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Who am 1?

® A visiting scholar from University of Bordeaux (France).

® Visiting UCSD since Jan 2017.

PhD in signal processing (2011).

® Research in image processing / applied maths.

Affiliated with CNRS (French scientific research institute).

Email: cdeledalle@ucsd.edu

® yww.charles-deledalle.fr


cdeledalle@ucsd.edu
www.charles-deledalle.fr

What is it?

An advanced class about
Algorithmic and mathematical/statistical models
applied to
Image and-videe restoration

e Implementation and theoretical aspects, but not a math class
(most of the claims won't be proven).

e Implementation of these models for denoising, deblurring and inpainting
through 6 assignments and 1 project (in Python).

e Covers 100 years of results from fundamental signal processing to modern
data science, but no deep learning.



What? Syllabus

® Introduction to inverse problems in image/video restoration contexts:
denoising, deblurring, super-resolution,

tomography, compressed sensing, . ..

Basic tools of filtering:
Spatial filters: linear, non-linear, local, non-local filters and patches.

Spectral: low-, high-pass filters, sharpening, sub-sampling.
® Variational methods:
Heat equation, PDE, numerical schemes, anisotropic filtering,
Tikhonov regularization, total-variation, convex optimization.
® Bayesian techniques:
MVUE, Least-Square, Cramér-Rao, Maximum Likelihood,
MMSE, MAP, Non-local Bayes, Whitening, Wiener filtering.
® Dictionary based techniques:
Sparsity, shrinkage functions and wavelets, BM3D,
Dictionary learning, structured sparsity, kSVD, PLE, EPLL.



Why image restoration?

® |Images become a major communication media.
® |mage data need to be analyzed automatically.
® |mages are often noisy, blury, or have low-resolution.

® Many applications: robotic, medical, smart cars, ...




What for?

® Work in the field of signal/image/video processing, computer vision, or
data science in general (in both industry or academy).

® Be able to understand and implement recent publications in that field.

® Understand latest machine learning and computer vision techniques.

Many deep learning concepts are based on tools that will be
introduced in this class: convolution, transpose convolution,
dilated convolutions, patches, total-variation, wavelets,
filter-banks, a trous algorithm, gradient descent, Nesterov
acceleration, . ..



How? Prerequisites

® Linear algebra (MATH 18)
® Differential calculus (MATH 20C)
® Probability and statistics (ECE 109)
® Fourier transform (ECE 161A)
® Basics of optimization (ECE 174)

® Python programming

Refer to the cookbook for data scientist

Cookbo
Cookbof
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Cookbook for data scientists
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How?

How? — Teaching staff

Instructor Teaching assistants
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Charles Deledalle Tushar Dobhal Harshul Gupta



How? — Schedule

® 30x 50 min lectures (10 weeks)
® Mon/Wed/Fri 11-11:50pm
® Room WLH 2204.

® 10x 2 hour optional labs
® Thursday 2-4pm
® Room 4309, Jacobs Hall.

® Weekly office hours
® Charles Deledalle, Tues 2-4pm, Room EBU1 4808, Jacobs Hall.
® Tushar Dobhal, TBA

® Google calendar: https://tinyurl.com/yyj7uélv


https://tinyurl.com/yyj7u4lv

How? — Evaluation

® 6 assignments (individual). Grade is an average of the 5 best. ... 50%
® 1 project (by groups of 2/3). To be chosen among 4 subjects. ... 50%

® No midterms. No exams.

Calendar Deadline
@ Assignment 0 — Python/Numpy/Matplotlib (Prereq) ................ optional
@® Assignment 1 — Watermarking ... April 12
© Assignment 2 — Basic Image Tools ............. ... .. April 19
O Assignment 3 — Basic Filters ......... ... ... L April 26
@ Assignment 4 — Non-local means ............ ... ... i May 3
@ Assignment 5 — Fourier transform ........ ... ... ... L May 10
@ Assignment 6 — Wiener deconvolution ............................... May 17
® Project — A: Diffusion / B: TV / C: Wavelets / D: NLM .............. June 7
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How?

How? — Assignments overview

Assignment 1: Learn how to remove a simple watermark.

ECE285  ECE285

Assignment 2+-3:
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How? — Assignments overview

Assignment 4: Learn how to remove simple noises.
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How?

How? — Projects overview

Project A+B+C+D: 4 different techniques to remove more complex blurs

that can also be applied to recover images with strong corruptions.

