mathbf{t}_2, \mathcal{H}_1)} \\ &= -\log \frac{p(\mathbf{x}_1; \boldsymbol{\theta}_1 = \hat{\mathbf{t}}_{12}) p(\mathbf{x}_2; \boldsymbol{\theta}_2 = \hat{\mathbf{t}}_{12})}{p(\mathbf{x}_1; \boldsymbol{\theta}_1 = \hat{\mathbf{t}}_1) p(\mathbf{x}_2; \boldsymbol{\theta}_2 = \hat{\mathbf{t}}_2)} \end{aligned}$$

Equal self similarity

• Assume $\mathbf{x}_1 = \mathbf{x}_2$, then: $-\log \frac{p\left(\mathbf{x}_1 = \mathbf{x}_2; \theta_{12} = \mathbf{x}_2\right) p\left(\mathbf{x}_2 = \mathbf{x}_2; \theta_{12} = \mathbf{x}_2\right)}{p\left(\mathbf{x}_1 = \mathbf{x}_2; \theta_1 = \mathbf{x}_2\right) p\left(\mathbf{x}_2 = \mathbf{x}_2; \theta_2 = \mathbf{x}_2\right)} = 0$

Patch similarity criteria - Generalized likelihood ratio

name	pdf	— log GLR	Stabilization	Euclidean
Gaussian	$\frac{e^{-\frac{(x-\theta)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$		$(x_1 - x_2)^2$	
Poisson	$\frac{\theta^{x}e^{-\theta}}{x!}$	$\log\left(\frac{2^{x_1+x_2}x_1^{x_1}x_2^{x_2}}{(x_1+x_2)^{x_1+x_2}}\right)$	$\left(\sqrt{x_1+3/8} - \sqrt{x_2+3/8}\right)^2$	
Gamma	$\frac{{}_{L}{}^{L}{}_{x}{}^{L-1}{}_{e}{}^{-\frac{Lx}{\theta}}}{\Gamma(L)\theta^{L}}$	$\log\left(\sqrt{\frac{x_1}{x_2}} + \sqrt{\frac{x_2}{x_1}}\right) - \log 2$	$\left(\log \frac{x_1}{x_2}\right)^2$	

The three criteria for three noise models

Patch similarity criteria - Generalized likelihood ratio

name	pdf	— log GLR	Stabilization	Euclidean
Gaussian	$\frac{e^{-\frac{(x-\theta)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$		$(x_1 - x_2)^2$	
Poisson	$\frac{\theta^{x}e^{-\theta}}{x!}$	$\log \left(\frac{2^{x_1 + x_2} x_1^{x_1} x_2^{x_2}}{(x_1 + x_2)^{x_1 + x_2}} \right)$	$\left(\sqrt{x_1+3/8}-\sqrt{x_2+3/8}\right)^2$	
Gamma	$\frac{L^{L_{x}L-1}e^{-\frac{Lx}{\theta}}}{\Gamma(L)\theta^{L}}$	$\log\!\left(\sqrt{\frac{x_1}{x_2}}\!+\!\sqrt{\frac{x_2}{x_1}}\right)\!-\!\log 2$	$\left(\log \frac{x_1}{x_2}\right)^2$	

The three criteria for three noise models

Does it work? Illustration with Gamma noise

• When $\theta_1 = \theta_2 = \theta_{12}$, the residue is statistically small:

$$-\log GLR\left(1, \dots, 1, \dots, 1\right) = \left\| 1 - 1 \right\|_{1} < \tau$$

2 Then, when $\theta_1 \neq \theta_2$, the residue is statistically higher:

$$-\log GLR\left(\left[1, 1, 1 \right] \right) = \left\| 1, 1 \right\|_{1} > \tau$$

Limits of the Euclidean distance

2 Variance stabilization approach

Bow to adapt properly to the noise distribution?

