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Motivations

Problem of matrix denoising

• Estimate an unknown signal matrix X ∈ Rn×m from a noisy data matrix
Y satisfying the model:

Y = X +W ,

where W ∈ Rn×m is a noise matrix.

• W ij are assumed to be independent random variables with

E(W ij) = 0 and Var(W ij) = τ2ij

for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

• Homoscedastic: τij = τ constant,

• Heteroscedastic: τij vary (but dependent on X).

2



Motivations

Assumption (Low-rank signal matrix)

• The signal matrix X is assumed to have a low rank structure, with
singular value decomposition (SVD)

X =
r∗∑
k=1

σkukv
t
k .

• uk and vk are the left and right singular vectors associated to the
singular value σk > 0, for each 1 ≤ k ≤ r∗, with σ1 > σ2 > . . . > σr.

• 0 ≤ r∗ ≤ min(m,n) is the rank of X.

Unlike X, the noisy data matrix Y = X +W has almost surely full rank

Y =

min(n,m)∑
k=1

σ̃kũkṽ
t
k,

where σ̃k, ũk, ṽk denotes its SVD (empirical SVD).
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Motivations

Definition (Spectral estimators)

• Given the SVD of Y =

min(n,m)∑
k=1

σ̃kũkṽ
t
k,

• A spectral estimator: X̂
f

=

min(n,m)∑
k=1

fk(σ̃k)ũkṽ
t
k,

where 0 ≤ fk(σ̃k) ≤ σ̃k depends only on the singular value σ̃k.

Examples:

• PCA: fk(σ̃k) = σ̃k if k ≤ r, 0 otherwise,

• Soft-thresholding: fk(σ̃k) = (σ̃k − λ)+,

• This talk: fk(σ̃k) = wkσ̃k

4



Motivations

Goal
Ideally, one would like to select a set of functions (fk)1≤k≤min(n,m) that
minimize the mean-squared error (with respect to the noise W )

MSE(X̂
f
,X) = E

(
‖X̂f −X‖2F

)
.

Not feasible since X is unknown!

Two main alternatives in the literature:

• asymptotic optimal shrinkage rules (setting min(n,m)→∞) with a
noise matrix W whose distribution is assumed to be orthogonally
invariant (e.g., in the Gaussian spiked population model).
(Gavish & Donoho, 2014), (Nadakuditi, 2014)

• non-asymptotic soft-thresholding rules which minimize an unbiased
estimate of the MSE in the Gaussian case.
(Candès, Sing-Long & Trzasko, 2013), (Donoho & Gavish, 2014)
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Asymptotic optimal shrinkage



Asymptotic optimal shrinkage

Definition (Gaussian spiked population model)

Y =

min(n,m)∑
k=1

σ̃kũkṽ
t
k =

r∗∑
k=1

σkukv
t
k +W ,

where 1 ≤ r∗ ≤ min(n,m) is fixed and W ij ∼
iid
N (0, 1

m
).

Asymptotic setting:

the sequence m = mn ≥ n is such that lim
n→+∞

n

m
= c > 0.
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Asymptotic optimal shrinkage

Asymptotic behavior of singular values

Proposition (Bai and Silverstein (2010))
Assume that Y is sampled from the Gaussian spiked population model.
Then, for any fixed k ≥ 1, one has that, almost surely,

lim
n→+∞

σ̃k =

{
ρ (σk) if σk > c1/4,

c+ otherwise.

where ρ (θ) =
√

(1+θ2)(c+θ2)

θ2
for any θ > 0

and c+ = 1 +
√
c is the so-called bulk edge.
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Asymptotic optimal shrinkage

Asymptotic optimal shrinkage (Gavish & Donoho, 2014)
As a consequence, the spectral estimator

X̂
f

=

min(n,m)∑
k=1

f(σ̃k)ũkṽ
t
k,

where

f(σ̃k) =

{
1
σ̃k

√
(σ̃2
k − (c+ 1))2 − 4c if σ̃k > c+,

0 otherwise

is asymptotically optimal in the sense that it minimizes lim
n→∞

‖X̂f −X‖2F
almost surely among the class of continuous spectral shrinkers that
collapses the bulk to 0 (i.e., f(σ̃) = 0 if σ̃ ≤ c+).

Remark: equivalent expression in Nadakuditi (2014) but where the bulk edge
constraint σ̃k > c+ is replaced by a rank assumption k ≤ r ≤ r?.

9



Non-asymptotic rules in the case of
Gaussian noise



Non-asymptotic rules in the case of Gaussian noise

Alternatively, use the principle of Stein’s Unbiased Risk Estimate i.e. find a
data-based quantity SURE(X̂

f
) satisfying

E(SURE(X̂
f
)) = MSE(X̂

f
,X) = E

(
‖X̂f −X‖2F

)
.

Proposition (SURE, Stein 1981)

Assume f is differentiable (or at least weakly) and W ij ∼
iid
N (0, τ2). If

E
(∣∣∣X̂f

ij

∣∣∣) < +∞, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m,

then, the quantity

SURE(X̂
f
) = ‖X̂f − Y ‖2F −mnτ2 + 2τ2 div

(
X̂
f
)

is an unbiased estimator of MSE(X̂
f
,X), where

div
(
X̂
f
)

=

n∑
i=1

m∑
j=1

∂X̂
f

ij

∂Y ij
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Non-asymptotic rules in the case of Gaussian noise

Proposition (Candès, Sing-Long & Trzasko (2013))
If the functions f1, . . . , fmin(n,m) (acting on the singular values) are
differentiable, then

div
(
X̂
f
)

= |m− n|
min(n,m)∑
k=1

fk(σ̃k)

σ̃k
+

min(n,m)∑
k=1

f ′k(σ̃k)

+2

min(n,m)∑
k=1

fk(σ̃k)

min(n,m)∑
`=1; 6̀=k

σ̃k
σ̃2
k − σ̃2

`

.

In CST (2013), this formula leads to data-dependent soft-thresholding

fk(σ̃k) = (σ̃k − λ)+, for all 1 ≤ k ≤ min(n,m),

relevant for Gaussian noise and where λ > 0 is a parameter chosen to
minimize SURE(X̂

f
).
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Non-asymptotic rules in the case of Gaussian noise

We consider the class of spectral estimators of the form

X̂
r

w =
r∑
k=1

wkσ̃kũkṽ
t
k,

with wk non-negative weights and 1 ≤ r ≤ min(n,m) a targeted rank.

Default setting: Choose r as the largest integer such that σ̃k > c+.

Proposition (Bigot, D. and Féral, 2017)

Assume W ij ∼
iid
N (0, τ2). Computing the weights minimizing SURE(X̂w)

leads to the choice

wk =

1− τ2

σ̃2
k

1 + |m− n|+ 2

min(n,m)∑
`=1;` 6=k

σ̃2
k

σ̃2
k − σ̃2

`


+

for all 1 ≤ k ≤ r.
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Non-asymptotic rules in the case of Gaussian noise

Numerical experiments – m = n = 100 with r = r∗ = 1

100 Gaussian noises τ2 = 1/m
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The black curve is an oracle rule (minimizing the true MSE)

Is our non-asymptotic rule, asymptotically optimal?
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Non-asymptotic rules in the case of Gaussian noise
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Non-asymptotic rules in the case of Gaussian noise

Proposition (Bigot, D. and Féral (2017))
Assume that Y is sampled from the Gaussian spiked population model.
Then, for any fixed 1 ≤ k ≤ r∗ such that σk > c1/4, one has that, almost
surely,

lim
n→+∞

1

n

n∑
`=1; 6̀=k

σ̃k
σ̃2
k − σ̃2

`

=
1

ρ (σk)

(
1 +

1

σ2
k

)
.

A direct consequence is that our spectral estimator is asymptotically
optimal (same limit as in by Gavish & Donoho (2014), Nadakuditi (2014)).

arginf
ˆX

r

w

lim
n→∞

‖X̂r

w−X‖2F = lim
n→∞

arginf
ˆX

r

w

SURE(X̂
r

w) = arginf
ˆX

r

w

lim
n→∞

SURE(X̂
r

w)

No optimal rules for non-Gaussian noise.
Is there instead a non-asymptotic rule in this case?
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Generalization to noises in the
exponential family



Generalization to noises in the exponential family

Assumption (Noise in the exponential family)
We assume the noise W is such that the distribution of Y = X +W

belongs to the exponential family (with independent entries)
parameterized by X and such that E(Y ) = X.

The random variable Y ij is sampled from a continuous or discrete
exponential family of distributions on R with pdf

q(y;Xij) = h(y) exp (η(Xij)y −A(η(Xij))) , y ∈ R,

where

• η (the link function) is a one-to-one and smooth function,

• A (the log-partition function) is a twice differentiable mapping,

• h is a known function,

• Xij ∈ R is an unknown real parameter of interest.

Remark: E(Y ) = X ⇒ A′(η(x)) = x (A′ should be one-to-one).
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Generalization to noises in the exponential family

Examples of noise models in the exponential family

• Homoscedastic and known variance in the Gaussian case

q(y;Xij) =
1√
2π

exp

(
− (y −Xij)

2

2τ2

)
, and Var(Y ij) = τ

• Heteroscedastic and unknown variance (but function of X) in the
Gamma case (with known shape parameter L > 0)

q(y;Xij) =
LLyL−1

Γ(L)XL
ij

exp

(
−L y

Xij

)
11R+(y), and Var(Y ij) =

X2
ij

L
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Generalization to noises in the exponential family

Spectral estimator in the natural parameter space

Consider the pdf of Y ij in the canonical form:

p(y;θij) = h(y) exp (θijy −A(θij)) where θij = η(Xij) ∈ Θ

Generalized SURE formula are available for θ̂
f
∈ Rn×m whose entries are

θ̂
f

ij = η(X̂
f

ij), for all 1 ≤ i ≤ n, 1 ≤ j ≤ m,

where fij(Y ) is the (i, j)-th entry of the matrix X̂
f
.

(Hudson, 1978), (Stein, 1981), (Raphan and Simoncelli, 2007), (Eldar, 2009)
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Generalization to noises in the exponential family

Alternative to measuring the risk in the natural parameter space?

Definition

• The mean-squared error (MSE) risk of θ̂
f

is defined as

MSE(θ̂
f
,θ) = E

(
‖θ̂

f
− θ‖2F

)
= E

(
‖η(X̂

f
)− η(X)‖2F

)
6= MSE(X̂

f
,X)

• The Kullback-Leibler (KL) risk of θ̂
f

is defined as

KL(θ̂
f
,θ) =

n∑
i=1

m∑
j=1

E

(∫
R

log

(
p(y; θ̂

f

ij)

p(y;θij)

)
p(y; θ̂

f

ij)dy

)

= KL(X̂
f
,X)

Remark: KL is invariant to the reparameterization θ̂
f

= η(X̂
f
) since it is a

discrepancy measure between distributions!
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Generalization to noises in the exponential family

Stein Unbiased estimator for Kullback Leibler risk

Proposition (Bigot, D. and Féral (2017))

Assume that the function h is C1 on R. Suppose that the function A is C2

on Θ. If the following condition holds

E
(∣∣∣A′(θ̂fij)∣∣∣) < +∞, for all 1 ≤ i ≤ n, 1 ≤ j ≤ m,

then, if f is differentiable, the quantity

SUKL(θ̂
f
) =

n∑
i=1

m∑
j=1

((
θ̂
f
ij +

h′(Y ij)

h(Y ij)

)
A′(θ̂

f
ij)−A(θ̂

f
ij)

)
+ div

(
X̂
f
)
,

where

div
(
X̂
f
)

=

m∑
i=1

n∑
j=1

∂X̂
f

ij

∂Y ij
.

is an unbiased estimator of KL(θ̂
f
,θ)−

n∑
i=1

m∑
j=1

A(θij).
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Generalization to noises in the exponential family

Gamma distributed measurements: m = n = 100, r = r∗ = 1

SUKL (MKL risk) / GSURE (MSE risk)
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Active set of singular values

A problem of model selection

• Gaussian case: choose an estimator collapsing the bulk to 0 of the form

X̂
r

w =
r∑
k=1

wkσ̃kũkṽ
t
k,

where r is the largest integer such that σ̃k > c+.

• Non-Gaussian cases: no notions of bulk edge. We will consider

X̃
s
w =

∑
k∈s

wkσ̃kũkṽ
t
k

for a subset s ⊆ I = {1, 2, . . . ,min(n,m)}.

Question: how to select a relevant subset s??
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Active set of singular values

The case of Gaussian noise

In the Gaussian case, the bulk edge constraint leads us to consider:

s? = {k ; σ̃k > cn,m+ } with cn,m+ = 1 +

√
n

m
.

Proposition

Assume that Y = X +W where the entries of W are iid Gaussian
variables with zero mean and standard deviation τ = 1/

√
m. Then, we have

s∗ ∈ arg min
s⊆I

m‖Y − X̃s‖2F + |s|
(√
m+

√
n
)2
,

where X̃
s

=
∑
k∈s σ̃kũkṽ

t
k for s ∈ I = {1, 2, . . . ,min(n,m)}, and |s| is the

cardinal of s.

Remark: we have shown that |s| (
√
m+

√
n)

2 is an upper bound of the
degree of freedom (in the sense of Efron (2004)) such that the above rule can
be seen as Akaike Information Criterion (AIC) (Akaike, 1974).
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Active set of singular values

The general case of an exponential family

This allows us to introduce a rule for non-Gaussian noise.

Definition

The AIC associated to X̃
s

=
∑
k∈s σ̃kũkṽ

t
k is

AIC(X̃
s
) = −2 log q(Y ; X̃

s
) + |s|

(√
m+

√
n
)2
,

where |s| is the cardinal of s, and

q(Y ; X̃
s
) =

n∏
i=1

m∏
j=1

q(Y ij ; X̃
s
ij)

is the likelihood given the data Y are sampled from the exponential family
with estimated parameters Xij = X̃

s
ij .
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Evaluation and discussion



Evaluation and discussion

Algorithmic approach and numerical optimization

Given an active set s? of singular values, we compute a spectral estimator of
the form

X̂w =
∑
k∈s?

wkσ̃kũkṽ
t
k,

where optimal weights wk for k ∈ s? are obtained by (exact or numerical)
minimization of an unbiased risk formula.

Remark: for Gamma noise, numerical optimization has to be used to find the
optimal weights with the constraint that the entries of X̂w remain positive.

Matlab codes available at:
https://www.math.u-bordeaux.fr/˜cdeledal/gsure_low_rank.php
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Evaluation and discussion

Setting of numerical experiments

Consider the setting where r∗ ≥ 2 is unknown and

X =
r∗∑
k=1

σkukv
t
k,

where uk ∈ Rn and vk ∈ Rm are fixed unit vectors, and σk are fixed positive
real values (with n = 100 and m = 200) such that Xij ≥ 0.

Monte-Carlo simulations with M = 200 repetitions
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Evaluation and discussion

The case of Gamma noise - with confidence bands

100 101 102

101

102

103

104

105

Indices

Si
ng

ul
ar

va
lu
es

X
Y

X̂r

SEη Xsoft

GSURE X̂soft

KLS Xsoft

SUKLS X̂soft

SEη Xr
w

GSURE X̂r
w

KLS Xr
w

SUKLS X̂r
w

X oracle (based on true risk),
X̂ based on estimated risk.

X̂
r

PCA of rank r,
X̂soft soft-thresholding,
X̂
r

w our estimator.

100 101 102

10−3

10−2

Rank r (restricted to the active set)

N
M
SE

100 101 102

10−3

10−2

Rank r (no restriction)

N
M
SE

s∗ based on AIC versus s∗ = {1 ≤ k ≤ r} 26



Conclusion and perspectives

Summary in one slide: a two step procedure

• estimation of an active set s? ⊆ I = {1, 2, . . . ,min(n,m)} of singular
values using a criterion inspired by AIC’s model selection

s∗ ∈ arg min
s⊆I

− 2 log q(Y ; X̃
s
) + |s|

(√
m+

√
n
)2
,

• given the knowledge of s?, compute a spectral estimator of the form

X̂w =
∑
k∈s?

wkσ̃kũkṽ
t
k,

where optimal weights wk for k ∈ s? are obtained by minimizing an
unbiased estimation formula of the mean Kullback-Leibler (MKL) risk.

Open questions: How to extend the asymptotic analysis to the spiked
population model for non-Gaussian noise, and to derive asymptotically
optimal shrinkage rules? Beyond the exponential family?
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Conclusion and perspectives

Thanks for your attention!

• Further reading:

Bigot, J., Deledalle, C. and Féral, D. (2017). Generalized SURE for optimal

shrinkage of singular values in low-rank matrix denoising, Journal of Machine

Learning Research, 18(1), 4991-5040.

Deledalle, C. A. (2017). Estimation of Kullback-Leibler losses for noisy recovery

problems within the exponential family. Electronic journal of statistics, 11(2),

3141-3164.

• Online code:

https://www.math.u-bordeaux.fr/˜cdeledal/gsure_low_rank.php
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Extra slides

The case of Gaussian noise - with confidence bands
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Extra slides

Definition (Efron (2004))

The degrees of freedom (DOF) of a given estimator X̂ is defined as

DOF(X̂) =
1

τ2

n∑
i=1

m∑
j=1

Cov(X̂ij ,Y ij) =
1

τ2

n∑
i=1

m∑
j=1

E(X̂ijW ij).

Proposition (Bigot, D. and Féral (2017))
Assume that Y is sampled from the Gaussian spiked population model.
Suppose that X̂

f
is a spectral estimator such that each function fk is

smooth, and that σk > c1/4 for all 1 ≤ k ≤ r ≤ r∗. Then, one has that a.s.

lim
n→+∞

1

m
DOF(X̂

f
) =

r∑
k=1

fk(ρ(σk))

ρ(σk)

(
1 + c+

2c

σ2
k

)
.
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Extra slides

Hence, if σ2
k >
√
c for all 1 ≤ k ≤ r ≤ r∗, it follows that if s ⊆ {1, . . . , r} then

lim
n→+∞

1

m
DOF(X̃

s
) = |s|

(
1 + c+

2c

σ2
k

)
≤ |s|

(
1 +
√
c
)2

= |s|c2+,

where
X̃
s

=
∑
k∈s

σ̃kũkṽ
t
k.

Hence, the quantity
2|s|pn,m = |s|

(√
m+

√
n
)2

is asymptotically an upper bound of DOF(X̃
s
) (when normalized by 1/m) for

any given set s ⊆ {1, . . . , r}.
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Extra slides

SURE formula also available for the case of Poisson noise

PUKL (MKL risk) / PURE (MSE risk)
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Extra slides

Example

Gamma noise with shape parameter L > 0: τ2ij = Var(Y ij) =
X2

ij

L

Consider rank-one approximation r = 1 with the spectral estimator

X̂w = η(θ̂w) where X̂w = w1σ̃1ũ1ṽ
t
1, for some w1 ≥ 0.

Computing the weights minimizing SUKL(θ̂w) leads to the choice

w1(Y ) =
L/mn

L− 1

 n∑
i=1

m∑
j=1

σ̃1αij

Y ij

+
1

(L− 1)

1 + |m− n|+ 2

min(n,m)∑
`=2

σ̃2
1

σ̃2
1 − σ̃2

`

−1

where αij denotes the (i, j)-th entry of the n×m matrix α = ũ1ṽ
t
1.

Remark: no closed-form expressions for the weights minimizing SUKL(θ̂w)

(neither for GSURE(θ̂w)) beyond the case r = 1!
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