13



How? — Piazza
https://piazza.com/ucsd/spring2019/ece285ivr

piozza

Unversiy ofCa - Sping 2010
ECE 285 IVR: Image and Video Restoration

+ Add Syllabus

Lecture Notes

If you cannot get access to it contact me asap
at cdeledalle@ucsd.edu

(title: “[ECE285-IVR] [Piazza] Access issues”).
14
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Misc
Misc
Programming environment:

® We will use Python 3 and Jupyter notebook.

® We recommend you to install Conda/Python 3/Jupyter on your laptop.

® Please refer to documentations on Piazza for setting that up.

Communication:

® All your emails must have a title starting with “[ECE285-IVR]"
— or it will end up in my spam/trash.

Note: “[ECE 285-IVR]"”, “[ece285 IVR]", “(ECE285IVR)" are invalid!
® But avoid emails, use Piazza to communicate instead.

® For questions that may interest everyone else, post on Piazza forums.
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Some reference books

Image processing:
Vese, L. A., & Le

Milanfar, P. (2010). Guyader, C. (2015).

Maitre, H. (2008). !

. .  Super-resolution Variational
oo lmage Image processing. v ™ imagin athode in image
g Wiley-IEEE Press.  _ Bing. } g
== e B | CRC press. processing.
CRC Press.

Sparsity and applications:

Mallat, S. (2008).
A wavelet tour of
signal processing:
the sparse way.
Academic press.

Elad, M. (2010).
Sparse and Redundant
Representations: From
theory to applications
in signal and image
processing. Springer
New York.

Starck, J. L., Murtagh,
F., & Fadili, J. (2015).
Sparse Image and
Signal Processing:
Wavelets and Related
Geometric Multiscale
Analysis. Cambridge
University Press.

Misc:

V suiici
B

PROCESSNG

Kay, S. M. (1993).
Fundamentals of statistical
signal processing, volume
I: estimation theory.,
Prentice Hall

Digital Signal

Stein, J (2000).
Digital Signal
Processing, Wiley
Interscience

Maitre, H. (2015).
From Photon to
Pixel: The Digital
Camera
Handbook.

John Wiley& Sons.
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What is image restoration?

Ecce homo (Elias Garcia), 1930
restored by Cecilia Giménez, 2012



Imaging sciences — Overview

“———————  Focussing lens
Afocal zoom system

Physics

Modeling the image formation process
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Imaging sciences — Overview

Focussing lens

-
Afocal zoom system

Physics

Modeling the image formation process

® Computer graphics:

Symbols Image

Rendering images/videos from symbolic representation

17



Imaging sciences — Overview
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Image Symbols

Extracting information from images/videos
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Imaging sciences — Overview
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® Computer vision:

Image Symbols

Extracting information from images/videos

® Image/Video processing: '

Image

Image

Producing new images/videos from input images/videos
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Imaging sciences — Image processing

Image processing
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Computer vision
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Imaging sciences — Image process

Denoising Enhancement

Compression

ctF 2 32KB  IPEG Image
Bctf 2 916KB  Postscript

Inpainting Super-resolution
Feature detection e = P

Source: lasonas Kokkinos

® Image processing: define a new image from an existing one

® Video processing: same problems + motion information

20



Imaging sciences — Image process

Denoising Enhancement

Compression

Actf 2 32¢B  IPEG Image
Bctf 2 916KB  Postscript

Inpainting Super-resolution
Feature detection e = P

Source: lasonas Kokkinos

® Image processing: define a new image from an existing one

® Video processing: same problems + motion information
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g sciences — Image processin

Geometric transform

L/

Change pixel location

21



Imaging sciences — Image process

Colorimetric transform

® Filtering: change pixel values

® Segmentation: provide an attribute to each pixel
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Imaging sciences — Photo manipulation

Photo manipulation — Applications & Techniques (sources Wikipedia)

. . . .
Media industry Media / Journalism / Advertising

® Restoration of cultural heritage

® Propaganda / Political purpose

® Art / Personal use

177 | E
~l _| SN
Skin flaw removal (Minnie Driver by Justin Hoch) Editing (by Achraf Baznani)
Propaganda

Joseph Stalin with Nikolai Yezhov entirely removed after retouching

23



Imaging sciences — Photo manipulation

Photo manipulation — Applications & Techniques (sources Wikipedia)

