2010 IEEE International Geoscience and Remote Sensing Symposium Honolulu, Hawaï, USA, July 2010

A Non-Local Approach for SAR and Interferometric SAR Denoising

Charles Deledalle¹, Florence Tupin¹, Loïc Denis²

 1 Institut Telecom, Telecom ParisTech, CNRS LTCI, Paris, France 2 Observatoire de Lyon, CNRS CRAL, UCBL, ENS de Lyon, Université de Lyon, Lyon, France

July 27, 2010

Motivation

Why non-local methods ?

(a) Noisy image

(b) Non-local means

Noise reduction + resolution preservation

Motivation

Why non-local methods ?

(a) Noisy image

(b) Non-local means

Noise reduction + resolution preservation

- Goal: to adapt non-local methods to SAR and InSAR data,
- Method: take into account the statistics of SAR and InSAR data,

NL-SAR and NL-InSAR

Non-local means (NL means)

2 Non-local estimation for SAR data

- Weighted maximum likelihood
- Setting of the weights

Results of NL-SAR and NL-InSAR

- Results on SAR data
- Extension and results for InSAR data

Non-local means (NL means)

2) Non-local estimation for SAR data

- Weighted maximum likelihood
- Setting of the weights

3 Results of NL-SAR and NL-InSAR

- Results on SAR data
- Extension and results for InSAR data

Background

- Local filters (e.g. boxcar, Gaussian filter...) \Rightarrow resolution loss,
- To combine similar pixels instead of neighboring pixels.

$$\hat{u}_{s} = \frac{1}{Z} \sum_{t} e^{-\frac{|s-t|^{2}}{\rho^{2}}} v_{t} \qquad \qquad \hat{u}_{s} = \frac{1}{Z} \sum_{t} e^{-\frac{\sin(s,t)}{h^{2}}} v_{t}$$
Gaussian filter [Yaroslavsky, 1985]

Background

- Local filters (e.g. boxcar, Gaussian filter...) \Rightarrow resolution loss,
- To combine similar pixels instead of neighboring pixels.

$$\hat{u}_s = \frac{1}{Z} \sum_t e^{-\frac{|s-t|^2}{\rho^2}} v_t$$

Gaussian filter

$$\hat{u}_s = \frac{1}{Z} \sum_t e^{-\frac{\sin(s,t)}{h^2}} v_t$$
[Yaroslavsky, 1985]

Non-local means [Buades et al., 2005]

- Similarity evaluated using square patches Δ_s and Δ_t centered on s and t,
- Consider the redundant structure of images.

Background

- Local filters (e.g. boxcar, Gaussian filter...) \Rightarrow resolution loss,
- To combine similar pixels instead of neighboring pixels.

$$\hat{u}_{s} = \frac{1}{Z} \sum_{t} e^{-\frac{|s-t|^{2}}{\rho^{2}}} v_{t} \qquad \qquad \hat{u}_{s} = \frac{1}{Z} \sum_{t} e^{-\frac{\sin(s,t)}{h^{2}}}$$
Gaussian filter [Yaroslavsky, 1985]

Non-local means [Buades et al., 2005]

- Similarity evaluated using square patches Δ_s and Δ_t centered on s and t,
- Consider the redundant structure of images.
- Hyp. 1: similar neighborhood \Rightarrow same central pixel,
- Hyp. 2: each patch is redundant (can be found many times).

Background

- Local filters (e.g. boxcar, Gaussian filter...) \Rightarrow resolution loss,
- To combine similar pixels instead of neighboring pixels.

$$\hat{u}_s = \frac{1}{Z} \sum_t e^{-\frac{|s-t|^2}{\rho^2}} v_t$$
Gaussian filter

$$\hat{u}_{s} = \frac{1}{Z} \sum_{t} e^{-\frac{\sin(s,t)}{h^{2}}} v_{t}$$
[Yaroslavsky, 1985]

Algorithm of NL means

Similarity criterion [Buades et al., 2005]

• Euclidean distance:

$$\mathsf{sim}(s,t) = \sum_k |v_{s,k} - v_{t,k}|^2$$

with k the k-th respective pixel of Δ_s and Δ_t .

