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Chapter I – Introduction
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Who?

Who am I?

• A visiting scholar from University of Bordeaux (France).

• Visiting UCSD since Jan 2017.

• PhD in signal processing (2011).

• Research in image processing / applied maths.

• Affiliated with CNRS (French scientific research institute).

• Email: cdeledalle@ucsd.edu

• www.charles-deledalle.fr
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What?

What is it?

An advanced class about

Algorithmic and mathematical/statistical models

applied to

Image and video restoration

• Implementation and theoretical aspects, but not a math class

(most of the claims won’t be proven).

• Implementation of these models for denoising, deblurring and inpainting

through 6 assignments and 1 project (in Python).

• Covers 100 years of results from fundamental signal processing to modern

data science, but no deep learning.
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What? Syllabus

• Introduction to inverse problems in image/video restoration contexts:
denoising, deblurring, super-resolution,

tomography, compressed sensing, . . .

• Basic tools of filtering:
Spatial filters: linear, non-linear, local, non-local filters and patches.

Spectral: low-, high-pass filters, sharpening, sub-sampling.

• Variational methods:
Heat equation, PDE, numerical schemes, anisotropic filtering,

Tikhonov regularization, total-variation, convex optimization.

• Bayesian techniques:
MVUE, Least-Square, Cramér-Rao, Maximum Likelihood,

MMSE, MAP, Non-local Bayes, Whitening, Wiener filtering.

• Dictionary based techniques:
Sparsity, shrinkage functions and wavelets, BM3D,

Dictionary learning, structured sparsity, kSVD, PLE, EPLL.
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Why?

Why image restoration?

• Images become a major communication media.

• Image data need to be analyzed automatically.

• Images are often noisy, blury, or have low-resolution.

• Many applications: robotic, medical, smart cars, . . .

5



What for?

What for?

• Work in the field of signal/image/video processing, computer vision, or

data science in general (in both industry or academy).

• Be able to understand and implement recent publications in that field.

• Understand latest machine learning and computer vision techniques.

Many deep learning concepts are based on tools that will be

introduced in this class: convolution, transpose convolution,

dilated convolutions, patches, total-variation, wavelets,

filter-banks, a trous algorithm, gradient descent, Nesterov

acceleration, . . .
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How? Prerequisites

• Linear algebra (MATH 18)

• Differential calculus (MATH 20C)

• Probability and statistics (ECE 109)

• Fourier transform (ECE 161A)

• Basics of optimization (ECE 174)

• Python programming

Refer to the cookbook for data scientist

Cookbook for data scientists
Charles Deledalle

Convex optimization

Conjugate gradient

Let A ∈ Cn×n be Hermitian positive definite The
sequence xk defined as, r0 = p0 = b, and

xk+1 = xk + αkpk

rk+1 = rk − αkApk
with αk =

r∗krk
p∗kApk

pk+1 = rk+1 + βkpk with βk =
r∗k+1rk+1

r∗krk

converges towards A−1b in at most n steps.

Lipschitz gradient

f : Rn → R has a L Lipschitz gradient if

||∇f(x)−∇f(y)||2 6 L||x− y||2

If ∇f(x) = Ax, L = ||A||2. If f is twice differentiable
L = supx ||Hf (x)||2, i.e., the highest eigenvalue of
Hf (x) among all possible x.

Convexity

f : Rn → R is convex if for all x, y and λ ∈ (0, 1)

f(λx+ (1− λ)y) 6 λf(x) + (1− λ)f(y)

f is strictly convex if the inequality is strict. f is
convex and twice differentiable iif Hf (x) is Hermitian
non-negative definite. f is strictly convex and twice
differentiable iif Hf (x) is Hermitian positive definite.
If f is convex, f has only global minima if any. We
write the set of minima as

argmin
x

f(x) = {x \ for all z ∈ Rnf(x) 6 f(z)}

Gradient descent

Let f : Rn → R be differentiable with L Lipschitz
gradient then, for 0 < γ 6 1/L, the sequence

xk+1 = xk − γ∇f(xk)

converges towards a stationary point x? in O(1/k)

∇f(x?) = 0

If f is moreover convex then

x? ∈ argmin
x

f(x).

Newton’s method

Let f : Rn → R be convex and twice continuously
differentiable then, the sequence

xk+1 = xk −Hf (xk)
−1∇f(xk)

converges towards a minimizer of f in O(1/k2).

Subdifferential / subgradient

The subdifferential of a convex† function f is

∂f(x) = {p \ ∀x′, f(x)− f(x′) > 〈p, x− x′〉} .

p ∈ ∂f(x) is called a subgradient of f at x.
A point x? is a global minimizer of f iif

0 ∈ ∂f(x?).

If f is differentiable then ∂f(x) = {∇f(x)}.

Proximal gradient method

Let f = g + h with g convex and differentiable with
Lip. gradient and h convex†. Then, for 0<γ61/L,

xk+1 = proxγh(xk − γ∇g(xk))

converges towards a global minimizer of f where

proxγh(x) = (Id + γ∂h)−1(x)

= argmin
z

1

2
||x− z||2 + γh(z)

is called proximal operator of f .

Convex conjugate and primal dual problem

The convex conjugate of a function f : Rn → R is

f∗(z) = sup
x
〈z, x〉 − f(x)

if f is convex (and lower semi-continuous) f = f??.
Moreover, if f(x) = g(x) + h(Lx), then minimizers
x? of f are solutions of the saddle point problem

(x?, z?) ∈ args min
x

max
z

g(x) + 〈Lx, z〉 − h∗(z)

z? is called dual of x? and satisfies

{
Lx? ∈ ∂h∗(z?)
L∗z ∈ ∂g(x?)
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Multi-variate differential calculus

Partial and directional derivatives

Let f : Rn → Rm. The (i, j)-th partial derivative of
f , if it exists, is

∂fi
∂xj

(x) = lim
ε→0

fi(x+ εej)− fi(x)

ε

where ei ∈ Rn, (ej)j = 1 and (ej)k = 0 for k 6= j.
The directional derivative in the dir. d ∈ Rn is

Ddf(x) = lim
ε→0

f(x+ εd)− f(x)

ε
∈ Rm

Jacobian and total derivative

Jf =
∂f

∂x
=

(
∂fi
∂xj

)

i,j

(m× n Jacobian matrix)

df(x) = tr

[
∂f

∂x
(x) dx

]
(total derivative)

Gradient, Hessian, divergence, Laplacian

∇f =

(
∂f

∂xi

)

i

(Gradient)

Hf = ∇∇f =

(
∂2f

∂xi∂xj

)

i,j

(Hessian)

div f = ∇tf =
n∑

i=1

∂fi
∂xi

= tr Jf (Divergence)

∆f = div∇f =
n∑

i=1

∂2f

∂x2i
= trHf (Laplacian)

Properties and generalizations

∇f = J tf (Jacobian ↔ gradient)

div = −∇∗ (Integration by part)

df(x) = tr [Jf dx] (Jacob. character. I)

Ddf(x) = Jf (x)× d (II)

f(x+h)=f(x) +Dhf(x) + o(||h||) (1st order exp.)

f(x+h)=f(x) +Dhf(x) + 1
2h
∗Hf (x)h+ o(||h||2)

∂(f ◦ g)

∂x
=

(
∂f

∂x
◦ g
)
∂g

∂x
(Chain rule)

Elementary calculation rules

dA = 0

d[aX + bY ] = adX + bdY (Linearity)

d[XY ] = (dX)Y +X(dY ) (Product rule)

d[X∗] = (dX)∗

d[X−1] = −X−1(dX)X−1

d tr[X] = tr[dX]

dZ

dX
=

dZ

dY

dY

dX
(Leibniz’s chain rule)