. . . .
Media industry Media / Journalism / Advertising

® Restoration of cultural heritage

® Propaganda / Political purpose

® Art / Personal use

s B
| |
‘ "
Skin flaw removal (Minnie Driver by Justin Hoch) Editing (by Achraf Baznani) ® (Color & contrast enhancement
Propaganda ® Image sharpening (reduce blur)

® Removing elements (inpainting)
® Removing flaws (skin, scratches)

® Image compositing/fusion
Joseph Stalin with Nikolai Yezhov entirely removed after retouching [}

Image colorization
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Imaging sciences — Photo manipulation

Photo manipulation — Applications & Techniques

Media industry

177 | E
~l _| SN
Skin flaw removal (Minnie Driver by Justin Hoch) Editing (by Achraf Baznani)
Propaganda

Joseph Stalin with Nikolai Yezhov entirely removed after retouching

(sources Wikipedia)
Media / Journalism / Advertising
Restoration of cultural heritage
Propaganda / Political purpose

Art / Personal use

Color & contrast enhancement
Image sharpening (reduce blur)
Removing elements (inpainting)
Removing flaws (skin, scratches)
Image compositing/fusion

Image colorization

Classical editors: Adobe Photoshop (commercial), GIMP (free and open-source)
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Imaging sciences — Is image processing = Photo manipulation?

Photo manipulation Main image processing purposes
® Manual/Computer aided ® Automatic/Semi-supervised
® Performed image per image ® Applied to image datasets
® Users: artists, graphic designers LS ® Users: industry, scientists
® Target: general public ® Target: industry, sciences
® |nput: photography ® |nput: any kind of > 2d signals
® Goal: visual aspects ® Goal: measures, post analysis

Photo

Biology

Photo manipulation uses some image processing tools
Scope of image processing is much wider than photography

24



Imaging sciences — Related fields

Multidisciplinary of Image processing

® Physics and biology: link between phenomena and measures

® Mathematics: analyze observations and make predictions
® Computer science: algorithms to extract information

® Statistics: account for uncertainties in data

25



Imaging sciences — Related fields

Multidisciplinary of Image processing

® Physics and biology: link between phenomena and measures

® Mathematics: analyze observations and make predictions
® Computer science: algorithms to extract information

® Statistics: account for uncertainties in data

Differences with signal processing

® |mage processing: subset of signal processing
® |nputs and outputs: images, series of images or videos
® Content: sound waves, stock prices behave differently

® Signals are usually causal: f(¢o) depends only on f(t) for any time ¢ < ¢o

® |mages are non-causal:  f(so) may depend on f(s) for any position s
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Imaging sciences — What is image restoration?

What is image restoration?

® Subset of image processing

® |nput: corrupted image
® Qutput: estimate of the clean/original image
® Goal: reverse the degradation process

Degradation process
Forward model

Image restoration
Inverse model

Image restoration requires accurate models for the degradation process.

Knowing and modeling the sources of corruptions is essential.

26



Imaging sciences — Why image restoration?

Why image restoration?
® Artistic value?

® or, Automatic image analysis?
® Object recognition
® |mage indexation

® |mage classification
[ ]

® Usually one of the first steps in

Pointillism (Georges Seurat, 1884-1886)

computer vision (CV) pipelines.

® A source of inspiration to perform higher level tasks.

27



What is an image?

Leci nest pas une fufie.
La Trahison des images, René Magritte, 1928
(Los Angeles County Museum of Art)



Imaging sciences — What is an image for us?

A function?

® Think of an image as a function f from R? (2d space) to R (values).

® f(s1,52) gives the intensity at location (s1,s2) € R?.

® In practice, usually limited to: f :[0,1]*> — R.

Source: Steven Seitz
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Imaging sciences — What is an image for us?

A function?

® Think of an image as a function f from R? (2d space) to R (values).

® f(s1,52) gives the intensity at location (s1,s2) € R?.

® In practice, usually limited to: f :[0,1]*> — R.

Source: Steven Seitz

A color image is defined similarly as a 3 component vector-valued function:

f(s1,82) = | g(s1,52)
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Imaging sciences — Types of images

® Continuous images:

Analog images/videos,

Vector graphics editor, or
2d/3d+time graphics editors.
Format: svg, pdf, eps, 3ds...

® Discrete images:

® Digital images/videos,
® Raster graphics editor.
® Format: jpeg, png, ppm...

(Adobe lllustrator, Inkscape, ...)
(Blender, 3d Studio Max, ...)