Euclidean distance: comparison pixel by pixel

Similarity criterion [Buades et al., 2005]

• Euclidean distance:

$$\mathsf{sim}(s,t) = \sum_k |v_{s,k} - v_{t,k}|^2$$

with k the k-th respective pixel of Δ_s and Δ_t .

Euclidean distance: comparison pixel by pixel

- Hyp. 1: similar neighborhood \Rightarrow same central pixel,
- Hyp. 2: each patch is redundant (can be found many times),
- Hyp. 3: the noise is additive, white and Gaussian.

Non-local means (NL means)

2 Non-local estimation for SAR data

- Weighted maximum likelihood
- Setting of the weights

3 Results of NL-SAR and NL-InSAR

- Results on SAR data
- Extension and results for InSAR data

Weighted maximum likelihood for SAR data

Context and notations

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

 R_s the reflectivity, $p(.|R_s)$ a Rayleigh distribution, A_s the amplitude such that $A_s \sim p(.|R_s)$, to search an estimate \hat{R}_s of R_s .

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

 R_s the reflectivity, $p(.|R_s)$ a Rayleigh distribution, A_s the amplitude such that $A_s \sim p(.|R_s)$, to search an estimate \hat{R}_s of R_s .

From weighted average to weighted maximum likelihood

- NL means perform a weighted average of noisy pixel values,
- For SAR data, we suggest to use a weighted maximum likelihood:

$$\hat{R}_s = \arg \max_R \sum_t w(s, t) \log p(A_t | R) = \frac{\sum_t w(s, t) A_t^2}{\sum_t w(s, t)}$$

where w(s, t) is a weight approaching the indicator function of the set of redundant pixels (i.e with i.i.d values): $\{s, t | R_s = R_t\}$.

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

 R_s the reflectivity, $p(.|R_s)$ a Rayleigh distribution, A_s the amplitude such that $A_s \sim p(.|R_s)$, to search an estimate \hat{R}_s of R_s .

From weighted average to weighted maximum likelihood

- NL means perform a weighted average of noisy pixel values,
- For SAR data, we suggest to use a weighted maximum likelihood:

$$\hat{R}_s = \arg \max_R \sum_t w(s, t) \log p(A_t | R) = \frac{\sum_t w(s, t) A_t^2}{\sum_t w(s, t)}$$

where w(s, t) is a weight approaching the indicator function of the set of redundant pixels (i.e with i.i.d values): $\{s, t | R_s = R_t\}$.

• Choice of w(s, t): oriented, adaptive or non-local neighborhoods.

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

 R_s the reflectivity, $p(.|R_s)$ a Rayleigh distribution, A_s the amplitude such that $A_s \sim p(.|R_s)$, to search an estimate \hat{R}_s of R_s .

Example (Refined Lee - oriented neighborhood [Lee, 1981])

• Redundant pixels are located in one of these eight neighborhoods:

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

 R_s the reflectivity, $p(.|R_s)$ a Rayleigh distribution, A_s the amplitude such that $A_s \sim p(.|R_s)$, to search an estimate \hat{R}_s of R_s .

Example (IDAN - adaptive neighborhood [Vasile et al., 2006])

• Redundant pixels are located in an adaptive neighborhood (obtained by region growing algorithm):

image extracted from [Vasile et al., 2006]

NL-SAR and NL-InSAR

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

 R_s the reflectivity, $p(.|R_s)$ a Rayleigh distribution, A_s the amplitude such that $A_s \sim p(.|R_s)$, to search an estimate \hat{R}_s of R_s .

Example (NL means - non-local neighborhood)

• Redundant pixels are located anywhere in the image:

image extracted from [Buades et al., 2005]

- We search weights w(s, t) such that:
 - w(s, t) is high if $R_s = R_t$,
 - w(s, t) is low if $R_s \neq R_t$,

- We search weights w(s, t) such that:
 - w(s, t) is high if $R_s = R_t$,
 - w(s, t) is low if $R_s \neq R_t$,

Statistical similarity between noisy patches [Deledalle et al., 2009]

• Using the hypothesis of NL means:

Patches Δ_s and Δ_t similar \Rightarrow central values s and t close.

• Weights are defined as follows:

$$w(s,t) = p(R_{\Delta_{s,k}} = R_{\Delta_{t,k}} | A_{s,k}, A_{t,k})^{1/h}$$

= $\prod_{k} p(R_{s,k} = R_{t,k} | A_{s,k}, A_{t,k})^{1/h}$

with $p(R_{s,k} = R_{t,k}|A_{s,k}, A_{t,k})$ statistical similarity h regularization parameter.

Bayesian decomposition

$$p(R_1 = R_2 | A_1, A_2) \propto \underbrace{p(A_1, A_2 | R_1 = R_2)}_{\text{similarity likelihood}} \times \underbrace{p(R_1 = R_2)}_{a \text{ priori similarity}}$$

Setting of the weights for SAR data (2/3)

Bayesian decomposition

$$p(R_1 = R_2 | A_1, A_2) \propto \underbrace{p(A_1, A_2 | R_1 = R_2)}_{\text{similarity likelihood}} \times \underbrace{p(R_1 = R_2)}_{a \text{ priori similarity}}$$

Similarity likelihood

$$p(A_1, A_2 | R_1 = R_2) = \frac{\int p(A_1 | R_1 = R) p(A_2 | R_2 = R) p(R_1 = R) p(R_2 = R) dR}{\int p(R_1 = R) p(R_2 = R) dR}$$

• Since $p(R_1 = R)$ is unknown, we define:

$$p(A_1, A_2|R_1 = R_2) \triangleq \int p(A_1|R_1 = R)p(A_2|R_2 = R) dR$$

• The corresponding similarity criterion is then:

$$-\log p(A_1, A_2|R_1 = R_2) \propto \log \left(\frac{A_1}{A_2} + \frac{A_2}{A_1}\right)$$

Bayesian decomposition

$$p(R_1 = R_2|A_1, A_2) \propto \underbrace{p(A_1, A_2|R_1 = R_2)}_{\text{similarity likelihood}} \times \underbrace{p(R_1 = R_2)}_{a \text{ priori similarity}}$$

Refined similarity

- Refining the weights is necessary when the signal to noise ratio is low.
- Using a pre-estimate \hat{R} at pixel 1 and 2 provides two estimations of the noise models:

$$p(.|\hat{R}_1)$$
 and $p(.|\hat{R}_2)$.

• Assuming $p(R_1 = R_2)$ depends on the proximity of $p(.|\hat{R}_1)$ to $p(.|\hat{R}_2)$, then we define

$$p(R_1 = R_2) \triangleq \exp(-rac{SD_{KL}(\hat{R}_1 || \hat{R}_2)}{T})$$

with $SD_{KL}(\hat{R}_1, \hat{R}_2) \propto rac{(\hat{R}_1 - \hat{R}_2)^2}{\hat{R}_1 \hat{R}_2}$

• The Kullback-Leibler divergence provides a statistical test of the hypothesis $R_1 = R_2$ [Polzehl and Spokoiny, 2006]

Setting of the weights for SAR data (3/3)

Iterative scheme

- The refined similarity involves an iterative scheme in two steps:
 - 1 Estimate the weights from A and \hat{R}^{i-1} :

$$-\log w(s,t) \leftarrow \frac{1}{h} \sum \log \left(\frac{A_1}{A_2} + \frac{A_2}{A_1}\right) + \frac{1}{T} \sum \frac{(\hat{R}_1^{i-1} - \hat{R}_2^{i-1})^2}{\hat{R}_1^{i-1} \hat{R}_2^{i-1}},$$

2 Maximize the weighted likelihood:

$$\hat{R}_{s}^{i} \leftarrow \frac{\sum_{t} w(s, t) A_{t}^{2}}{\sum_{t} w(s, t)}$$

• The procedure converges in about ten iterations.

Scheme of the iterative filtering process

Non-local means (NL means)

2 Non-local estimation for SAR data

- Weighted maximum likelihood
- Setting of the weights

8 Results of NL-SAR and NL-InSAR

- Results on SAR data
- Extension and results for InSAR data

(a) SAR-SLC

(b) Refined Lee [Lee et al., 2003]

(a) SAR-SLC

(b) WinSAR [Achim et al., 2003]

(a) SAR-SLC

(b) NL-SAR

Statistical model of InSAR data

$$p(z, z'|\Sigma) = \frac{1}{\pi^2 det(\Sigma)} \times \qquad \Sigma = \mathbb{E}\left\{ \begin{pmatrix} z \\ z' \end{pmatrix} (z^* z'^*) \right\}$$
$$exp\left[- (z^* z'^*) \Sigma^{-1} \begin{pmatrix} z \\ z' \end{pmatrix} \right] \qquad = \begin{pmatrix} R & RDe^{j\beta} \\ RDe^{-j\beta} & R \end{pmatrix}$$

- Observations:
 - z and z' two co-registered single-look complex values.
- Parameters to estimate:
 - R the reflectivity,
 - β the true phase difference, and
 - D the coherence.
- Challenge: vectorial data with channels of different nature

•
$$z, z' \in \mathbb{C}$$
,
• $R \in \mathbb{R}^+$,
• $\beta \in [-\pi, \pi[$ (wrapped data),
• $D \in [0, 1]$.

Statistical model of InSAR data

$$p(z, z'|\Sigma) = \frac{1}{\pi^2 det(\Sigma)} \times \qquad \Sigma = \mathbb{E}\left\{ \begin{pmatrix} z \\ z' \end{pmatrix} (z^* z'^*) \right\}$$
$$exp\left[- (z^* z'^*) \Sigma^{-1} \begin{pmatrix} z \\ z' \end{pmatrix} \right] \qquad = \begin{pmatrix} R & RDe^{j\beta} \\ RDe^{-j\beta} & R \end{pmatrix}$$

- Observations:
 - z and z' two co-registered single-look complex values.
- Parameters to estimate:
 - R the reflectivity,
 - β the true phase difference, and
 - D the coherence.
- Challenge: vectorial data with channels of different nature

•
$$z, z' \in \mathbb{C}$$
,
• $R \in \mathbb{R}^+$,
• $\beta \in [-\pi, \pi[$ (wrapped data),

• $D \in [0, 1]$.

• Suitable similarity criteria can be derived from this joint distribution.

Extension to InSAR data

Closed-form expressions for InSAR data

• The WMLE for InSAR data can be expressed as:

$$\hat{R}_{s} = \frac{a}{N}, \\ \hat{\beta}_{s} = -\arg x, \\ \hat{D}_{s} = \frac{|x|}{a}$$
 with $x = \sum_{t}^{t} w(s,t) \frac{|z_{t}|^{2} + |z_{t}'|^{2}}{2}, \\ with x = \sum_{t}^{t} w(s,t) z_{t} z_{t}'^{*}, \\ N = \sum_{t}^{t} w(s,t).$

The similarity between noisy data is given by:

$$\left(\frac{\mathcal{A}+\mathcal{B}}{\mathcal{A}}\sqrt{\frac{\mathcal{B}}{\mathcal{A}-\mathcal{B}}} - \arcsin\sqrt{\frac{\mathcal{B}}{\mathcal{A}}}\right) \qquad \text{with} \quad \mathcal{A} = \left(|z_1|^2 + |z_1'|^2 + |z_2|^2 + |z_2'|^2\right)^2$$
$$\mathcal{B} = 4\left|z_1z_1' + z_2z_2'\right|^2$$
$$\text{and} \quad \mathcal{C} = \left|z_1z_1'z_2z_2'\right|$$

• The similarity between pre-filtered data is given by:

$$\frac{4}{\pi}\left[(1-\hat{D}_1\hat{D}_2\cos(\hat{\beta}_1-\hat{\beta}_2))\left(\frac{\hat{R}_1}{\hat{R}_2(1-\hat{D}_2^2)}+\frac{\hat{R}_2}{\hat{R}_1(1-\hat{D}_1^2)}\right)-2\right]$$

 $\frac{C}{B}$

t).