Classical identities

d tr[AXB] = tr[BA dX]

d tr[X∗AX] = tr[X∗(A∗ + A) dX]

d tr[X−1A] = tr[−X−1AX−1 dX]

d tr[Xn] = tr[nXn−1 dX]

d tr[eX ] = tr[eX dX]

d|AXB| = tr[|AXB|X−1 dX]

d|X∗AX| = tr[2|X∗AX|X−1 dX]

d|Xn| = tr[n|Xn|X−1 dX]

d log |aX| = tr[X−1 dX]

d log |X∗X| = tr[2X+ dX]

Implicit function theorem

Let f : Rn+m → Rn be continuously differentiable
and f(a, b) = 0 for a ∈ Rn and b ∈ Rm. If ∂f

∂y (a, b)

is invertible, then there exist g such that g(a) = b
and for all x ∈ Rn in the neighborhood of a

f(x, g(x)) = 0

∂g

∂xi
(x) = −

(
∂f

∂y
(x, g(x))

)−1 ∂f
∂xi

(x, g(x))

In a system of equations f(x, y) = 0 with an infinite
number of solutions (x, y), IFT tells us about the
relative variations of x with respect to y, even in
situations where we cannot write down explicit
solutions (i.e., y = g(x)). For instance, without
solving the system, it shows that the solutions (x, y)
of x2 + y2 = 1 satisfies ∂y

∂x = −x/y.
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Probability and Statistics

Kolmogorov’s probability axioms

Let Ω be a sample set and A an event

P[Ω] = 1, P[A] > 0

P

[ ∞⋃

i=1

Ai

]
=
∞∑

i=1

P[Ai] with Ai ∩ Aj = ∅

Basic properties

P[∅] = 0, P[A] ∈ [0, 1], P[Ac] = 1− P[A]

P[A] 6 P[B] if A ⊆ B

P[A ∪B] = P[A] + P[B]− P[A ∩B]

Conditional probability

P[A|B] =
P[A ∩B]

P[B]
subject to P[B] > 0

Bayes’ rule

P[A|B] =
P[B|A]P[A]

P[B]

Independence

Let A and B be two events, X and Y be two rv

A⊥B if P[A ∩B] = P[A]P[B]

X⊥Y if (X 6 x)⊥(Y 6 y)

If X and Y admit a density, then

X⊥Y if fX,Y (x, y) = fX(x)fY (y)

Properties of Independence and uncorrelation

P[A|B] = P[A]⇒ A⊥B
X⊥Y ⇒ (E[XY ∗] = E[X]E[Y ∗]⇔ Cov[X, Y ] = 0)

Independence⇒ uncorrelation

correlation⇒ dependence

uncorrelation ; Independence

dependence ; correlation

Discrete random vectors

Let X be a discrete random vector defined on Nn

E[X]i =
∞∑

k=0

kP[Xi = k]

The function fX : k → P[X = k] is called the
probability mass function (pmf) of X.

Continuous random vectors

Let X be a continuous random vector on Cn.
Assume there exist fX such that, for all A ⊆ Cn,

P[X ∈ A] =

∫

A

fX(x) dx.

Then fX is called the probability density function
(pdf) of X, and

E[X] =

∫

Cn

xfX(x) dx.

Variance / Covariance

Let X and Y be two random vectors. The
covariance matrix between X and Y is defined as

Cov[X, Y ] = E[XY ∗]− E[X]E[Y ]∗.

X and Y are said uncorrelated if Cov[X, Y ] = 0.
The variance-covariance matrix is

Var[X] = Cov[X,X] = E[XX∗]− E[X]E[X]∗.

Basic properties

• The expectation is linear

E[aX + bY + c] = aE[X] + bE[Y ] + c

• If X and Y are independent

Var[aX + bY + c] = a2Var[X] + b2Var[Y ]

• Var[X] is always Hermitian positive definite
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Fourier analysis

Fourier Transform (FT)

Let x : R→ C such that

∫ +∞

−∞
|x(t)| dt <∞. Its

Fourier transform X : R→ C is defined as

X(u) = F [x](u) =

∫ +∞

−∞
x(t)e−i2πut dt

x(t) = F−1[X](t) =

∫ +∞

−∞
X(u)ei2πut du

where u is referred to as the frequency.

Properties of continuous FT

F [ax+ by] = aF [x] + bF [y] (Linearity)

F [x(t− a)] = e−i2πauF [x] (Shift)

F [x(at)](u) =
1

|a|F [x](u/a) (Modulation)

F [x∗](u) = F [x](−u)∗ (Conjugation)

F [x](0) =

∫ +∞

−∞
x(t) dt (Integration)

∫ +∞

−∞
|x(t)|2 dt =

∫ +∞

−∞
|X(u)|2 du (Parseval)

F [x(n)](u) = (2πiu)nF [x](u) (Derivation)

F [e−π
2at2](u) =

1√
πa
e−u

2/a (Gaussian)

x is real⇔ X(ε) = X(−ε)∗ (Real ↔ Hermitian)

Properties with convolutions

(x ? y)(t) =

∫ ∞

−∞
x(s)y(t− s) ds (Convolution)

F [x ? y] = F [x]F [y] (Convolution theorem)

Multidimensional Fourier Transform

Fourier transform is separable over the different d
dimensions, hence can be defined recursively as

F [x] = (F1 ◦ F2 ◦ . . . ◦ Fd)[x]

where Fk[x](t1 . . . , εk, . . . , td) =

F [tk 7→ x(t1, . . . , tk, . . . , td)](εk)

and inherits from above properties (same for DFT).

Discrete Fourier Transform (DFT)

Xu = F [x]u =
n−1∑

t=0

xte
−i2πut/n

xt = F−1[X]t =
1

n

n−1∑

u=0

Xke
i2πut/n

Or in a matrix-vector form X = Fx and x = F−1X
where Fu,k = e−i2πuk/n. We have

F ∗ = nF−1 and U = n−1/2F is unitary

Properties of discrete FT

F [ax+ by] = aF [x] + bF [y] (Linearity)

F [xt−a] = e−i2πau/nF [x] (Shift)

F [x∗]u = F [x]∗n−u mod n (Conjugation)

F [x]0 =
n−1∑

t=0

xt (Integration)

||x||22 =
1

n
||X||22 (Parseval)

||x||1 6 ||X||1 6 n||x||1
||X||∞ 6 ||x||1 and ||x||∞ 6 1

n
||X||1

x is real⇔ Xu = X∗n−u mod n (Real ↔ Hermitian)

Discrete circular convolution

(x ∗ y)t =
n∑

s=1

xsy(t−s mod n)+1 or x ∗ y = Φyx

where (Φy)t,s = y(t−s mod n)+1 is a circulant matrix
diagonalizable in the discrete Fourier basis, thus

F [x ∗ y]u = F [x]uF [y]u

Fast Fourier Transform (FFT)

The matrix-by-vector product Fx can be computed
in O(n log n) operations (much faster than the
general matrix-by-vector product that required O(n2)
operations). Same for F−1 and same for
multi-dimensional signals.
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Linear algebra II
Eigenvalues / eigenvectors

If λ ∈ C and e ∈ Cn( 6= 0) satisfy

Ae = λe

λ is called the eigenvalue associated to the
eigenvector e of A. There are at most n distinct
eigenvalues λi and at least n linearly independent
eigenvectors ei (with norm 1). The set λi of n (non
necessarily distinct) eigenvalues is called the
spectrum of A (for a proper definition see
characteristic polynomial, multiplicity, eigenspace).
This set has exactly r = rankA non zero values.

Eigendecomposition (m = n)

If it exists E ∈ Cn×n, and a diagonal matrix
Λ ∈ Cn×n st

A = EΛE−1

A is said diagonalizable and the columns of E are
the n eigenvectors ei of A with corresponding
eigenvalues Λi,i = λi.

Properties of eigendecomposition (m = n)

• If, for all i, Λi,i 6= 0, then A is invertible and

A−1 = EΛ−1E−1 with Λ−1i,i = (Λi,i)
−1

• If A is Hermitian (A = A∗), such decomposition
always exists, the eigenvectors of E can be chosen
orthonormal such that E is unitary (E−1 = E∗), and
λi are real.
• If A is Hermitian (A = A∗) and λi > 0, A is said
positive definite, and for all x 6= 0, xAx∗ > 0.

Singular value decomposition (SVD)

For all matrices A there exists two unitary matrices
U ∈ Cm×m and V ∈ Cn×n, and a real non-negative
diagonal matrix Σ ∈ Rm×n st

A = UΣV ∗ and A =
r∑

k=1

σkukv
∗
k

with r = rankA non zero singular values Σk,k=σk.

Eigendecomposition and SVD

• If A is Hermitian, the two decompositions coincide
with V = U = E and Σ = Λ.
• Let A = UΣV ∗ be the SVD of A, then the
eigendecomposition of AA∗ is E = U and Λ = Σ2.

SVD, image and kernel

Let A = UΣV ∗ be the SVD of A, and assume Σi,i

are ordered in decreasing order then

Im[A] = Span({ui ∈ Rm \ i ∈ (1 . . . r)})
Ker[A] = Span({vi ∈ Rn \ i ∈ (r + 1 . . . n)})

Moore-Penrose pseudo-inverse

The Moore-Penrose pseudo-inverse reads

A+ = V Σ+U∗ with Σ+
i,i =

{
(Σi,i)

−1 if Σii > 0,
0 otherwise

and is the unique matrix satisfying A+AA+ = A+

and AA+A = A with A+A and AA+ Hermitian.
If A is invertible, A+ = A−1.

Matrix norms

||A||p = sup
x;||x||p=1

||Ax||p, ||A||2 = max
k

σk, ||A||∗ =
∑

k

σk,

||A||2F =
∑

i,j

|ai,j|2 = trA∗A =
∑

k

σ2k
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Linear algebra I

Notations

x, y, z, . . . : vectors of Cn
a, b, c, . . . : scalars of C
A, B, C : matrices of Cm×n
Id : identity matrix
i = 1, . . . ,m and j = 1, . . . , n

Matrix vector product

(Ax)i =
n∑

k=1

Ai,kxk

(AB)i,j =
n∑

k=1

Ai,kBk,j

Basic properties

A(ax+ by) = aAx+ bAy

AId = IdA = A

Inverse (m = n)

A is said invertible, if it exists B st

AB = BA = Id.

B is unique and called inverse of A.
We write B = A−1.

Adjoint and transpose

(At)j,i = Ai,j, At ∈ Cm×n

(A∗)j,i = (Ai,j)
∗, A∗ ∈ Cm×n

〈Ax, y〉 = 〈x, A∗y〉

Trace and determinant (m = n)

trA=
n∑

i=1

Ai,i=
n∑

i=1

λi

detA =
n∏

i=1

λi

trA = trA∗

trAB = trBA

detA∗ = detA

detA−1 = (detA)−1

detAB = detA detB

A is invertible⇔ detA 6= 0⇔ λi 6= 0,∀i

Scalar products, angles and norms

〈x, y〉 = x · y = x∗y =
n∑

k=1

xkyk (dot product)

||x||2 = 〈x, x〉 =
n∑

k=1

x2k (`2 norm)

|〈x, y〉| 6 ||x||||y|| (Cauchy-Schwartz inequality)

cos(∠(x, y)) =
〈x, y〉
||x||||y|| (angle and cosine)

||x+ y||2 = ||x||2 + ||y||2 + 2〈x, y〉 (law of cosines)

||x||pp =
n∑

k=1

|xk|p, p > 1 (`p norm)

||x+ y||p 6 ||x||p + ||y||p (triangular inequality)

Orthogonality, vector space, basis, dimension

x⊥y ⇔ 〈x, y〉 = 0 (Orthogonality)

x⊥y ⇔ ||x+ y||2 = ||x||2 + ||y||2 (Pythagorean)

Let d vectors xi be st xi⊥xj, ||xi|| = 1. Define

V = Span({xi}) =
{
y \ ∃α ∈ Cd, y =

d∑

i=1

αixi

}

V is a vector space, {xi} is an orthonormal basis of V and

∀y ∈ V, y =
d∑

i=1

〈y, xi〉xi

and d = dimV is called the dimensionality of V . We have

dim(V ∪W ) = dimV + dimW − dim(V ∩W )

Column/Range/Image and Kernel/Null spaces

Im[A] = {y ∈ Rm \ ∃x ∈ Rn such that y = Ax} (image)

Ker[A] = {x ∈ Rn \ Ax = 0} (kernel)

Im[A] and Ker[A] are vector spaces satisfying

Im[A] = Ker[A∗]⊥ and Ker[A] = Im[A∗]⊥

rankA+ dim(Ker[A]) = n (rank-nullity theorem)

where rankA = dim(Im[A]) (matrix rank)

Note also rankA = rankA∗

rankA+ dim(Ker[A∗]) = m
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How?

How? – Teaching staff

Instructor

Charles Deledalle

Teaching assistants

Tushar Dobhal Harshul Gupta
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How?

How? – Schedule

• 30× 50 min lectures (10 weeks)

• Mon/Wed/Fri 11-11:50pm
• Room WLH 2204.

• 10× 2 hour optional labs

• Thursday 2-4pm
• Room 4309, Jacobs Hall.

• Weekly office hours

• Charles Deledalle, Tues 2-4pm, Room EBU1 4808, Jacobs Hall.
• Tushar Dobhal, TBA

• Google calendar: https://tinyurl.com/yyj7u4lv
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How?

How? – Evaluation

• 6 assignments (individual). Grade is an average of the 5 best. . . . 50%

• 1 project (by groups of 2/3). To be chosen among 4 subjects. . . . 50%

• No midterms. No exams.

Calendar Deadline

1 Assignment 0 – Python/Numpy/Matplotlib (Prereq) . . . . . . . . . . . . . . . . optional

2 Assignment 1 – Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . April 12

3 Assignment 2 – Basic Image Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . April 19

4 Assignment 3 – Basic Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . April 26

5 Assignment 4 – Non-local means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . May 3

6 Assignment 5 – Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . May 10

7 Assignment 6 – Wiener deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . May 17

8 Project – A: Diffusion / B: TV / C: Wavelets / D: NLM . . . . . . . . . . . . . . June 7
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How?

How? – Assignments overview

Assignment 1: Learn how to remove a simple watermark.

−→

Assignment 2+3: Learn how to detect edges.

−→
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How?

How? – Assignments overview

Assignment 4: Learn how to remove simple noises.

−→

Assignment 5+6: Learn how to remove simple blurs.

−→
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How?

How? – Projects overview

Project A+B+C+D: 4 different techniques to remove more complex blurs

−→

that can also be applied to recover images with strong corruptions.

−→
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How?

How? – Piazza
https://piazza.com/ucsd/spring2019/ece285ivr

Spatial f ltering – Non-local means

Non-local approach [Buades at al, 2005, Awate et al, 2005]
• Local f lters: average neighborhood pixels

• Non-local f lters: average pixels being in a similar context
x̂i =

P
j wi ,j yj

P
j wi ,j

wi ,j = e−
||s i − s j ||

2
2

2τ 2

Weighted
average

Weighted
average

Search window

Weights map
Noisy image Local approach

Weights map
Non-Local approach

Patch comparison

Patch 1 Patch 2

Dissimilar patches

Similar patches

low weights

high weights

wi ,j =

e−
||P i y − P j y ||

2
2

2τ 2

81

If you cannot get access to it contact me asap

at cdeledalle@ucsd.edu

(title: “[ECE285-IVR][Piazza] Access issues”).
14

https://piazza.com/ucsd/spring2019/ece285ivr
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Misc

Misc

Programming environment:

• We will use Python 3 and Jupyter notebook.

• We recommend you to install Conda/Python 3/Jupyter on your laptop.

• Please refer to documentations on Piazza for setting that up.

Communication:

• All your emails must have a title starting with “[ECE285-IVR]”

→ or it will end up in my spam/trash.