(Adobe Photoshop, GIMP, ...)

® All are displayed on a digital screen as a digital image/video (rendering).

(a) Inkscape
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Imaging sciences — Types of images — Analog photography

® Progressively changing recording medium,
® Often chemical or electronic,
® Modeled as a continuous signal, e.g.:
® Gray level images: 0,1 = R position to gray level,

® Color images: [0,1]* — R® position to RGB levels.

THE ;ERRERD e

(b) Roll film

FOCUSNG  DEFLECTION

SCANNING
oL\ consy BEAM ALGHENT
CAMERA C J GOl ELeCTRON
LEns i MULTIPLER

P

f 1 ELECTRON
: [~ GUN
.

=]
C DYNODE

PHOTOCATHODE
PHOTOELECTRONS

RETURN
BEAM

(a) Daguerrotype (c) Orthicon tube
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Imaging sciences — Types of images — Analog photography

Example (Analog photography/video)

® First type of photography was analog.

(a) Daguerrotype (b) Carbon print (c) Silver halide

® Still in used by photographs and the movie industry for its artistic value.

(d) Carol (2015, Super 16mm) (e) Hateful Eight (2015, 70mm) (f) Grand Budapest Hotel (2014, 35mm)
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Imaging sciences — Types of images — Digital imagery

Raster images

® Sampling: reduce the 2d continuous space to a discrete grid Q C Z?2
® Gray level image: Q—-R (discrete position to gray level)

® Color image: Q—R3 (discrete position to RGB)

32



Imaging sciences — Types of images — Digital imagery

Bitmap image

® Quantization: map each value to a discrete set [0, L — 1] of L values
(e.g., round to nearest integer)

® Often L = 2% = 256 (8bit images = unsigned char)
® Gray level image: Q — [0,255] (255 = 2% — 1)
® Color image: Q — [0, 255)?

® QOptional: assign instead an index to each pixel pointing to a color palette
(format: .png, .bmp)
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Image representation — Types of images — Digital imagery

Digital imagery

® Digital images: sampling + quantization:

We will refer to an element s € €2 as a pixel location, z(s) as a pixel value,

0 0ou v e sus
0 15 64108 130 131 135 141 145

03 32 71107 132 144 139 139 144 137 143
4190 133 124 138 140 145 148 147 155 152 139
123 134 136 140 147 149 152 160 160 155 163 155
143 144 147 151 156 160 157 159 167 167 160 167
152 156 161 165 16 169 170 170 164 169 173 164
157 157 161 168 176 175 178 180 173 164 165 171
165 166 164 163 16 172 179 177 168 173 167 168
167 168 169 175 173 168 171 177 174 168 172173

and the pair (s,z(s)) as a pixel (“picture element”).
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Imaging sciences — Types of images — Digital imagery

Functional representation: f: Q C Z¢ — RX

° d dimension (d = 2 for pictures, d = 3 for videos, ...)
°* K: number of channels (K = 1 monochrome, 3 color, ...)
® s=(i,7): pixel position in Q

® f(s) = f(i,j): pixel value(s) in R¥
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Imaging sciences — Types of images — Digital imagery

Functional representation: f: Q C Z¢ — RX

° d dimension (d = 2 for pictures, d = 3 for videos, ...)
°* K: number of channels (K = 1 monochrome, 3 color, ...)
® s=(i,7): pixel position in Q

® f(s) = f(i,j): pixel value(s) in R¥

Array representation (d = 2): z € (R¥)"1%"2

® N1 X na: n1: image height, and no: width
o 1, ; € RX: pixel value(s) at position s = (i,7): xi; = f(4,7)
J Ti,j
i-
xr = n
—_—
no
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Imaging sciences — Types of images — Digital imagery

Vector representation: y € (R*)"

® n=mn; Xns: image size (number of pixels)
* y, € RY: value(s) of the k-th pixel at position sx: yr = f(sk)
(yk
I = ny E
— g n
N— ———
na
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Imaging sciences — Types of images — Digital imagery

206 220
170 | 189 187
182 195 194

Color 2d image: Q C Z* — [0, 255)°

® Red, Green, Blue (RGB), K =3
® RGB: Usual colorspace for acquisition and display

® There exist other colorspaces for different purposes:
HSV (Hue, Saturation, Value), YUV, YCbCr. ..