NL-InSAR (Saint-Pol-sur-Mer, France, RAMSES ©DGA ©ONERA)

(a) InSAR-SLC

(b) Refined Lee [Lee et al., 2003]

NL-InSAR (Saint-Pol-sur-Mer, France, RAMSES ©DGA ©ONERA)

(a) InSAR-SLC

(b) IDAN [Vasile et al., 2006]

NL-InSAR (Saint-Pol-sur-Mer, France, RAMSES ©DGA ©ONERA)

(a) InSAR-SLC

(b) NL-InSAR

Results of NL-InSAR (Toulouse, France, RAMSES © DGA © ONERA)

(a) InSAR-SLC

(b) NL-InSAR

Numerical results of NL-SAR and NL-InSAR on a resolution test-pattern

	SAR		InSAR	
Channel	R _{SAR}	R _{InSAR}	β	D
SLC	-4.42	-2.75	3.36	-1.19
Refined Lee [Lee et al., 2003]	5.47	6.23	9.12	2.03
WinSAR [Achim et al., 2003]	5.49	_	_	_
IDAN [Vasile et al., 2006]	-	5.00	7.88	0.33
NL-(In)SAR	7.46	9.02	13.04	6.92

SNR values of estimated SAR and InSAR images using different estimators

Results of NL-InSAR on the resolution test-pattern

NL-SAR and NL-InSAR

Conclusion

- We proposed an efficient estimator of SAR and InSAR data based on non-local approaches,
- The idea is to search iteratively the most suitable pixels to combine,
- Similarity criteria:
 - joint similarity between the noisy observations of surrounding patches, and
 - joint similarity between the pre-filtered data of surrounding patches.

Conclusion

- We proposed an efficient estimator of SAR and InSAR data based on non-local approaches,
- The idea is to search iteratively the most suitable pixels to combine,
- Similarity criteria:
 - joint similarity between the noisy observations of surrounding patches, and
 - joint similarity between the pre-filtered data of surrounding patches.
- Results on simulated, Ramses and TerraSAR-X data:
 - · Good noise reduction without significant loss of resolution,
 - Closer to the noise-free image than state-of-the-art estimators.

Conclusion

- We proposed an efficient estimator of SAR and InSAR data based on non-local approaches,
- The idea is to search iteratively the most suitable pixels to combine,
- Similarity criteria:
 - joint similarity between the noisy observations of surrounding patches, and
 - joint similarity between the pre-filtered data of surrounding patches.
- Results on simulated, Ramses and TerraSAR-X data:
 - · Good noise reduction without significant loss of resolution,
 - Closer to the noise-free image than state-of-the-art estimators.
- More details in:

[Deledalle et al., 2010] Deledalle, C., Denis, L., and Tupin, F. (2010). NL-InSAR : Non-Local Interferogram Estimation.

IEEE Transactions on Geoscience and Remote Sensing (under revision, technical report available).

[Deledalle et al., 2009] Deledalle, C., Denis, L., and Tupin, F. (2009). Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights.

IEEE Transactions on Image Processing, 18(12):2661–2672.

website: http://perso.telecom-paristech.fr/~deledall NL-SAR software available

C. Deledalle, L. Denis, F. Tupin (Telecom Paristech)

[Achim et al., 2003] Achim, A., Tsakalides, P., and Bezerianos, A. (2003). SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Transactions on Geoscience and Remote Sensing, 41(8):1773–1784.

[Buades et al., 2005] Buades, A., Coll, B., and Morel, J. (2005). A Non-Local Algorithm for Image Denoising. Computer Vision and Pattern Recognition. 2005. CVPR 2005. IEEE Computer Society Conference on. 2.

[Deledalle et al., 2009] Deledalle, C., Denis, L., and Tupin, F. (2009). Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights. *IEEE Transactions on Image Processing*, 18(12):2661–2672.

[Goodman, 2006] Goodman, J. (2006). Speckle phenomena in optics: theory and applications. Roberts & Company Publishers.

[Lee, 1981] Lee, J. (1981). Refined filtering of image noise using local statistics. Computer graphics and image processing, 15(4):380–389.

