Characterizing the maximum parameter of the total-variation denoising

through the pseudo-inverse of the divergence

Charles Deledalle ${ }^{1}$, Nicolas Papadakis ${ }^{1}$, Joseph Salmon ${ }^{2}$ and Samuel Vaiter ${ }^{3}$ IIMB, CNRS Université de Bordeaux - ${ }^{2}$ LTCI, Télécom ParisTech, Université Paris-Saclay - ${ }^{3}$ IMB, CNRS Université de Bourgogne

Context

- Find the maximum regularization parameter for anisotropic total-variation denoising \equiv minimum value above which the solution remains constant
- well known for the Lasso,
but, not yet investigated in details for the total-variation
- important when tuning the regularization parameter,
provides an upper-bound on the grid for which the optimal parameter is sought

Contributions

- Closed form expression for the one-dimensional case
- upper-bound for the two-dimensional case,
appears reasonably tight in practice
- computation of the pseudo-inverse of the divergence, quickly obtained by performing convolutions in the Fourier domain

Problem statement

- Anisotropic TV regularization writes, for $\lambda>0$, as [Rudin et al., 1992]

$$
\begin{equation*}
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|y-x\|_{2}^{2}+\lambda\|\nabla x\|_{1} \tag{1}
\end{equation*}
$$

- $y=x+w \in \mathbb{R}^{n}$
- $x \in \mathbb{R}^{n}$:
- $\nabla x \in \mathbb{R}^{d n}$.
- $\|\nabla x\|_{1}=\sum_{i}\left|(\nabla x)_{i}\right|:$
a noisy observation with $w \in \mathbb{R}^{n}$
a d-dimensional signal (in this study $d=1$ or 2)
discrete periodical gradient vector field of x
a gradient-sparsity promoting term

Gradient / divergence / Fourier domain

∇ acts as a convolution which writes in the one dimensional case $(d=1)$

$$
\nabla=F^{+} \operatorname{diag}\left(K_{\downarrow}\right) F \quad \text { and } \quad \operatorname{div}=-\nabla^{\top}=F^{+} \operatorname{diag}\left(K_{\uparrow}\right) F
$$

$F: \mathbb{R}^{n}-\mathbb{C}^{n}$. denotes the adjoint

- $F^{+}=\operatorname{Re}\left[F^{-1}\right]$ the discrete Fourier transform
$F^{+}=\operatorname{Re} F^{-1}$: its pseudo-inverse
- $K_{\downarrow} \in \mathbb{C}^{n} \& K_{\uparrow} \in \mathbb{C}^{n}$: Fourier transforms of the kernel functions performing Fourier transforms of the kernel functions performing
forward and backward finite differences respectively

Similarly, we define in the two dimensional case ($d=2$)

$$
\begin{align*}
\nabla & =\left(\begin{array}{cc}
F^{+} & 0 \\
0 & F^{+}
\end{array}\right)\binom{\operatorname{diag}\left(K_{\downarrow}\right)}{\operatorname{diag}\left(K_{\rightarrow}\right)} F \tag{3}\\
\text { and } \quad \operatorname{div} & =F^{+}\left(\operatorname{diag}\left(K_{\uparrow}\right) \operatorname{diag}\left(K_{\leftarrow}\right)\right)\left(\begin{array}{cc}
F & 0 \\
0 & F
\end{array}\right) \tag{4}
\end{align*}
$$

- $K_{\rightarrow} \in \mathbb{C}^{n} \& K_{\leftarrow} \in \mathbb{C}^{n}$: forward and backward finite difference in horizontal direction - $K_{\downarrow} \in \mathbb{C}^{n} \& K_{\uparrow} \in \mathbb{C}^{n}$: forward and backward finite difference in vertical direction

Proposition (General case)

- Define for $y \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\lambda_{\max }=\min _{\zeta \in \operatorname{Ker}[\text { div }]}\left\|\operatorname{div}^{+} y+\zeta\right\|_{\infty} \tag{5}
\end{equation*}
$$

- Then,

$$
\begin{equation*}
x^{\star}=\frac{1}{n} \mathbb{1}_{n} \mathbb{1}_{n}^{\top} y \text { if and only if } \lambda \geqslant \lambda_{\max } \tag{6}
\end{equation*}
$$

- div^{+}:
- Ker[div]:
- Proof:

Moore-Penrose pseudo-inverse of div
null space of div
direct consequence of the Karush-Khun-Tucker condition non-smooth convex optimization problem

Corollary (Mono dimensional case)

- For $d=1, \lambda_{\max }=\frac{1}{2}\left[\max \left(\operatorname{div}^{+} y\right)-\min \left(\operatorname{div}^{+} y\right)\right]$,

$$
\text { where } \quad \operatorname{div}^{+}=F^{+} \operatorname{diag}\left(K_{\uparrow}^{+}\right) F \quad \text { and } \quad\left(K_{\uparrow}^{+}\right)_{i}=\left\{\begin{array}{l}
\frac{\left(K_{\uparrow}\right)_{i}^{*}}{\left|\left(K_{\uparrow}\right)\right|^{2}} \text { if }\left|\left(K_{\uparrow}\right)_{i}\right|^{2}>0 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

- Proof:
- Consequence:
- Remark 1:
- Remark 2:
complex conjugatex
(nlog ld case, $\operatorname{Ker}[\mathrm{div}]=\operatorname{Span}\left(\mathbb{1}_{n}\right)$ $(n \log n)$ using the Fast Fourier Transform (FFT) $\left.\left(K_{\uparrow}\right) i\right|^{2}>0$ everywhere except for the zero frequency non-periodical case, div is the incidence matrix of a tree whose pseudo-inverse is obtained following [Bapat, 1997]

Difficulty in the two dimensional case

- Ker[div]:	orthogonal of the vector space of vector fields satisfying Kirchhoff's voltage law on all cycles of the periodical grid
- $\operatorname{dim} \operatorname{Ker}[\operatorname{div}]=n+1$	\Rightarrow optimization problem becomes much harder

Corollary

Results and discussion

Figure: (a) A 1d signal y. (b) The convolution kernel $F^{+} K_{+}^{+}$that realizes the pseudo inversion of the divergence. (c) The signal div ${ }^{+} y$ on which we can read the value of $\lambda_{\text {max }}$. (d) The signal div div ${ }^{+} y$ divergence. (c) The signal div y on which we can read the value of $\lambda_{\text {max. }}$.
showing that one can reconstruct y from div y up to its mean component.

Figure: (a) A 2d signal y. (b) The convolution kernels $F^{+} K_{\uparrow}^{+}$and $F^{+} \tilde{K}_{\leftarrow}^{+}$that realizes the pseudo inversion of the divergence. (c) The vector field div ${ }^{+} y$ on which we can read the upper-bound $\lambda_{\text {bnd }}$ of
$\lambda_{\text {max }}$. (d) The image div div ${ }^{*} y$ showing that one can reconstruct y from $\operatorname{div}^{+} y$ up to its mean component.

(a)
(b) $\lambda=10^{-3} \lambda_{\text {bnd }}$ (c) $\lambda=10^{-2} \lambda_{\text {bnd }}$
(d) $\lambda=\lambda_{\text {bnd }}$

Figure: (a) Evolution of $\left\|\nabla x^{\star}\right\|_{\infty}$ as a function of λ. (b), (c), (d) Results x^{\star} of the periodical anisotropic total-variation for three different values of λ.

- Convolution kernel: simple triangle wave in 1d, but more complex in 2d - div div ${ }^{+}$is the projector onto the space of zero-mean signals, i.e., Im[div] - $\lambda_{\text {bnd }}$: computed in $\sim 5 \mathrm{~ms}$
- $\lambda_{\max }$: computed in $\sim 25 \mathrm{~s}$ with [Chambolle and Pock, 2011] on Problem (5)
- $\lambda_{\text {bnd }}$ appears to be reasonably tight upper bound of $\lambda_{\text {max }}$
- Future work: other ℓ_{1} sparse analysis regularization and ill-posed inverse problems