37



Imaging sciences — Types of images — Digital imagery

Spectral image: Q C Z? — R

® Each of the K channels is a wavelength band
® For K = 10: multi-spectral imagery
® For K ~ 200: hyper-spectral imagery

® Used in astronomy, surveillance, mineralogy, agriculture, chemistry
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Imaging sciences — Types of images — Digital imagery

The Horse in Motion (1878, Eadweard Muybridge)

Gray level video: Q C Z® - R

® 2 dimensions for space

® 1 dimension for time
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Imaging sciences — Types of images — Digital imagery

MRI slices at different depths

3d brain scan: Q C Z®> - R

® 3 dimensions for space

® 3d pixels are called voxels ( “volume elements”)

40



What is noise?

Knowing and modeling the sources of corruptions is essential.



Analog optical imagery

Basic principle of silver-halide photography

Light Scene Silver-halide crystal (Agt Br™) Negative analog image

Crystals are sensitive to light
(chemical reaction during exposure and development)

Film grain:
® Depends on the amount of crystals (quality/type of film roll)

® Depends on the scale it is observed (noticeable in an over-enlarged picture)

*
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Analog optical imagery

Analog television

Noise due to bad transmission and/or interference

42



Digital optical imagery / CCD

Include: e digital photography
e optical microscopy
e optical telescopes (e.g., Hubble, Planck, ...)
e optical earth observation satellite (e.g., Landsat, Quickbird, ...)

o eI

» ole
e Aud)
Leica microscope (paramecium aurelia) .

Planck (cosmic microwave background)
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Digital optical imagery / CCD

Charge Coupled Device — Simplified description

Some photons,

+~@
<@

captured during the exposure time (shutter speed),
are converted to electrons,

leading to a charge converted to voltage,

next amplified,

quantized and digitized,

B~ yIE]

providing a grey level.
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Digital optical imagery / CCD

Charge Coupled Device — Simplified description

Some photons,

+~@
<@

captured during the exposure time (shutter speed), ..................o Shot noise
are converted to electrons, ......... ... Thermal noise
leading to a charge converted to voltage, ... Readout noise

H(5iqE Bl i (Es |y concanncnracaoreaeaoaoaca :

ISO sensitivity
quantized and digitized, -........... g

B~ yIE]

providing a grey level. (Often followed by non-linear post-processing and lossy compression)

- ¥

Sy e

Light Photon Electronic Digital

Scene . . Lo .
intensity emission fluctuations Image
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Digital optical imagery — Noise modeling

® Take several pictures of the same scene, and focus on one given pixel,
® There are always unwanted fluctuations around the “true” pixel value,
® These fluctuations are called noise,

® Usually described by a probability density or mass function (pdf/pmf),

® Stochastic process Y parametrized by a deterministic signal of interest z.
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Digital optical imagery — Noise modeling

® Take several pictures of the same scene, and focus on one given pixel,
® There are always unwanted fluctuations around the “true” pixel value,
® These fluctuations are called noise,

® Usually described by a probability density or mass function (pdf/pmf),

® Stochastic process Y parametrized by a deterministic signal of interest z.
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Digital optical imagery — Noise modeling

® Take several pictures of the same scene, and focus on one given pixel,
® There are always unwanted fluctuations around the “true” pixel value,
® These fluctuations are called noise,

® Usually described by a probability density or mass function (pdf/pmf),

® Stochastic process Y parametrized by a deterministic signal of interest z.

x true unknown pixel value, y noisy observed value (a realization of V),
link: py (y; =) noise model
45



Digital optical imagery — Shot noise

Shot noise

® Number of captured photons y € N fluctuates around the signal of interest

W = 1Pt
O g expected quantity of light
® Qe quantum efficiency (depends on wavelength)
® P: photon flux (depends on light intensity and pixel size)
® integration time

® Variations depend on exposure times and light conditions.

Integration
time ¢
~ =

-’——I—‘—
l—l—ni_.

i Bl

Photon Photon # of collected
flux P emission photons y

Scene
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Digital optical imagery — Shot noise

Shot noise

® Number of captured photons y € N fluctuates around the signal of interest

W = 1Pt
O g expected quantity of light
® Qe quantum efficiency (depends on wavelength)
® P: photon flux (depends on light intensity and pixel size)
® integration time

® Variations depend on exposure times and light conditions.

Integration
time ¢
~ =

i @
Ly o | I
e

Photon Photon # of collected
flux P emission photons y

Scene
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Digital optical imagery — Shot noise

Shot noise and Poisson distribution

® Distribution of Y modeled by the Poisson distribution

e "
py(y; z) =
y!