Evaluation of similarity criteria

Detection

- Generalized likelihood ratio
- Variance stabilization
- Euclidean distance
- Maximum joint likelihood

[Alter et al., 2006]

Detection

- Generalized likelihood ratio
- Variance stabilization
- Euclidean distance
- Maximum joint likelihood
- Mutual information kernel
- Bayesian likelihood ratio
- Bayesian joint likelihood

Evaluation on denoising - Non-local filtering with GLR

(b) Euclidean distance

(c) GLR

NB: Variance stabilization provides visual quality very close to GLR.

C. Deledalle, F. Tupin, L. Denis (Telecom ParisTech)

Evaluation on denoising - Non-local filtering with GLR

(b) Euclidean distance

(c) GLR

NB: Variance stabilization provides visual quality very close to GLR.

Patch similarity

(a) SAR cross correlation

(b) Non-local filtering with GLR

GLR can be used when the variance stabilization approach cannot be applied.

(a) Noisy image

(b) Euclidean distance

(c) GLR

(d) Ground truth

(e) Euclidean distance

(f) GLR

Motion tracking - Glacier monitoring with a stereo pair of SAR images

(g) Noisy image

(h) Euclidean distance

(i) GLR

Glacier of Argentière. With GLR, the estimated speeds matches with the ground truth: average over the surface of 12.27 cm/day and a maximum of 41.12 cm/day in the areas with crevasses.

Conclusion

Conclusion

- GLR behaves well to compare patches under non-Gaussian noise conditions,
- It can be used when variance stabilization cannot be applied,
- Under high levels of gamma and Poisson noise, it outperforms six other criteria:
 - \rightarrow Best probability of detection for any probability of false-alarm.
- We have shown the interest of GLR in:
 - Patch-based denoising,
 - Patch-based stereo vision, and
 - Patch-based motion tracking.

Conclusion

Conclusion

- GLR behaves well to compare patches under non-Gaussian noise conditions,
- It can be used when variance stabilization cannot be applied,
- Under high levels of gamma and Poisson noise, it outperforms six other criteria:
 - ightarrow Best probability of detection for any probability of false-alarm.
- We have shown the interest of GLR in:
 - Patch-based denoising,
 - Patch-based stereo vision, and
 - Patch-based motion tracking.

Future work

- Under high SNR the variance stabilization approach defeats GLR:
 - Why such a change of relative behavior?
 - Euclidean distance estimates the dissimilarity between noise-free patches,
 - While GLR evaluates the equality of noise-free patches.
- Extend this approach to derive criteria with contrast invariance

(e.g., for stereo-vision or flickering).

Questions?

deledalle@telecom-paristech.fr

http://perso.telecom-paristech.fr/~deledall/

[Alter et al., 2006] Alter, F., Matsushita, Y., and Tang, X. (2006). An intensity similarity measure in low-light conditions. Lecture Notes in Computer Science, 3954:267.

[Matsushita and Lin, 2007] Matsushita, Y. and Lin, S. (2007). A Probabilistic Intensity Similarity Measure based on Noise Distributions. In IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR'07, pages 1–8.

[Minka, 1998] Minka, T. (1998). Bayesian Inference, Entropy, and the Multinomial Distribution. Technical report, CMU.

[Minka, 2000] Minka, T. (2000). Distance measures as prior probabilities. Technical report, CMU.

[Seeger, 2002] Seeger, M. (2002). Covariance kernels from Bayesian generative models. In Advances in neural information processing systems 14: proceedings of the 2001 conference, page 905. MIT Press.

[Yianilos, 1995] Yianilos, P. (1995). Metric learning via normal mixtures. Technical report, NEC Research Institute, Princeton, NJ.

		Noisy	\mathcal{Q}_{G}	\mathcal{L}_{G}	S	G
				Gamma	3	
	barbara	14.34	22.61	25.66	25.67	23.83
	boat	13.78	23.40	25.50	25.50	24.06
els	bridge	14.58	20.17	22.36	22.36	21.01
ě	cameraman	13.96	23.88	25.04	25.01	14.93
Medium noise I	couple	14.37	23.19	25.08	25.06	23.68
	fingerprint	13.00	18.37	21.88	21.89	20.27
	hill	14.80	21.46	24.24	24.24	22.47
	house	13.35	22.52	26.33	26.34	24.36
	lena	14.09	24.61	27.71	27.72	25.61
	man	14.88	23.49	26.00	26.01	24.50
	mandril	14.02	21.61	23.20	23.20	22.22
	peppers	14.02	22.95	25.54	25.51	23.41

PSNR values: the higher the better

- Generalized likelihood ratio
- Variance stabilization
- Euclidean distance
- Maximum joint likelihood

[Alter et al., 2006]

		Noisy	\mathcal{Q}_{G}	\mathcal{L}_{G}	S	G
				Gamma	1	
	barbara	5.86	20.25	20.97	20.90	20.33
	boat	5.32	20.90	21.47	21.42	20.97
s	bridge	6.09	18.44	19.21	19.16	18.49
eve	cameraman	5.54	18.56	20.88	20.87	7.48
Strong noise le	couple	5.98	20.93	21.54	21.51	20.99
	fingerprint	4.60	15.34	16.30	16.22	15.57
	hill	6.35	20.18	20.68	20.61	20.20
	house	4.84	20.54	21.20	21.13	20.64
	lena	5.64	22.14	22.89	22.83	22.23
	man	6.47	21.56	22.16	22.10	21.64
	mandril	5.52	20.22	20.44	20.41	20.27
	peppers	5.56	18.59	20.44	20.43	18.65

PSNR values: the higher the better

- Generalized likelihood ratio
- Variance stabilization
- Euclidean distance
- Maximum joint likelihood

[Alter et al., 2006]

	[Noisy	Q_B	\mathcal{Q}_{G}	\mathcal{L}_B	\mathcal{L}_{G}	\mathcal{K}_B	S	G
					Pois	sson			
	barbara	14.43	23.59	23.57	25.43	25.40	25.41	25.44	24.79
	boat	13.99	24.00	23.98	25.28	25.26	25.27	25.29	24.74
<u>s</u>	bridge	14.58	21.06	21.04	22.30	22.29	22.30	22.31	21.84
Š	cameraman	14.33	23.63	23.57	25.01	25.02	25.02	25.03	24.22
oise l	couple	14.31	23.54	23.52	24.88	24.85	24.86	24.88	24.29
	fingerprint	13.62	20.59	20.58	22.03	21.99	22.00	22.04	21.60
2	hill	14.62	22.49	22.48	23.98	23.96	23.97	23.98	23.36
5	house	13.73	24.36	24.34	26.58	26.57	26.57	26.58	25.76
edi	lena	14.20	25.57	25.55	27.40	27.37	27.38	27.40	26.58
Σ	man	14.64	24.08	24.06	25.66	25.65	25.66	25.67	25.09
	mandril	14.03	22.18	22.17	23.03	23.01	23.02	23.04	22.68
	peppers	14.20	23.38	23.35	25.45	25.41	25.43	25.45	24.41

PSNR values: the higher the better

- Generalized likelihood ratio
- Variance stabilization
- Euclidean distance
- Maximum joint likelihood
- Mutual information kernel
- Bayesian likelihood ratio
- Bayesian joint likelihood

[Alter et al., 2006] [Seeger, 2002] [Minka, 1998, Minka, 2000] [Yianilos, 1995, Matsushita and Lin, 2007]

		Noisy	Q_B	\mathcal{Q}_{G}	\mathcal{L}_B	\mathcal{L}_{G}	\mathcal{K}_B	S	\mathcal{G}
					Pois	sson			
	barbara	5.68	20.25	20.25	20.52	20.68	20.65	20.59	20.42
	boat	5.23	20.90	20.90	21.11	21.21	21.19	21.15	21.04
Strong noise levels	bridge	5.83	18.36	18.36	18.65	18.81	18.78	18.72	18.53
	cameraman	5.59	18.61	18.61	19.17	19.56	19.49	19.37	19.01
	couple	5.55	20.91	20.91	21.11	21.20	21.18	21.15	21.04
	fingerprint	4.87	15.48	15.48	16.18	16.41	16.38	16.30	15.96
	hill	5.88	20.13	20.13	20.41	20.54	20.52	20.47	20.31
	house	4.94	20.48	20.49	20.81	20.97	20.94	20.88	20.67
	lena	5.44	22.14	22.15	22.44	22.59	22.56	22.49	22.30
	man	5.89	21.55	21.55	21.77	21.89	21.87	21.82	21.69
	mandril	5.31	20.23	20.23	20.34	20.38	20.37	20.36	20.30
	peppers	5.46	18.55	18.56	19.09	19.46	19.38	19.25	18.88

PSNR values: the higher the better

- Generalized likelihood ratio
- Variance stabilization
- Euclidean distance
- Maximum joint likelihood
- Mutual information kernel
- Bayesian likelihood ratio
- Bayesian joint likelihood

[Alter et al., 2006] [Seeger, 2002] [Minka, 1998, Minka, 2000] [Yianilos, 1995, Matsushita and Lin, 2007]

	Max. self sim.	Eq. self sim.	Id. of indiscernible	Invariance	Asym. CFAR	Asym. UMPI
Q_B	×	×	×	×	×	×
Q_{G}	×	×	×	×	×	×
\mathcal{L}_B	×	×	×	\checkmark	×	×
\mathcal{L}_{G}	\checkmark	\checkmark	√ ^(†)	\checkmark	\checkmark	\checkmark
\mathcal{K}_B					×	×
$\overline{\mathcal{G}}$	$\square \square \square \square \square \square \square$			×	×	×
S	$ \sqrt{(*)}$	$\sqrt{(\star)}$	$\sqrt{(\star)}$	$\sqrt{(\star)}$	$\sqrt{(\star)}$	×

Properties of the different studied criteria. Legend: (\checkmark) the criterion holds, (\times) the criterion does not hold. Holds only if the observations are statistically identifiable ([†]) through their MLE or ([‡]) through their likelihood (such assumptions are frequently true). (*) Holds only for an exact variance stabilizing transform $s(\cdot)$ (such an assumption is usually wrong). The proofs of all these properties are available in the Online Resource 1.

name	pdf	Q_B	QG	LB	LG	κ _B	S	G
Gaussian	$\frac{e^{-\frac{(x-\theta)^2}{2\sigma^2}}}{\sqrt{2\pi}\sigma}$			e	$-(x_1-x_2)^2$			_
Gamma	$\frac{{}_{L}L_{x}L-1_{e}-\frac{Lx}{\theta}}{\Gamma(L)\theta^{L}}$	$\frac{1}{x_1x_2}\left(\frac{1}{x_1}\right)$	$\left(\frac{x_1x_2}{(x_1+x_2)^2}\right)^L$		$\frac{x_1x_2}{(x_1+x_2)^2}$		$e^{-\left(\log \frac{x_1}{x_2}\right)^2}$	
Poisson	$\frac{\theta^{\times}e^{-\theta}}{x!}$	$\frac{\Gamma'(x_1+x_2)}{2^{x_1+x_2}x_1!x_2!}$	$\frac{(x_1+x_2)^{x_1+x_2}}{(2e)^{x_1+x_2}x_1!x_2!}$	$\frac{\Gamma'(x_1+x_2)}{2^{x_1+x_2}\Gamma'(x_1)\Gamma'(x_2)}$	$\tfrac{(x_1+x_2)^{x_1+x_2}}{2^{x_1+x_2}x_1^{x_1}x_2^{x_1}}$	$\frac{\Gamma'(x_1+x_2)}{\sqrt{\Gamma'(2x_1)\Gamma'(2x_2)}}$	$e^{-(\sqrt{x_1+a}-\sqrt{x_2+a})^2}$	

Instances of the seven criteria for Gaussian, gamma and Poisson noise (parameters σ and L are fixed and known). All Bayesian criteria are obtained with Jeffreys' priors (resp. $1/\sigma$, $\sqrt{L/\theta}$, $\sqrt{1/\theta}$). All constant terms which do not affect the detection performance are omitted. For clarity reason, we define $\Gamma'(x) = \Gamma(x + 0.5)$ and the Anscombe constant a = 3/8.