Note: “[ECE 285-IVR]”, “[ece285 IVR]”, “(ECE285IVR)” are invalid!

• But avoid emails, use Piazza to communicate instead.

• For questions that may interest everyone else, post on Piazza forums.

15



Some reference books

Image processing:

Mâıtre, H. (2008).

Image processing.

Wiley-IEEE Press.

Milanfar, P. (2010).

Super-resolution

imaging.

CRC press.

Vese, L. A., & Le

Guyader, C. (2015).

Variational

methods in image

processing.

CRC Press.

Sparsity and applications:

Mallat, S. (2008).

A wavelet tour of

signal processing:

the sparse way.

Academic press.

Elad, M. (2010).

Sparse and Redundant

Representations: From

theory to applications

in signal and image

processing. Springer

New York.

Starck, J. L., Murtagh,

F., & Fadili, J. (2015).

Sparse Image and

Signal Processing:

Wavelets and Related

Geometric Multiscale

Analysis. Cambridge

University Press.

Misc:

Kay, S. M. (1993).

Fundamentals of statistical

signal processing, volume

I: estimation theory.,

Prentice Hall

Stein, J (2000).

Digital Signal

Processing, Wiley

Interscience

Mâıtre, H. (2015).

From Photon to

Pixel: The Digital

Camera

Handbook.

John Wiley& Sons.
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What is image restoration?

x y x̂

Ecce homo (Elias Garćıa), 1930

restored by Cecilia Giménez, 2012



Imaging sciences – Overview

• Imaging:

Modeling the image formation process

• Computer graphics:

Rendering images/videos from symbolic representation
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Imaging sciences – Overview

• Computer vision:

Extracting information from images/videos

• Image/Video processing:

Producing new images/videos from input images/videos
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Imaging sciences – Image processing

19



Imaging sciences – Image processing

Source: Iasonas Kokkinos

• Image processing: define a new image from an existing one

• Video processing: same problems + motion information
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Imaging sciences – Image processing

Geometric transform

Change pixel location

21



Imaging sciences – Image processing

Colorimetric transform

• Filtering: change pixel values

• Segmentation: provide an attribute to each pixel

22



Imaging sciences – Photo manipulation

Photo manipulation – Applications & Techniques (sources Wikipedia)

• Media / Journalism / Advertising

• Restoration of cultural heritage

• Propaganda / Political purpose

• Art / Personal use

• Color & contrast enhancement

• Image sharpening (reduce blur)

• Removing elements (inpainting)

• Removing flaws (skin, scratches)

• Image compositing/fusion

• Image colorization

Often handmade by graphic designers/artists/confirmed amateurs

or aided with raster images/graphics editor

Classical editors: Adobe Photoshop (commercial), GIMP (free and open-source)
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Imaging sciences – Is image processing = Photo manipulation?

Photo manipulation

• Manual/Computer aided

• Performed image per image

• Users: artists, graphic designers

• Target: general public

• Input: photography

• Goal: visual aspects

v.s

Main image processing purposes

• Automatic/Semi-supervised

• Applied to image datasets

• Users: industry, scientists

• Target: industry, sciences

• Input: any kind of > 2d signals

• Goal: measures, post analysis

Photo manipulation uses some image processing tools

Scope of image processing is much wider than photography

24



Imaging sciences – Related fields

Multidisciplinary of Image processing

Intersection of several covering fields

• Physics and biology: link between phenomena and measures

• Mathematics: analyze observations and make predictions

• Computer science: algorithms to extract information

• Statistics: account for uncertainties in data

Differences with signal processing

• Image processing: subset of signal processing

• Inputs and outputs: images, series of images or videos

• Content: sound waves, stock prices behave differently

• Signals are usually causal: f(t0) depends only on f(t) for any time t 6 t0

• Images are non-causal: f(s0) may depend on f(s) for any position s
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Imaging sciences – What is image restoration?

What is image restoration?

• Subset of image processing

• Input: corrupted image

• Output: estimate of the clean/original image

• Goal: reverse the degradation process

Image restoration requires accurate models for the degradation process.

Knowing and modeling the sources of corruptions is essential.

26



Imaging sciences – Why image restoration?

Why image restoration?

• Artistic value?

• or, Automatic image analysis?

• Object recognition
• Image indexation
• Image classification
• . . .

• Usually one of the first steps in

computer vision (CV) pipelines.

• A source of inspiration to perform higher level tasks.

Pointillism (Georges Seurat, 1884-1886)

27



What is an image?

La Trahison des images, René Magritte, 1928
(Los Angeles County Museum of Art)



Imaging sciences – What is an image for us?

A function?

• Think of an image as a function f from R2 (2d space) to R (values).

• f(s1, s2) gives the intensity at location (s1, s2) ∈ R2.

• In practice, usually limited to: f : [0, 1]2 → R.

Source: Steven Seitz

Convention: larger values correspond to brighter colors.

A color image is defined similarly as a 3 component vector-valued function:

f(s1, s2) =

r(s1, s2)

g(s1, s2)

b(s1, s2)

 .

28



Imaging sciences – What is an image for us?

A function?

• Think of an image as a function f from R2 (2d space) to R (values).

• f(s1, s2) gives the intensity at location (s1, s2) ∈ R2.

• In practice, usually limited to: f : [0, 1]2 → R.

Source: Steven Seitz

Convention: larger values correspond to brighter colors.

A color image is defined similarly as a 3 component vector-valued function:

f(s1, s2) =

r(s1, s2)

g(s1, s2)

b(s1, s2)

 .

28



Imaging sciences – Types of images

• Continuous images:
• Analog images/videos,
• Vector graphics editor, or (Adobe Illustrator, Inkscape, . . . )
• 2d/3d+time graphics editors. (Blender, 3d Studio Max, . . . )
• Format: svg, pdf, eps, 3ds. . .

• Discrete images:
• Digital images/videos,
• Raster graphics editor. (Adobe Photoshop, GIMP, . . . )
• Format: jpeg, png, ppm. . .

• All are displayed on a digital screen as a digital image/video (rendering).

(a) Inkscape (b) Gimp 29



Imaging sciences – Types of images – Analog photography

• Progressively changing recording medium,

• Often chemical or electronic,

• Modeled as a continuous signal, e.g.:

• Gray level images: [0, 1]2 → R position to gray level,
• Color images: [0, 1]2 → R3 position to RGB levels.

(a) Daguerrotype

(b) Roll film

(c) Orthicon tube
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Imaging sciences – Types of images – Analog photography

Example (Analog photography/video)

• First type of photography was analog.

(a) Daguerrotype (b) Carbon print (c) Silver halide

• Still in used by photographs and the movie industry for its artistic value.

(d) Carol (2015, Super 16mm) (e) Hateful Eight (2015, 70mm) (f) Grand Budapest Hotel (2014, 35mm)
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Imaging sciences – Types of images – Digital imagery

Raster images

• Sampling: reduce the 2d continuous space to a discrete grid Ω ⊆ Z2

• Gray level image: Ω→ R (discrete position to gray level)

• Color image: Ω→ R3 (discrete position to RGB)
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Imaging sciences – Types of images – Digital imagery

Bitmap image

• Quantization: map each value to a discrete set [0, L− 1] of L values

(e.g., round to nearest integer)

• Often L = 28 = 256 (8bit images ≡ unsigned char)

• Gray level image: Ω→ [0, 255] (255 = 28 − 1)
• Color image: Ω→ [0, 255]3

• Optional: assign instead an index to each pixel pointing to a color palette

(format: .png, .bmp)
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Image representation – Types of images – Digital imagery

Digital imagery

• Digital images: sampling + quantization:

−→ 8bit images can be seen as a matrix of integer values

We will refer to an element s ∈ Ω as a pixel location, x(s) as a pixel value,

and the pair (s, x(s)) as a pixel (“picture element”).

34



Imaging sciences – Types of images – Digital imagery

Functional representation: f : Ω ⊆ Zd → RK

• d: dimension (d = 2 for pictures, d = 3 for videos, . . . )

• K: number of channels (K = 1 monochrome, 3 color, . . . )

• s = (i, j): pixel position in Ω

• f(s) = f(i, j) : pixel value(s) in RK

Array representation (d = 2): x ∈ (RK)n1×n2

• n1 × n2: n1: image height, and n2: width

• xi,j ∈ RK : pixel value(s) at position s = (i, j): xi,j = f(i, j)
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Imaging sciences – Types of images – Digital imagery

Vector representation: y ∈ (RK)n

• n = n1 × n2: image size (number of pixels)

• yk ∈ RK : value(s) of the k-th pixel at position sk: yk = f(sk)
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Imaging sciences – Types of images – Digital imagery

Color 2d image: Ω ⊆ Z2 → [0, 255]3

• Red, Green, Blue (RGB), K = 3

• RGB: Usual colorspace for acquisition and display

• There exist other colorspaces for different purposes:

HSV (Hue, Saturation, Value), YUV, YCbCr. . .
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Imaging sciences – Types of images – Digital imagery

Spectral image: Ω ⊆ Z2 → RK

• Each of the K channels is a wavelength band

• For K ≈ 10: multi-spectral imagery

• For K ≈ 200: hyper-spectral imagery

• Used in astronomy, surveillance, mineralogy, agriculture, chemistry
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Imaging sciences – Types of images – Digital imagery

The Horse in Motion (1878, Eadweard Muybridge)

Gray level video: Ω ⊆ Z3 → R

• 2 dimensions for space

• 1 dimension for time

39



Imaging sciences – Types of images – Digital imagery

MRI slices at different depths

3d brain scan: Ω ⊆ Z3 → R

• 3 dimensions for space

• 3d pixels are called voxels (“volume elements”)

40



What is noise?

Knowing and modeling the sources of corruptions is essential.



Analog optical imagery

Basic principle of silver-halide photography

Crystals are sensitive to light

(chemical reaction during exposure and development)

Film grain:
• Depends on the amount of crystals (quality/type of film roll)
• Depends on the scale it is observed (noticeable in an over-enlarged picture)
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Analog optical imagery

Analog television

Noise due to bad transmission and/or interference
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Digital optical imagery / CCD

Include: • digital photography

• optical microscopy

• optical telescopes (e.g., Hubble, Planck, . . . )

• optical earth observation satellite (e.g., Landsat, Quickbird, . . . )

43



Digital optical imagery / CCD

Charge Coupled Device – Simplified description

Random fluctuations lead to noise
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Digital optical imagery / CCD

Charge Coupled Device – Simplified description

Random fluctuations lead to noise
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Digital optical imagery – Noise modeling

• Take several pictures of the same scene, and focus on one given pixel,

• There are always unwanted fluctuations around the “true” pixel value,

• These fluctuations are called noise,

• Usually described by a probability density or mass function (pdf/pmf),

• Stochastic process Y parametrized by a deterministic signal of interest x.

x true unknown pixel value, y noisy observed value (a realization of Y ),

link: pY (y ; x) noise model

45



Digital optical imagery – Noise modeling

• Take several pictures of the same scene, and focus on one given pixel,

• There are always unwanted fluctuations around the “true” pixel value,

• These fluctuations are called noise,

• Usually described by a probability density or mass function (pdf/pmf),

• Stochastic process Y parametrized by a deterministic signal of interest x.

x true unknown pixel value, y noisy observed value (a realization of Y ),

link: pY (y ; x) noise model

45



Digital optical imagery – Noise modeling

• Take several pictures of the same scene, and focus on one given pixel,

• There are always unwanted fluctuations around the “true” pixel value,

• These fluctuations are called noise,

• Usually described by a probability density or mass function (pdf/pmf),

• Stochastic process Y parametrized by a deterministic signal of interest x.

x true unknown pixel value, y noisy observed value (a realization of Y ),

link: pY (y ; x) noise model

45



Digital optical imagery – Noise modeling

• Take several pictures of the same scene, and focus on one given pixel,

• There are always unwanted fluctuations around the “true” pixel value,

• These fluctuations are called noise,

• Usually described by a probability density or mass function (pdf/pmf),

• Stochastic process Y parametrized by a deterministic signal of interest x.

x true unknown pixel value, y noisy observed value (a realization of Y ),

link: pY (y ; x) noise model

45



Digital optical imagery – Noise modeling

• Take several pictures of the same scene, and focus on one given pixel,

• There are always unwanted fluctuations around the “true” pixel value,

• These fluctuations are called noise,

• Usually described by a probability density or mass function (pdf/pmf),

• Stochastic process Y parametrized by a deterministic signal of interest x.

x true unknown pixel value, y noisy observed value (a realization of Y ),

link: pY (y ; x) noise model

45



Digital optical imagery – Shot noise

Shot noise

• Number of captured photons y ∈ N fluctuates around the signal of interest

x = PQet

• x: expected quantity of light
• Qe: quantum efficiency (depends on wavelength)
• P : photon flux (depends on light intensity and pixel size)
• t: integration time

• Variations depend on exposure times and light conditions.

46



Digital optical imagery – Shot noise

Shot noise

• Number of captured photons y ∈ N fluctuates around the signal of interest

x = PQet

• x: expected quantity of light
• Qe: quantum efficiency (depends on wavelength)
• P : photon flux (depends on light intensity and pixel size)
• t: integration time

• Variations depend on exposure times and light conditions.

46



Digital optical imagery – Shot noise

Shot noise and Poisson distribution

• Distribution of Y modeled by the Poisson distribution

pY (y ; x) =
xye−x

y!

• Number of photons y ∈ N fluctuates around the signal of interest x ∈ R

E[Y ] =

∞∑
y=0

ypY (y ; x) = x

• Fluctuations proportional to Std[Y ] =
√

Var[Y ] =
√
x

Var[Y ] =

∞∑
y=0

(y − x)2pY (y ; x) = x

• Inherent when counting particles in a given time window

We write Y ∼ P(x)
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Digital optical imagery – Shot noise
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Figure 1 – Distribution of Y for a given quantity of light x

• For x = 0.5: mostly 0 photons, Spread ≈ 0.7

• For x = 1: mostly 0 or 1 photons, Spread = 1

• For x� 1: bell shape around x, Spread =
√
x

Spread is higher when x = PQet is large.

Should we prefer small exposure time t? and lower light conditions P?
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Digital optical imagery – Shot noise

(a) Peak = 0.05 (b) Peak = 0.40 (c) Peak = 3.14 (d) Peak = 24.37

Figure 2 – Aspect of shot noise under different light conditions. Peak = maxi xi.

Signal to Noise Ratio

SNR =
x√

Var[Y ]
, for shot noise SNR =

√
x

• Measure of difficulty/quality • The higher the easier/better

• Rose criterion: an SNR of at least 5 is needed to be able to distinguish

image features at 100% certainty.

The spread (variance) is not informative,

what matters is the spread relatively to the signal (SNR)
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Digital optical imagery – Shot noise
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Digital optical imagery – Readout noise

Readout noise (a.k.a, electronic noise)

• Inherent to the process of converting CCD charges into voltage

• Measures y ∈ R fluctuate around a voltage x ∈ R

E[Y ] =

∫
ypY (y ; x) dy = x

• Fluctuations are independent of x

Var[Y ] =

∫
(y − x)2pY (y ; x) dy = σ2

• Described as Gaussian distributed

pY (y ; x) =
1√
2πσ

exp

(
− (y − x)2

2σ2

)
• Additive behavior: Y = x+W, W ∼ N (0, σ2)

We write Y ∼ N (x, σ2)
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Digital optical imagery – Readout noise

Gaussian/Normal distribution

−4 −2 0 2 4
0

0.2

0.4

σ

2σ

y

p
(y

;
x
=

0)

data1
data2
data3

• Symmetric with bell shape.

• Common to models ±σ uncertainties with very few outliers

P[|Y − x| 6 σ] ≈ 0.68, P[|Y − x| 6 2σ] ≈ 0.95, P[|Y − x| 6 3σ] ≈ 0.99.

• Arises in many problems due to the Central Limit Theorem.

• Simple to manipulate: eases computation in many cases.
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Digital optical imagery – Shot noise vs Readout noise

Shot noise is signal-dependent (Poisson noise)

︸ ︷︷ ︸
y

=

︸ ︷︷ ︸
x

+

︸ ︷︷ ︸
w

Readout noise is signal-independent (Gaussian noise)

︸ ︷︷ ︸
y

=

︸ ︷︷ ︸
x

+

︸ ︷︷ ︸
w
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Digital optical imagery – Thermal and total noise

Thermal noise (a.k.a, dark noise)

• Number of generated electrons fluctuates with the CCD temperature

• Additive Poisson distributed: Y = x+N with N ∼ P(λ)

• Signal independent

Total noise in CCD models

Y = Z +N +W

with


Z ∼ P(x),

N ∼ P(λ),

W ∼ N (0, σ2).

SNR =
x√

x+ λ+ σ2

where x = PQet, λ = Dt

• t: exposure time

• P : photon flux per pixel

(depends on luminosity)

• Qe: quantum efficiency

(depends on wavelength)

• D: dark current

(depends on temperature)

• σ: readout noise

(depends on electronic design)
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Digital optical imagery – How to reduce noise?

SNR =
x√

x+ λ+ σ2
where x = PQet, λ = Dt

Photon noise

• Cannot be reduced via camera design

• Reduced by using a longer exposure time t

• Reduced by increasing the scene luminosity, higher P (e.g., using a flash)

• Reduced by increasing the aperture, higher P

Thermal noise

• Reduced by cooling the CCD, i.e., lower D ⇒ More expensive cameras

• Or by using a longer exposure time t

Readout noise

• Reduced by employing carefully designed electronics, i.e., lower σ

⇒ More expensive cameras

Or, reduced by image restoration softwares.
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Digital optical imagery – Are these models accurate?

Processing pipeline

• There are always some pre-processing steps such as

• white balance: to make sure neutral colors appear neutral,
• demosaicing: to create a color image from incomplete color samples,
• γ-correction: to optimize the usage of bits,

and fit human perception of brightness,
• compression: to improve memory usage (e.g., JPEG).

• Technical details often hidden by the camera vendors.

• The noise in the resulting image becomes much harder to model.

Source: Y. Gong and Y. Lee
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Digital optical imagery – Noise models and post-processing

Example (γ-correction)

y(new) = Ayγ

(a) Non corrected (b) γ-corrected (c) Zoom ×8 (d) Zoom ×30

Gamma correction changes the nature of the noise. Since A and γ are usually

not known, it becomes almost impracticable to model the noise accurately. In

many scenarios, approximative models are used. The additive white Gaussian

noise (AWGN) model is often considered for its simplicity.
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Digital optical imagery – Noise models and post-processing

Example (Demosaicing)

Incoming light

Filter layer

Sensor array

Resulting pattern

(a) Bayer filter (b) Bayer pattern (c) Demosaicing

Basic idea:

• Use interpolation techniques.

• Bilinear interpolation: the red value of a non-red pixel is computed as the

average of the two or four adjacent red pixels, and similarly for blue and green.

What is the influence on the noise?

• noise is no longer independent from one pixel to another,

• noise becomes spatially correlated.

Compression also creates spatial correlations.
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Digital optical imagery – Noise models and correlations

Reminder of basic statistics

• X and Y two real random variables (e.g., two pixel values)

• Independence: pX,Y (x, y) = pX(x)pY (y)

• Decorrelation: E[XY ] = E[X]E[Y ]

• Covariance: Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

E[XY ] = E[X]E[Y ] + Cov(X,Y )

Var(X) = Cov(X,X)

• Correlation: Corr(X,Y ) =
Cov(X,Y )√
Var[X]Var[Y ]

Corr(X,X) = 1

1 Independence ⇔/⇒/⇐ Decorrelation ?

2 Corr(X,Y ) = 1 ⇔/⇒/⇐ X = Y ?

3 Corr(X,Y ) = −1 ⇔/⇒/⇐ X = aY + b, a < 0 ?
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Digital optical imagery – Noise models and correlations

Reminder of multivariate statistics

• X =


X1

X2

...

Xn

 and Y =


Y1

Y2

...

Ym

 two real random vectors

• Entries are independent: pX(x) =
∏
k pXk (xk)

• Covariance matrix: Var(X) = E[(X − E[X])(X − E[X])T ] ∈ Rn×n

Var(X)ij = Cov(Xi, Xj)

• Correlation matrix Corr(X)ij = Corr(Xi, Xj)

• Cross-covariance matrix: Cov(X,Y )=E[(X−E[X])(Y−E[Y ])T ] ∈ Rn×m

• Cross-correlation matrix: Corr(X,Y )ij = Corr(Xi, Yj)

Note: cross-correlation definition is slightly different in signal processing (in few slides)
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Digital optical imagery – Noise models and correlations

• See an image x as a vector of Rn,

• Its observation y is a realization of a random vector

Y = x+W.

• In general, noise is assumed to be zero-mean E[W ] = 0, then

E[Y ] = x and Var[Y ] = Var[W ] = E[WWT ] = Σ.

• Σ encodes variances and correlations (may depend on x).

• pY is often modeled with a multivariate Gaussian/normal distribution

pY (y;x) ≈ 1√
2π

n|Σ|1/2
exp

(
−1

2
(y − x)TΣ−1(y − x)

)
.
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Digital optical imagery – Noise models and correlations

Properties of covariance matrices

• Σ = Var[Y ] is square, symmetric and non-negative definite:

xTΣx > 0, for all x 6= 0 (eigenvalues λi > 0).

• If all Yk are linearly independent, then

• Σ is positive definite: xTΣx > 0, for all x 6= 0 (λi > 0),

• Σ is invertible and Σ−1 is also symmetric positive definite,

• Mahalanobis distance:
√

(y − x)TΣ−1(y − x) = ||Σ−1/2(y − x)||2,

• Its isoline
{
y ; ||Σ−1/2(y − x)||2 = c, c > 0

}
describes an ellipsoid of

center x and semi-axes the eigenvectors ei with length cλi.
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Digital optical imagery – Noise dictionary

Vocabulary in signal processing

• White noise: zero-mean noise + no correlations

• Stationary noise: identically distributed whatever the location

• Colored noise: stationary with pixels influencing their neighborhood

• Signal dependent: noise statistics depends on the signal intensity

• Space dependent: noise statistics depends on the location

• AWGN: Additive White Gaussian Noise: Y ∼ N (x;σ2Idn)
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Digital optical imagery – Noise models and correlations

How is it encoded in Σ?

1 Σ diagonal: noise is uncorrelated – white

2 Σi,i = f(si): variance depends on pixel location si – space dependent

3 Σi,i = f(xi): variance depends on pixel value xi – signal dependent

4 Σi,j = f(si − sj) : correlations depends on the shift – stationary

For 1d signals, Σ is Toeplitz: Σ =


a b . . . c

d a
. . .

.

.

.

.

.

.
. . .

. . . b

e . . . d a


5 Σ =


σ2 0

. . .

0 σ2


︸ ︷︷ ︸

=σ2Idn

: noise is homoscedastic
(6= heteroscedastic)

– white+stationary
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Digital optical imagery – Settings to avoid noise

(a) Very short exposure (b) Short exposure (c) Flash

(d) Normal exposure (e) Long exposure (f) Long + hand shaking

• Short exposure: too much noise
• Using a flash: change the aspect of the scene
• Long exposure: subject to blur and saturation (use a tripod)
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What is blur?

Blur: The best of, 2000



Digital optical imagery – Blur

Motion blur

• Moving object

• Camera shake

• Atmospheric turbulence

• Long exposure time

Camera blur

• Limited resolution

• Diffraction

• Bad focus

• Wrong optical design

Bokeh

• Out-of-focus parts

• Often for artistic purpose

M
o

ti
o

n
b

lu
r

London (UK) Munich (Germany)

C
am

er
a

b
lu

r

Before After correction

Hubble Space Telescope (NASA)

B
o

ke
h

Christmas tree Mulholand drive (2001)

How to model blur?
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Digital optical imagery – Blur

Motion blur
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Digital optical imagery – Blur – Linear property

Blur


 = Blur

 +



= Blur


+ Blur




= + =

Blur is linear
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Digital optical imagery – Linear blur

Linear model of blur

• Observed pixel values are a mixture of the underlying ones

yi,j =
n∑
k=1

n∑
l=1

hi,j,k,lxk,l where hk,l > 0 and
n∑
l=1

hk,l = 1

• Matrix/vector representation: y = Hx y ∈ Rn, x ∈ Rn, H ∈ Rn×n

y =



First line︷ ︸︸ ︷ Last line︷ ︸︸ ︷
h1,1,1,1 . . . h1,1,1,n2 . . . h1,1,n1,1 . . . h1,1,n1,n2

...
...

...
...

h1,n2,1,1 . . . h1,n2,1,n2 . . . h1,n2,n1,1 . . . h1,n2,n1,n2

...
...

...
...

hn1,1,1,1 . . . hn1,1,1,n2 . . . hn1,1,n1,1 . . . hn1,1,n1,n2

...
...

...
...

hn1,n2,1,1 . . . hn1,n2,1,n2 . . . hn1,n2,n1,1 . . . hn1,n2,n1,n2





x1,1
...

x1,n2

...

xn1,1

...

xn1,n2


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Digital optical imagery – Linear blur

Linear model of blur

• Observed pixel values are a mixture of the underlying ones

yi,j =
n∑
k=1

n∑
l=1

hi,j,k,lxk,l where hk,l > 0 and
n∑
l=1

hk,l = 1

• Matrix/vector representation: y = Hx y ∈ Rn, x ∈ Rn, H ∈ Rn×n

y =



First line︷ ︸︸ ︷ Last line︷ ︸︸ ︷
h1,1,1,1 . . . h1,1,1,n2 . . . h1,1,n1,1 . . . h1,1,n1,n2

...
...

...
...

h1,n2,1,1 . . . h1,n2,1,n2 . . . h1,n2,n1,1 . . . h1,n2,n1,n2

...
...

...
...

hn1,1,1,1 . . . hn1,1,1,n2 . . . hn1,1,n1,1 . . . hn1,1,n1,n2

...
...

...
...

hn1,n2,1,1 . . . hn1,n2,1,n2 . . . hn1,n2,n1,1 . . . hn1,n2,n1,n2





x1,1
...

x1,n2

...

xn1,1

...

xn1,n2


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Digital optical imagery – Point Spread Function (PSF)

H ×



0
...

0

1

0
...

0


︸ ︷︷ ︸

Only one 1 for
some pixel (i, j)

=



h1,1,i,j

...

hi,j−1,i,j

hi,j,i,j

hi,j+1,i,j

...

...

hn1,n2,i,j


︸ ︷︷ ︸
One column of H

“reshape”

−−−−−−−−→


h1,1,i,j h2,1,i,j . . . hn1,1,i,j

...
...

...

h1,n2,i,j h2,n2,i,j . . . hn1,n2,i,j


︸ ︷︷ ︸

System’s impulse response at location (i, j)
called, Point spread function

Blur



 =
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Digital optical imagery – Point Spread Function (PSF)

Spatially varying PSF – non-stationary blur
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Digital optical imagery – Stationary blur

Stationary blur

• Shift invariant: blurring depends only on the relative position:

hi,j,k,l = κk−i,l−j ,

i.e., same PSF everywhere.

• Corresponds to the (discrete) cross-correlation (not the same as in statistics)

y = κ ? x ⇔ yi,j =

+∞∑
k=−∞

+∞∑
l=−∞

κk,lxi+k,j+l

Here κ has a q = 3× 3 support

⇒
+∞∑

k=−∞

+∞∑
l=−∞

≡
+1∑

k=−1

+1∑
l=−1

q called window size.

Direct computation requires

O(nq).

⇒ q � n
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Digital optical imagery – Stationary blur
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Digital optical imagery – Stationary blur

Cross-correlation vs Convolution product

• If κ is complex then the cross-correlation becomes

y = κ ? x ⇔ yi,j =

+∞∑
k=−∞

+∞∑
l=−∞

κ∗k,lxi+k,j+l.

• Complex conjugate: (a+ ib)∗ = a− ib.
• y = κ ? x can be re-written as the (discrete) convolution product

y = ν ∗ x ⇔ yi,j =

+∞∑
k=−∞

+∞∑
l=−∞

νk,lxi−k,j−l with νk,l = κ∗−k,−l.

• ν called convolution kernel.

Why convolution instead of cross-correlation?

• Associative: (f ∗ g) ∗ h = f ∗ (g ∗ h)

• Commutative: f ∗ g = g ∗ f

For cross-correlation, only true if the signal is Hermitian, i.e., if fk,l = f∗−k,−l.
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Digital optical imagery – Stationary blur

3× 3 box convolution

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: Steven Seitz
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Digital optical imagery – Stationary blur

3× 3 box convolution

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10

Source: Steven Seitz
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Digital optical imagery – Stationary blur

3× 3 box convolution

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 20

Source: Steven Seitz
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Digital optical imagery – Stationary blur

3× 3 box convolution

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

10 20 30

Source: Steven Seitz
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Digital optical imagery – Stationary blur

3× 3 box convolution

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0
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10 20 30 30
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Digital optical imagery – Stationary blur

3× 3 box convolution

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Source: Steven Seitz
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Digital optical imagery – Convolution kernels

Classical kernels

• Box kernel:

κi,j =
1

Z

{
1 if max(|i|, |j|) 6 τ

0 otherwise

• Gaussian kernel:

κi,j =
1

Z
exp

(
− i

2 + j2

2τ2

)

• Exponential kernel:

κi,j =
1

Z
exp

(
−
√
i2 + j2

τ

)

• Z normalization constant s.t.
∑
i,j

κi,j = 1
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Digital optical imagery – Gaussian kernel

κi,j =
1

Z
exp

(
− i

2 + j2

2τ2

)
Influence of τ

•
√
i2 + j2: distance to the central pixel,

• τ : controls the influence of neighbor pixels,

i.e., the strength of the blur

Small τ Medium τ Large τ
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Digital optical imagery – Boundary conditions

How to deal when the kernel window overlaps outside the image domain?

i.e., how to evaluate yi,j =
∑
k,l κk,lxi+k,j+l when (i+ k, j + l) /∈ Ω?

75



Digital optical imagery – Boundary conditions

Standard techniques:
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Other common problems

Source: Wikipedia



Digital optical imagery – Other “standard” noise models

Transmission, encoding, compression, rendering can lead to other models of

corruptions assimilated to noise.

Salt-and-pepper noise

• Randomly saturated pixels to black (value 0) or white (value L− 1)

P = 10%

pY (y ; x) =


1− P if y = x

P/2 if y = 0

P/2 if y = L− 1

0 otherwise

0 5 10 15

0

0.2

0.4

0.6

0.8

1
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Digital optical imagery – Other “standard” noise models

Impulse noise

• Some pixels take “arbitrary” values

P = 40%

pY (y ; x) =

{
1− P + P/L if y = x

P/L otherwise

0 5 10 15

0

0.2

0.4

0.6

0.8

1

(other models exist: Laplacian, Cauchy, . . . )
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Digital optical imagery – Corruptions assimilated to noise

Corruptions assimilated to noise

• compression artifacts,

• data corruption,

• rendering (e.g., half-toning).

(a) Source image

−→

(b) Half-toned image
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Digital optical imagery – Other linear problems

Deconvolution subject to noise

︸ ︷︷ ︸
y

=

︸ ︷︷ ︸
Blur κ

?