® Number of photons y € N fluctuates around the signal of interest z € R
EY]=) ypv(y;z) ==
y=0

® Fluctuations proportional to Std[Y] = /Var[Y] = /&

o

Var[Y] = (y—)’py (y; @) =«

y=0

® Inherent when counting particles in a given time window

We write Y ~ P(x)
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Digital optical imagery — Shot noise

0 1 5 10 15 24 0 1 5 10
v

| |
| |
| |
| 04 |
| |
| |
|
|
I I

M

15 2

0 1 5 10 15 24 0 1 5 10
v y

Figure 1 — Distribution of Y for a given quantity of light x

® For x = 0.5: mostly 0 photons, Spread =~ 0.7

® Forz =1: mostly 0 or 1 photons, Spread =1

® Forz > 1: bell shape around z, Spread = /z
Spread is higher when © = PQ.t is large.

Should we prefer small exposure time ¢t? and lower light conditions P?
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(a) Peak = 0.05 (b) Peak = 0.40 (c) Peak = 3.14 (d) Peak = 24.37

Figure 2 — Aspect of shot noise under different light conditions. Peak = max; x;.
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Digital optical imagery —

(a) Peak = 0.05 (b) Peak = 0.40 (c) Peak = 3.14 (d) Peak = 24.37

Figure 2 — Aspect of shot noise under different light conditions. Peak = max; x;.

Signal to Noise Ratio

SNR = #, for shot noise SNR = \/z
Var[Y]
® Measure of difficulty/quality e The higher the easier/better

® Rose criterion: an SNR of at least 5 is needed to be able to distinguish
image features at 100% certainty.
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Digital optical imagery — Readout noise

Readout noise (a.k.a, electronic noise)
® Inherent to the process of converting CCD charges into voltage

® Measures y € R fluctuate around a voltage z € R

E[Y] = /‘ypy(y; z)dy =z

® Fluctuations are independent of =

Var[Y] = /(y —z)’py (y; z)dy = o
® Described as Gaussian distributed

py(y; a) = \/21—770 exp (—%)

o Additive behavior: Y =2+ W, W ~ N(0,0?)

We write Y ~ N (z,0?)
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Digital optical imagery — Readout noise

Gaussian/Normal distribution

——datal
04| ---data2 |
--- data3

s =0)

0.2 -

® Symmetric with bell shape.
® Common to models o uncertainties with very few outliers

P[lY — z| < 0] = 0.68, P[|Y — z| < 20] = 0.95, P[|Y — z| < 30] = 0.99.
® Arises in many problems due to the Central Limit Theorem.

® Simple to manipulate: eases computation in many cases.
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Digital optical imagery — Shot noise vs Reado

Shot noise is signal-dependent (Poisson noise)
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Digital optical imagery — Thermal and total noise

Thermal noise (a.k.a, dark noise)

® Number of generated electrons fluctuates with the CCD temperature
® Additive Poisson distributed: Y =2 + N with N ~ P(}\)
® Signal independent

53]



Digital optical imagery — Thermal and total noise

Thermal noise (a.k.a, dark noise)

® Number of generated electrons fluctuates with the CCD temperature
® Additive Poisson distributed: Y =2 + N with N ~ P(}\)
® Signal independent

Total noise in CCD models

Y=Z4+N+W ® ¢ exposure time
Z ~ P(z) ® P:  photon flux per pixel
with N ~P(\) (depends on luminosity)
W ~ N(0,52). ® Q.. quantum efficiency
(depends on wavelength)
SNR — s ® D: dark current
v+ A+ o2 (depends on temperature)
® g: readout noise

where = = PQ.t, =Dt (depends on electronic design)
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Digital optical imagery — How to reduce noise?

43
SNR = ——— where x = PQ.t, A= Dt
v+ A+ o2 @

® Cannot be reduced via camera design
® Reduced by using a longer exposure time ¢
® Reduced by increasing the scene luminosity, higher P (e.g., using a flash)

® Reduced by increasing the aperture, higher P
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Digital optical imagery — How to reduce noise?

SNR= " where z=PQ.t, \=Dt

v+ A+ o2

® Cannot be reduced via camera design
® Reduced by using a longer exposure time ¢
® Reduced by increasing the scene luminosity, higher P (e.g., using a flash)

® Reduced by increasing the aperture, higher P

Thermal noise

® