Characterizing the maximum parameter of the total-variation denoising through the pseudo-inverse of the divergence

Context

- \equiv minimum value above which the solution remains constant
- ▶ well known for the Lasso,
- important when tuning the regularization parameter,

Contributions

- Closed form expression for the one-dimensional case
- upper-bound for the two-dimensional case,
- computation of the pseudo-inverse of the divergence,

Problem statement

• Anisotropic TV regularization writes, for $\lambda > 0$, as [Rudin et al., 1992]

- ▶ $y = x + w \in \mathbb{R}^n$:
- $x \in \mathbb{R}^n$:
- $\blacktriangleright \nabla x \in \mathbb{R}^{dn}$:
- $\|\nabla x\|_1 = \sum_i |(\nabla x)_i|$:

Proposition (General case) • Define for $y \in \mathbb{R}^n$, $\lambda_{\max} = \min_{\zeta \in \operatorname{Ker}[\operatorname{div}]} \|\operatorname{div}^+ y + \zeta\|_{\infty}$ $x^{\star} = \frac{1}{n} \mathbb{1}_n \mathbb{1}_n^{\top} y$ if and only if $\lambda \ge \lambda_{\max}$ ► Then, \blacktriangleright div⁺: *Moore-Penrose pseudo-inverse of* div ► Ker[div]: *null space of* div direct consequence of the Karush-Khun-Tucker condition ► Proof: non-smooth convex optimization problem ► *Remark*: **Corollary (Mono dimensional case)** • For d = 1, $\lambda_{\max} = \frac{1}{2} [\max(\operatorname{div}^+ y) - \min(\operatorname{div}^+ y)]$, where $\operatorname{div}^+ = F^+ \operatorname{diag}(K^+_{\uparrow})F$ and $(K^+_{\uparrow})_i$ ▶ *: complex conjugatex (1)► Proof: since in the 1d case, $\operatorname{Ker}[\operatorname{div}] = \operatorname{Span}(\mathbb{1}_n)$ $O(n \log n)$ using the Fast Fourier Transform (FFT) ► Consequence: $|(K_{\uparrow})_i|^2 > 0$ everywhere except for the zero frequency ▶ Remark 1: *non-periodical case,* div *is the incidence matrix of a tree* ► Remark 2: whose pseudo-inverse is obtained following [Bapat, 1997] Difficulty in the two dimensional case ► Ker[div]: orthogonal of the vector space of vector fields satisfying Kirchhoff's voltage law on all cycles of the periodical grid • dim Ker[div] = n + 1 \Rightarrow optimization problem becomes much harder \Rightarrow resort to a fast approximation F)(2)Corollary ► For d = 2, $\lambda_{\max} \leq \frac{1}{2} [\max(\operatorname{div}^+ y) - \min(\operatorname{div}^+ y)],$ where $\operatorname{div}^{+} = \begin{pmatrix} F^{+} & 0 \\ 0 & F^{+} \end{pmatrix} \begin{pmatrix} \operatorname{diag}(\tilde{K}_{\uparrow}^{+}) \\ \operatorname{diag}(\tilde{K}_{\leftarrow}^{+}) \end{pmatrix} F$, and $(\tilde{K}_{\uparrow}^{+})_{i} = \begin{cases} \frac{(K_{\uparrow})_{i}^{*}}{|(K_{\uparrow})_{i}|^{2} + |(K_{\leftarrow})_{i}|^{2}} & \text{if } |(K_{\uparrow})_{i}|^{2} + |(K_{\leftarrow})_{i}|^{2} > 0\\ 0 & \text{otherwise} \end{cases},$ $(\tilde{K}_{\leftarrow}^{+})_{i} = \begin{cases} \frac{(K_{\leftarrow})_{i}^{*}}{|(K_{\uparrow})_{i}|^{2} + |(K_{\leftarrow})_{i}|^{2}} & \text{if } |(K_{\uparrow})_{i}|^{2} + |(K_{\leftarrow})_{i}|^{2} > 0\\ 0 & \text{otherwise} \end{cases}.$ (3)(4) ► Proof: by direct calculus $O(n \log n)$ operations using the 2D FFT ► Consequence: $|(K_{\uparrow})_i|^2 + |(K_{\leftarrow})_i|^2 > 0$ except for the zero frequency ► Remark 1: can be straightforwardly extended to the case where d > 2► Remark 2:

Gradient / divergence / Fourier domain

Find the maximum regularization parameter for anisotropic total-variation denoising but, not yet investigated in details for the total-variation provides an upper-bound on the grid for which the optimal parameter is sought appears reasonably tight in practice quickly obtained by performing convolutions in the Fourier domain $x^{\star} = \underset{x \in \mathbb{D}^{n}}{\operatorname{argmin}} \ \frac{1}{2} \|y - x\|_{2}^{2} + \lambda \|\nabla x\|_{1}$ a noisy observation with $w \in \mathbb{R}^n$ a d-dimensional signal (in this study d = 1 or 2) discrete periodical gradient vector field of xa gradient-sparsity promoting term ∇ acts as a convolution which writes in the one dimensional case (d = 1)denotes the adjoint the discrete Fourier transform its pseudo-inverse ▶ $K_{\downarrow} \in \mathbb{C}^n$ & $K_{\uparrow} \in \mathbb{C}^n$: Fourier transforms of the kernel functions performing forward and backward finite differences respectively \blacktriangleright $K_{\rightarrow} \in \mathbb{C}^n$ & $K_{\leftarrow} \in \mathbb{C}^n$: forward and backward finite difference in horizontal direction ► $K_{\downarrow} \in \mathbb{C}^n$ & $K_{\uparrow} \in \mathbb{C}^n$: forward and backward finite difference in vertical direction

$$\nabla = F^+ \operatorname{diag}(K_{\downarrow})F$$
 and $\operatorname{div} = -\nabla^{\top} = F^+ \operatorname{diag}(K_{\uparrow})F$

- ▶ ⊤:
- $\blacktriangleright F : \mathbb{R}^n \mapsto \mathbb{C}^n$:
- $F^+ = \operatorname{Re}[F^{-1}]$:

Similarly, we define in the two dimensional case (d = 2)

$$\nabla = \begin{pmatrix} F^+ & 0 \\ 0 & F^+ \end{pmatrix} \begin{pmatrix} \operatorname{diag}(K_{\downarrow}) \\ \operatorname{diag}(K_{\rightarrow}) \end{pmatrix} F$$

and $\operatorname{div} = F^+ \left(\operatorname{diag}(K_{\uparrow}) & \operatorname{diag}(K_{\leftarrow}) \right) \begin{pmatrix} F & 0 \\ 0 & F \end{pmatrix}$

Charles Deledalle¹, Nicolas Papadakis¹, Joseph Salmon² and Samuel Vaiter³

¹IMB, CNRS Université de Bordeaux — ²LTCI, Télécom ParisTech, Université Paris-Saclay — ³IMB, CNRS Université de Bourgogne

(6)

$$O_i = \begin{cases} \frac{(K_{\uparrow})_i^*}{|(K_{\uparrow})_i|^2} & \text{if } |(K_{\uparrow})_i|^2 > 0 \\ 0 & \text{otherwise} \end{cases}$$

(7)

Results and discussion

Figure: (a) A 1d signal y. (b) The convolution kernel $F^+K^+_{\uparrow}$ that realizes the pseudo inversion of the divergence. (c) The signal $\operatorname{div}^+ y$ on which we can read the value of λ_{\max} . (d) The signal $\operatorname{div} \operatorname{div}^+ y$ showing that one can reconstruct y from $\operatorname{div}^+ y$ up to its mean component.

(a)y

(b) $F^+ \tilde{K}^+_{\uparrow}$, $F^+ \tilde{K}^+_{\leftarrow}$

Figure: (a) A 2d signal y. (b) The convolution kernels $F^+K^+_{\uparrow}$ and $F^+\tilde{K}^+_{\leftarrow}$ that realizes the pseudo inversion of the divergence. (c) The vector field $\operatorname{div}^+ y$ on which we can read the upper-bound λ_{bnd} of λ_{max} . (d) The image div div⁺ y showing that one can reconstruct y from div⁺ y up to its mean component.

total-variation for three different values of λ .

- \blacktriangleright $\lambda_{\rm bnd}$: computed in ~ 5 ms
- \triangleright λ_{bnd} appears to be reasonably tight upper bound of λ_{max}

References

- Bapat, R. (1997). Moore-penrose inverse of the incidence matrix of a tree. Linear and Multilinear Algebra, 42(2):159–167.
- Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex problems

Lontières

(c) $\operatorname{div}^+ y$

(d) div div⁺ y

Figure: (a) Evolution of $\|\nabla x^{\star}\|_{\infty}$ as a function of λ . (b), (c), (d) Results x^{\star} of the periodical anisotropic

Convolution kernel: simple triangle wave in 1d, but more complex in 2d ► div div⁺ is the projector onto the space of zero-mean signals, i.e., Im[div]

 \triangleright λ_{max} : computed in ~ 25 s with [Chambolle and Pock, 2011] on Problem (5) Future work: other ℓ_1 sparse analysis regularization and ill-posed inverse problems