[Lee et al., 2003] Lee, J., Cloude, S., Papathanassiou, K., Grunes, M., and Woodhouse, I. (2003). Speckle filtering and coherence estimation of polarimetric SAR interferometry data for forest applications. *IEEE Transactions on Geoscience and Remote Sensing*, 41(10 Part 1):2254–2263.

[Polzehl and Spokoiny, 2006] Polzehl, J. and Spokoiny, V. (2006). Propagation-separation approach for local likelihood estimation. Probability Theory and Related Fields, 135(3):335–362.

[Vasile et al., 2006] Vasile, G., Trouvé, E., Lee, J., and Buzuloiu, V. (2006). Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation. IEEE Transactions on Geoscience and Remote Sensing, 44(6):1609–1621.

[Yaroslavsky, 1985] Yaroslavsky, L. (1985). Digital Picture Processing. Springer-Verlag New York, Inc. Secaucus, NJ, USA.

Results of NL-InSAR (Saint-Gervais, France, TerraSAR-X ©DLR)

(a) InSAR-SLC

(b) NL-InSAR

• Distribution of SAR data, Rayleigh distribution:

$$p(A|R) = \frac{2A}{R} \exp\left(-\frac{A^2}{R}\right)$$

• Distribution of InSAR data [Goodman, 2006]:

$$p(z, z'|\Sigma) = \frac{1}{\pi^2 det(\Sigma)} \times \qquad \Sigma = \mathbb{E}\left\{ \begin{pmatrix} z \\ z' \end{pmatrix} (z^* z'^*) \right\}$$
$$exp\left[- (z^* z'^*) \Sigma^{-1} \begin{pmatrix} z \\ z' \end{pmatrix} \right] = \left(\begin{array}{c} R & \sqrt{RR'} De^{j\beta} \\ \sqrt{RR'} De^{-j\beta} & R' \end{array} \right)$$

• which is equivalent to:

$$p(A, A', \Delta \phi | R, D, \beta) = \frac{2AA'}{\pi R^2 (1 - D^2)} \times \exp\left(-\frac{A^2 + A'^2 - 2DAA' \cos(\Delta \phi - \beta)}{R(1 - D^2)}\right).$$

with $z = A^{j\phi}$, $z' = A^{j\phi'}$ and $\Delta \phi = \phi - \phi'$.

• WMLE for SAR data:

$$\hat{R}_s = \frac{\sum_t w(s,t) A_t^2}{\sum_t w(s,t)}$$

• WMLE for InSAR data:

$$\hat{R}_s = \frac{a}{N},$$

 $\hat{\beta}_s = -\arg x,$
 $\hat{D}_s = \frac{|x|}{a}$

with
$$a = \sum_{t} w(s, t) \frac{|z_t|^2 + |z'_t|^2}{2},$$

 $x = \sum_{t}^{t} w(s, t) z_t z'^*,$
 $N = \sum_{t}^{t} w(s, t).$

Closed-form expressions of similarities for SAR and InSAR data

Similarity between	SAR	InSAR
noisy data	$\log\left(\frac{A_1}{A_2} + \frac{A_2}{A_1}\right)$	$-\log\left[\sqrt{\frac{C}{B}}^{3}\left(\frac{A+B}{A}\sqrt{\frac{B}{A-B}} - \arcsin\sqrt{\frac{B}{A}}\right)\right]$ with $\mathcal{A} = \left(z_{1} ^{2} + z_{1}' ^{2} + z_{2} ^{2} + z_{2}' ^{2}\right)^{2}$ $\mathcal{B} = 4\left z_{1}z_{1}' + z_{2}z_{2}'\right ^{2}$ $\mathcal{C} = \left z_{1}z_{1}'z_{2}z_{2}'\right $
pre-filtered data	$\frac{(\hat{R}_1 - \hat{R}_2)^2}{\hat{R}_1 \hat{R}_2}$	$\frac{4}{\pi} \left[\left(1 - \hat{D}_1 \hat{D}_2 \cos(\hat{\beta}_1 - \hat{\beta}_2) \right) \left(\frac{\hat{R}_1}{\hat{R}_2 (1 - \hat{D}_2^2)} + \frac{\hat{R}_2}{\hat{R}_1 (1 - \hat{D}_1^2)} \right) - 2 \right]$