2010 IEEE International Geoscience and Remote Sensing Symposium Honolulu, Hawaï, USA, July 2010

Polarimetric SAR estimation based on non-local means

Charles Deledalle¹, Florence Tupin¹, Loïc Denis²

 1 Institut Telecom, Telecom ParisTech, CNRS LTCI, Paris, France 2 Observatoire de Lyon, CNRS CRAL, UCBL, ENS de Lyon, Université de Lyon, Lyon, France

July 28, 2010

Motivation

Why non-local methods ?

(a) Noisy image

(b) Non-local means

Noise reduction + resolution preservation

Motivation

Why non-local methods ?

(a) Noisy image

(b) Non-local means

Noise reduction + resolution preservation

- Goal: to adapt non-local methods to PolSAR data,
- Method: take into account the statistics of PolSAR data,

Non-local means (NL means)

2 Non-local estimation for PolSAR data

- Weighted maximum likelihood
- Setting of the weights

3 Results of NL-PolSAR

- Results on simulations
- Results on real data

Non-local means (NL means)

2 Non-local estimation for PolSAR data

- Weighted maximum likelihood
- Setting of the weights

B Results of NL-PolSAR

- Results on simulations
- Results on real data

Background

- Local filters (e.g. boxcar, Gaussian filter...) \Rightarrow resolution loss,
- To combine similar pixels instead of neighboring pixels.

$$\hat{u}_{s} = \frac{1}{Z} \sum_{t} e^{-\frac{|s-t|^{2}}{\rho^{2}}} v_{t} \qquad \qquad \hat{u}_{s} = \frac{1}{Z} \sum_{t} e^{-\frac{\sin(s,t)}{\hbar^{2}}} v_{t}$$
Gaussian filter [Yaroslavsky, 1985]

Background

- Local filters (e.g. boxcar, Gaussian filter...) \Rightarrow resolution loss,
- To combine similar pixels instead of neighboring pixels.

$$\hat{u}_s = \frac{1}{Z} \sum_t e^{-\frac{|s-t|^2}{\rho^2}} v_t$$

Gaussian filter

$$\hat{u}_s = \frac{1}{Z} \sum_t e^{-\frac{\sin(s,t)}{h^2}} v_t$$
[Yaroslavsky, 1985]

Non-local means [Buades et al., 2005]

- Similarity evaluated using square patches Δ_s and Δ_t centered on s and t,
- Consider the redundant structure of images.

Background

- Local filters (e.g. boxcar, Gaussian filter...) \Rightarrow resolution loss,
- To combine similar pixels instead of neighboring pixels.

$$\hat{u}_{s} = \frac{1}{Z} \sum_{t} e^{-\frac{|s-t|^{2}}{\rho^{2}}} v_{t} \qquad \qquad \hat{u}_{s} = \frac{1}{Z} \sum_{t} e^{-\frac{\sin(s)}{h^{2}}}$$
Gaussian filter [Yaroslavsky, 1985]

Non-local means [Buades et al., 2005]

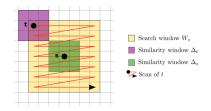
- Similarity evaluated using square patches Δ_s and Δ_t centered on s and t,
- Consider the redundant structure of images.
- Hyp. 1: similar neighborhood \Rightarrow same central pixel,
- Hyp. 2: each patch is redundant (can be found many times).

Background

- Local filters (e.g. boxcar, Gaussian filter...) \Rightarrow resolution loss,
- To combine similar pixels instead of neighboring pixels.

$$\hat{u}_s = \frac{1}{Z} \sum_t e^{-\frac{|s-t|^2}{\rho^2}} v_t$$
Gaussian filter

$$\hat{u}_{s} = \frac{1}{Z} \sum_{t} e^{-\frac{\sin(s,t)}{h^{2}}} v_{t}$$
[Yaroslavsky, 1985]



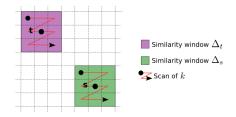
Algorithm of NL means

Similarity criterion [Buades et al., 2005]

• Euclidean distance:

$$\mathsf{sim}(s,t) = \sum_k |v_{s,k} - v_{t,k}|^2$$

with k the k-th respective pixel of Δ_s and Δ_t .



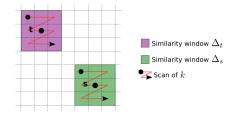
Euclidean distance: comparison pixel by pixel

Similarity criterion [Buades et al., 2005]

• Euclidean distance:

$$\mathsf{sim}(s,t) = \sum_k |v_{s,k} - v_{t,k}|^2$$

with k the k-th respective pixel of Δ_s and Δ_t .



Euclidean distance: comparison pixel by pixel

- Hyp. 1: similar neighborhood \Rightarrow same central pixel,
- Hyp. 2: each patch is redundant (can be found many times),
- Hyp. 3: the noise is additive, white and Gaussian.

Non-local means (NL means)

2 Non-local estimation for PolSAR data

- Weighted maximum likelihood
- Setting of the weights

B Results of NL-PolSAR

- Results on simulations
- Results on real data

Context and notations

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

 \mathbf{T}_s an $N \times N$ complex matrix,

 $p(.|\mathbf{T}_s)$ a circular complex Gaussian,

 \mathbf{k}_s a N dimensional vector such that $\mathbf{k}_s \sim p(.|\mathbf{T}_s)$, to search an estimate $\hat{\mathbf{T}}_s$ of \mathbf{T}_s .

Context and notations

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

 \mathbf{T}_s an $N \times N$ complex matrix,

 $p(.|\mathbf{T}_s)$ a circular complex Gaussian,

 \mathbf{k}_s a *N* dimensional vector such that $\mathbf{k}_s \sim p(.|\mathbf{T}_s)$, to search an estimate $\hat{\mathbf{T}}_s$ of \mathbf{T}_s .

From weighted average to weighted maximum likelihood

- NL means perform a weighted average of noisy pixel values,
- For PolSAR data we suggest to use a weighted maximum likelihood:

$$\hat{\mathbf{T}}_{s} = \arg \max_{\mathbf{T}} \sum_{t} w(s, t) \log p(\mathbf{k}_{t} | \mathbf{T}) = \frac{\sum w(s, t) \mathbf{k}_{t} \mathbf{k}_{t}^{\dagger}}{\sum w(s, t)}$$

where w(s, t) is a weight approaching the indicator function of the set of redundant pixels (i.e with i.i.d values): $\{s, t | \mathbf{T}_s = \mathbf{T}_t\}$.

• Choice of w(s, t): oriented, adaptive or non-local neighborhoods.

Context and notations

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

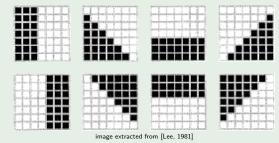
 \mathbf{T}_s an $N \times N$ complex matrix,

 $p(.|\mathbf{T}_s)$ a circular complex Gaussian,

 \mathbf{k}_s a *N* dimensional vector such that $\mathbf{k}_s \sim p(.|\mathbf{T}_s)$, to search an estimate $\hat{\mathbf{T}}_s$ of \mathbf{T}_s .

Example (Refined Lee - oriented neighborhood [Lee, 1981])

• Redundant pixels are located in one of these eight neighborhoods:



Context and notations

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

 \mathbf{T}_s an $N \times N$ complex matrix,

 $p(.|\mathbf{T}_s)$ a circular complex Gaussian,

 \mathbf{k}_s a *N* dimensional vector such that $\mathbf{k}_s \sim p(.|\mathbf{T}_s)$, to search an estimate $\hat{\mathbf{T}}_s$ of \mathbf{T}_s .

Example (IDAN - adaptive neighborhood [Vasile et al., 2006])

• Redundant pixels are located in an adaptive neighborhood (obtained by region growing algorithm):

image extracted from [Vasile et al., 2006]

Context and notations

- Searched data:
- Noise model:
- Noisy observations:
- To denoise:

 \mathbf{T}_s an $N \times N$ complex matrix,

 $p(.|\mathbf{T}_s)$ a circular complex Gaussian,

 \mathbf{k}_s a *N* dimensional vector such that $\mathbf{k}_s \sim p(.|\mathbf{T}_s)$, to search an estimate $\hat{\mathbf{T}}_s$ of \mathbf{T}_s .