︸ ︷︷ ︸
x

+

︸ ︷︷ ︸
w

Goal: Retrieve the sharp and clean image x from y
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Digital optical imagery – Other linear problems

Inpainting (mask)

︸ ︷︷ ︸
y

=

︸ ︷︷ ︸
Mask

×

︸ ︷︷ ︸
x

Goal: Fill the hole
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Digital optical imagery – Other linear problems

Single-frame super-resolution (sub-sampling + convolution + noise)

︸ ︷︷ ︸
y

=

︸ ︷︷ ︸
Sub-sampling

×

︸ ︷︷ ︸
Blur κ

?

︸ ︷︷ ︸
x

+

︸ ︷︷ ︸
w

Goal: Increase the resolution of the Low Resolution (LR) image y to retrieve

the High Resolution (HR) image x
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Digital optical imagery – Other linear problems

Multi-frame super-resolution (different sub-pixel shifts + noise)

︸ ︷︷ ︸
y

=

︸ ︷︷ ︸
Different sub-samplings

×

︸ ︷︷ ︸
Blur κ

?

︸ ︷︷ ︸
x

+

︸ ︷︷ ︸
w

Goal: Combine the information of LR images yk to retrieve the HR image x
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Digital optical imagery – Other linear problems

Compressed sensing

︸︷︷︸
y

=

︸ ︷︷ ︸
ϕ

×

︸ ︷︷ ︸
x

+

︸︷︷︸
w

• Goal: compress the quantity of information,

e.g., to reduce acquisition time or transmission cost,

and provide guarantee to reconstruct or approximate x.

• Unlike classical compression techniques (jpeg, . . . ):

• no compression steps,
• sensor designed to provide directly the coefficients y,
• the decompression time is usually not an issue.
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Digital optical imagery – Other sources of corruptions

• Quantization

• Saturation

• Aliasing

• Compression artifacts

• Chromatic aberrations

• Dead/Stuck/Hot pixels

(a) 4-bit quantization

vs

(b) Saturation (overexposure)

(c) Color aberrations (d) Compression artifacts (e) Hot pixels

Sources: Wikipedia, David C. Pearson, Dpreview
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Digital optical imagery – A technique to avoid saturation

−→

Figure 3 – Fusion of under- and over-exposed images (St Louis, Missouri, USA)

High dynamic range imaging

• Goal: avoid saturation effects

• Technique: merge several images with different exposure times

• Tone mapping: problem of displaying an HDR image on a screen

• Remark: there also exist HDR sensors

86



Digital optical imagery – Why chromatic aberrations?

Incoming light

Filter layer

Sensor array

Resulting pattern

(a) Bayer filter (b) Bayer pattern (c) Demosaicing

(d) Results of different algorithms (Source: DMMD)

Demosaicing

• Goal: reconstruct a color image from the incomplete color samples

• Problem: standard interpolation techniques lead to chromatic aberrations
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Non-conventional imagery

Depiction of aurochs, horses and deer (Lascaux, France)



Passive versus active imagery

• Passive: optical (visible), infrared, hyper-spectral (several frequencies).

• Active: radar (microwave), sonar (radio), CT scans (X-ray), MRI (radio).
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Synthetic aperture radar (SAR) imagery

Synthetic aperture radar (SAR) imaging systems

• Mounted on an aircraft or spacecraft,

• Measures echoes of a back-scattered electromagnetic wave (microwave),

• Signal carries information about geophysical properties of the scene,

• Used for earth monitoring and military surveillance,

• deforestation, flooding, urban growth, earthquake, glaciology, . . .

• Performs day and night and in any weather conditions.

Ground

Multiple

bounces

Single

bounce

Double

bounce
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Synthetic aperture radar (SAR) imagery

(a) Optical (b) SAR (c) Denoising result

SAR images are corrupted by speckle

• Source of fluctuation: arbitrary roughness/rugosity of the scene

• Magnitude y ∈ R+ fluctuates around its means x ∈ R+

• Fluctuations proportional to x

• Gamma distributed

• Multiplicative behavior: y = x× s
• Signal dependent with constant SNR
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Other examples of speckle

Sonar imagery

original wave

re ected wave

Object

distance r

Submerged plane wreckage

Ultrasound imagery

Ultrasound image of a fetus
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Computed tomography (CT) imaging systems

• Uses irradiations to scan a 3d volume

• Measures attenuations in several directions

• Runs a 3d reconstruction algorithm

• Industry

• Defect analysis
• Computer-aided design
• Material analysis
• Petrophysics
• . . .

• Medical imagery

• X-ray CT
• Positron emission tomography (PET)
• Medical diagnoses
• . . .
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Computed tomography (CT) imaging systems

Shot noise

• Due to the limited number of X-ray photons reaching the detector,

• Poisson distributed, • SNR increases with exposure time,

• Higher exposure ⇒ higher irradiation /.

Streaking

• Due to the limited number of projection angles,

• Linear degradation model: y = Hx,

• More projections ⇒ better reconstruction ,, but higher irradiation /.
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Magnetic resonance imaging (MRI)

• Apply a strong magnetic field varying along the patient (gradient),

• Hydrogen nucleus’ spins align with the field,

• Emit a pulse to change the alignments of spins in a given slice,

• Nuclei return to equilibrium: measure its released radio frequency signal,

• Repeat for the different slices by applying different frequency pulses,

• Use algorithms to reconstruct a 3d volume from raw signals.

Unlike CT scans, no harmful radiation!
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Magnetic resonance imaging (MRI)

Rician noise

• Main source of noise: thermal motions in patient’s body emit radio waves

• Magnitude y ∈ R+ fluctuates (for x large enough) around:
√
x2 + σ2

• Fluctuations approximately equal (for x large enough) to σ2

• Rician distributed

Streaking: due to limited number of acquisitions

• As in CT scans, linear corruptions: y = Hx.

⇒ using a longer acquisition time, but limited by

{ • cost,

• patient comfort.
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Major image restoration issues

Jacques Hadamard (1865–1963)
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Major image restoration issues

Usual image degradation models

• Images often viewed through a linear operator (e.g., blur or streaking)

y = Hx ⇔


h11x1 + h12x2 + . . .+ h1nxn = y1

h21x1 + h22x2 + . . .+ h2nxn = y2
...

hn1x1 + hn2x2 + . . .+ hnnxn = yn

• Retrieving x ⇒ Inverting H (i.e., solving the system of linear equations)

x̂ = H−1y

(a) Unknown image x

H−→

(b) Observation y

H−1

−→

(c) Estimate x̂

Is image restoration solved then?
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Major image restoration issues

Limitations

• H is often non-invertible

• equations are linearly dependent,
• system is under-determined,
• infinite number of solutions,
• which one to choose?

• The system is said to be ill-posed in opposition to well-posed.

Well-posed problem (Hadamard)

1 a solution exists,

2 the solution is unique,

3 the solution’s behavior changes continuously with the initial conditions.
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Major image restoration issues

Limitations

• Or, H is invertible but ill-conditioned:

• small perturbations in y lead to large errors in x̂ = H−1y,
• and unfortunately y is often corrupted by noise: y = Hx+ w,
• and unfortunately y is often encoded with limited precision.

(a) Unknown image x

H−→

wy
⊕ −→

(b) Observation y

H−1

−→

(c) Estimate x̂

• Condition-number: κ(H) = ||H−1||2||H||2 = σmax
σmin

(σk singular values of H, refer to cookbook)

• the larger κ(H) > 1, the more ill-conditioned/difficult is the inversion.
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Questions?

Next class: basics of filtering

Sources, images courtesy and acknowledgment

• L. Condat

• DLR

• DMMD

• Dpreview

• Y. Gong

• A. Horodniceanu

• I. Kokkinos

• J.-M. Nicolas

• A. Newson

• D. C. Pearson

• S. Seitz

• V. Tong Ta

• P. Tilakaratna

• Wikipedia

• R. Willett

• Y. Lee
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