Example (NL means - non-local neighborhood)

• Redundant pixels are located anywhere in the image:

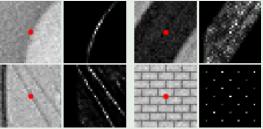


image extracted from [Buades et al., 2005]

- We search weights w(s, t) such that:
 - w(s, t) is high if $T_s = T_t$,
 - w(s, t) is low if $\mathbf{T}_s \neq \mathbf{T}_t$,

- We search weights w(s, t) such that:
 - w(s, t) is high if $T_s = T_t$, w(s, t) is low if $T_s \neq T_t$,

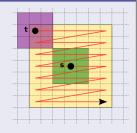
Statistical similarity between noisy patches [Deledalle et al., 2009]

• Using the hypothesis of NL means:

Patches Δ_s and Δ_t similar \Rightarrow central values s and t close.

Weights are defined as follows:

$$w(s,t) = p(\mathsf{T}_{\Delta_{s,k}} = \mathsf{T}_{\Delta_{t,k}} | \mathbf{k}_{s,k}, \mathbf{k}_{t,k})^{1/h}$$
$$= \prod_{k} p(\mathsf{T}_{s,k} = \mathsf{T}_{t,k} | \mathbf{k}_{s,k}, \mathbf{k}_{t,k})^{1/h}$$



with
$$p(\mathbf{T}_{s,k} = \mathbf{T}_{t,k} | \mathbf{k}_{s,k}, \mathbf{k}_{t,k})$$
 statistical similarity
 h regularization parameter

$$p(\mathbf{T}_1 = \mathbf{T}_2 | \mathbf{k}_1, \mathbf{k}_2) \propto \underbrace{p(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{T}_1 = \mathbf{T}_2)}_{\text{similarity likelihood}} \times \underbrace{p(\mathbf{T}_1 = \mathbf{T}_2)}_{a \text{ priori similarity}}$$

$$p(\mathbf{T}_1 = \mathbf{T}_2 | \mathbf{k}_1, \mathbf{k}_2) \propto \underbrace{p(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{T}_1 = \mathbf{T}_2)}_{\text{similarity likelihood}} \times \underbrace{p(\mathbf{T}_1 = \mathbf{T}_2)}_{a \text{ priori similarity}}$$

Similarity likelihood

$$p(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{T}_1 = \mathbf{T}_2) = \frac{\int p(\mathbf{k}_1 | \mathbf{T}_1 = t) p(\mathbf{k}_2 | \mathbf{T}_2 = t) p(\mathbf{T}_1 = t) p(\mathbf{T}_2 = t) dt}{\int p(\mathbf{T}_1 = t) p(\mathbf{T}_2 = t) dt}$$

• Since $p(\mathbf{T}_1 = t)$ is unknown, we define:

$$p(\mathbf{k}_1,\mathbf{k}_2|\mathbf{T}_1=\mathbf{T}_2) \triangleq p(\mathbf{k}_1|\mathbf{T}_1=\hat{\mathbf{T}}_{MV})p(\mathbf{k}_2|\mathbf{T}_2=\hat{\mathbf{T}}_{MV})$$

$$p(\mathbf{T}_1 = \mathbf{T}_2 | \mathbf{k}_1, \mathbf{k}_2) \propto \underbrace{p(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{T}_1 = \mathbf{T}_2)}_{\text{similarity likelihood}} \times \underbrace{p(\mathbf{T}_1 = \mathbf{T}_2)}_{a \text{ priori similarity}}$$

Similarity likelihood

$$p(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{T}_1 = \mathbf{T}_2) = \frac{\int p(\mathbf{k}_1 | \mathbf{T}_1 = t) p(\mathbf{k}_2 | \mathbf{T}_2 = t) p(\mathbf{T}_1 = t) p(\mathbf{T}_2 = t) dt}{\int p(\mathbf{T}_1 = t) p(\mathbf{T}_2 = t) dt}$$

• Since $p(\mathbf{T}_1 = t)$ is unknown, we define:

$$p(\mathbf{k}_1,\mathbf{k}_2|\mathbf{T}_1=\mathbf{T}_2) \triangleq p(\mathbf{k}_1|\mathbf{T}_1=\hat{\mathbf{T}}_{MV})p(\mathbf{k}_2|\mathbf{T}_2=\hat{\mathbf{T}}_{MV})$$

Since only two observations are available to estimate T̂_{MV}, the matrix is singular.
By enforcing T̂_{MV} to be diagonal, the following similarity criterion is obtained:

$$\log\left(\frac{|\mathbf{k}_{1,1}|}{|\mathbf{k}_{2,1}|} + \frac{|\mathbf{k}_{2,1}|}{|\mathbf{k}_{1,1}|}\right) + \log\left(\frac{|\mathbf{k}_{1,2}|}{|\mathbf{k}_{2,2}|} + \frac{|\mathbf{k}_{2,2}|}{|\mathbf{k}_{1,2}|}\right) + \log\left(\frac{|\mathbf{k}_{1,3}|}{|\mathbf{k}_{2,3}|} + \frac{|\mathbf{k}_{2,3}|}{|\mathbf{k}_{1,3}|}\right).$$

$$p(\mathbf{T}_1 = \mathbf{T}_2 | \mathbf{k}_1, \mathbf{k}_2) \propto \underbrace{p(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{T}_1 = \mathbf{T}_2)}_{\text{similarity likelihood}} \times \underbrace{p(\mathbf{T}_1 = \mathbf{T}_2)}_{a \text{ priori similarity}}$$

Similarity likelihood

$$p(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{T}_1 = \mathbf{T}_2) = \frac{\int p(\mathbf{k}_1 | \mathbf{T}_1 = t) p(\mathbf{k}_2 | \mathbf{T}_2 = t) p(\mathbf{T}_1 = t) p(\mathbf{T}_2 = t) dt}{\int p(\mathbf{T}_1 = t) p(\mathbf{T}_2 = t) dt}$$

• Since $p(\mathbf{T}_1 = t)$ is unknown, we define:

$$p(\mathbf{k}_1,\mathbf{k}_2|\mathbf{T}_1=\mathbf{T}_2) \triangleq p(\mathbf{k}_1|\mathbf{T}_1=\hat{\mathbf{T}}_{MV})p(\mathbf{k}_2|\mathbf{T}_2=\hat{\mathbf{T}}_{MV})$$

• Since only two observations are available to estimate $\hat{\mathbf{T}}_{MV}$, the matrix is singular.

• By enforcing $\hat{\mathbf{T}}_{MV}$ to be diagonal, the following similarity criterion is obtained:

$$\log\left(\frac{|\mathbf{k}_{1,1}|}{|\mathbf{k}_{2,1}|} + \frac{|\mathbf{k}_{2,1}|}{|\mathbf{k}_{1,1}|}\right) + \log\left(\frac{|\mathbf{k}_{1,2}|}{|\mathbf{k}_{2,2}|} + \frac{|\mathbf{k}_{2,2}|}{|\mathbf{k}_{1,2}|}\right) + \log\left(\frac{|\mathbf{k}_{1,3}|}{|\mathbf{k}_{2,3}|} + \frac{|\mathbf{k}_{2,3}|}{|\mathbf{k}_{1,3}|}\right).$$

NB: the diagonal assumption is only used to derive a similarity criterion between two noisy pixels. Full covariance matrices are then estimated via WMLE.

$$p(\mathbf{T}_1 = \mathbf{T}_2 | \mathbf{k}_1, \mathbf{k}_2) \propto \underbrace{p(\mathbf{k}_1, \mathbf{k}_2 | \mathbf{T}_1 = \mathbf{T}_2)}_{\text{similarity likelihood}} \times \underbrace{p(\mathbf{T}_1 = \mathbf{T}_2)}_{a \text{ priori similarity}}$$

Refined similarity

- Refining the weights is necessary when the signal to noise ratio is low.
- Using a pre-estimate \hat{T} at pixel 1 and 2 provides two estimations of the noise models:

$$p(.|\hat{\mathbf{T}}_1)$$
 and $p(.|\hat{\mathbf{T}}_2)$.

• Assuming $p(\mathbf{T}_1 = \mathbf{T}_2)$ depends on the proximity of $p(.|\hat{\mathbf{T}}_1)$ to $p(.|\hat{\mathbf{T}}_2)$, then we define

$$p(\mathbf{T}_1 = \mathbf{T}_2) \triangleq \exp(-\frac{SD_{\mathcal{K}\mathcal{L}}(\mathbf{\hat{T}}_1 || \mathbf{\hat{T}}_2)}{\mathcal{T}})$$

with $SD_{\mathcal{K}\mathcal{L}}(\mathbf{\hat{T}}_1, \mathbf{\hat{T}}_2) \propto tr\left(\mathbf{\hat{T}}_1^{-1}\mathbf{\hat{T}}_2\right) + tr\left(\mathbf{\hat{T}}_2^{-1}\mathbf{\hat{T}}_1\right) - 6.$

• The Kullback-Leibler divergence provides a statistical test of the hypothesis $T_1 = T_2$ [Polzehl and Spokoiny, 2006]

Iterative scheme

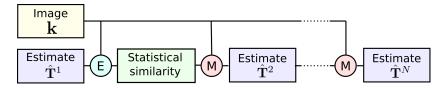
- The refined similarity involves an iterative scheme in two steps:
 - 1 Estimate the weights from **k** and $\hat{\mathbf{T}}^{i-1}$:

$$w(s,t) \leftarrow \prod p(\mathbf{k}_1,\mathbf{k}_2|\mathbf{T}_1=\mathbf{T}_2)^{1/h} p(\mathbf{T}_1=\mathbf{T}_2|\hat{\mathbf{T}}^{i-1})^{1/T},$$

2 Maximize the weighted likelihood:

$$\hat{\mathsf{T}}^i_{s} \leftarrow rac{\sum w(s,t) \mathsf{k}_t \mathsf{k}^\dagger_t}{\sum w(s,t)}.$$

• The procedure converges in about ten iterations.



Scheme of the iterative filtering process

Non-local means (NL means)

2 Non-local estimation for PolSAR data

- Weighted maximum likelihood
- Setting of the weights

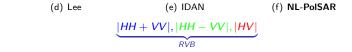
3 Results of NL-PolSAR

- Results on simulations
- Results on real data

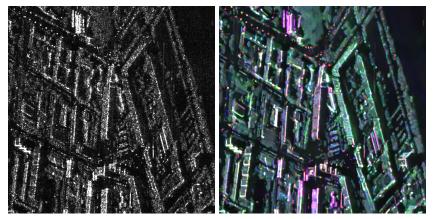
Results of NL-PolSAR (Simulations)

(a) Noise-free

(b) Noisy



Results of NL-PolSAR (Dresden, -Band E-SAR data ©DLR)

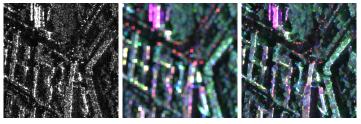


(a) Noisy HH

(b) NL-PoISAR

$$\underbrace{|HH + VV|, |HH - VV|, |HV|}_{RVB}$$

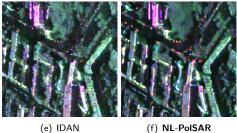
Results of NL-PolSAR (Dresden, -Band E-SAR data ©DLR)



(a) Noisy HH

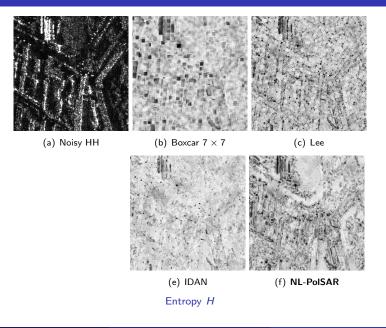
(b) Boxcar 7×7

(c) Lee



|HH + VV|, |HH - VV|, |HV|

Results of NL-PolSAR (Dresden, -Band E-SAR data ©DLR)



Conclusion

- We proposed an efficient estimator of local covariance matrices for PolSAR data based on non-local approaches,
- The idea is to search iteratively the most suitable pixels to combine,
- Similarity criteria:
 - \bullet joint similarity between the noisy observations (HH, HV, VV) of surrounding patches, and
 - joint similarity between the pre-estimated covariance matrices of surrounding patches.

Conclusion

- We proposed an efficient estimator of local covariance matrices for PolSAR data based on non-local approaches,
- The idea is to search iteratively the most suitable pixels to combine,
- Similarity criteria:
 - \bullet joint similarity between the noisy observations (HH, HV, VV) of surrounding patches, and
 - joint similarity between the pre-estimated covariance matrices of surrounding patches.
- Results on simulated and L-Band E-SAR data:
 - Good noise reduction without significant loss of resolution,
 - Preservation of the inter-channel information,
 - Outperforms the state-of-the-art estimators,
 - Appealing for classification purposes.

Conclusion

- We proposed an efficient estimator of local covariance matrices for PolSAR data based on non-local approaches,
- The idea is to search iteratively the most suitable pixels to combine,
- Similarity criteria:
 - \bullet joint similarity between the noisy observations (HH, HV, VV) of surrounding patches, and
 - joint similarity between the pre-estimated covariance matrices of surrounding patches.
- Results on simulated and L-Band E-SAR data:
 - Good noise reduction without significant loss of resolution,
 - Preservation of the inter-channel information,
 - Outperforms the state-of-the-art estimators,
 - Appealing for classification purposes.
- More details in:

[Deledalle et al., 2009] Deledalle, C., Denis, L., and Tupin, F. (2009).

Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights.

IEEE Transactions on Image Processing, 18(12):2661–2672.

website: http://perso.telecom-paristech.fr/~deledall

[Buades et al., 2005] Buades, A., Coll, B., and Morel, J. (2005).

A Non-Local Algorithm for Image Denoising.

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, 2.

[Deledalle et al., 2009] Deledalle, C., Denis, L., and Tupin, F. (2009). Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-Based Weights. *IEEE Transactions on Image Processing*, 18(12):2661–2672.

[Lee, 1981] Lee, J. (1981).

Refined filtering of image noise using local statistics.

Computer graphics and image processing, 15(4):380–389.

[Polzehl and Spokoiny, 2006] Polzehl, J. and Spokoiny, V. (2006). Propagation-separation approach for local likelihood estimation. *Probability Theory and Related Fields*, 135(3):335–362.

[Vasile et al., 2006] Vasile, G., Trouvé, E., Lee, J., and Buzuloiu, V. (2006). Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation.

IEEE Transactions on Geoscience and Remote Sensing, 44(6):1609–1621.

[Yaroslavsky, 1985] Yaroslavsky, L. (1985). Digital Picture Processing. Springer-Verlag New York, Inc. Secaucus, NJ, USA.

Results of NL-PolSAR (Simulated data)

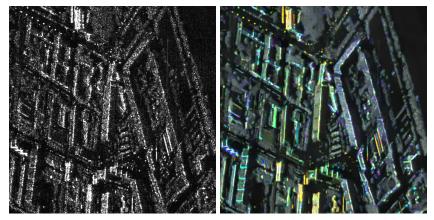
(a) Noise-free

(c) Boxcar 7×7

(d) Lee (e) IDAN (f) NL-PolSAR $\underbrace{|1 - \alpha/\pi|}_{H}, \underbrace{|1 - H|}_{S}, \underbrace{|HH| + |VV| + |HV|}_{V}$

NL-PoISAR

Results of NL-PolSAR (Dresden, L-Band E-SAR data ©DLR)

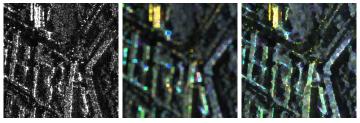


(a) Noisy

(b) NL-PolSAR

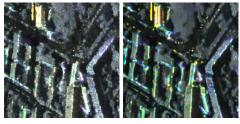
$$\underbrace{|1-\alpha/\pi|}_{H}, \underbrace{|1-H|}_{S}, \underbrace{|HH|+|VV|+|HV|}_{V}$$

Results of NL-PolSAR (Dresden, L-Band E-SAR data ©DLR)



(a) Noisy HH

- (b) Boxcar 7 × 7
- (c) Lee



(e) IDAN

(f) NL-PolSAR

NL-PoISAR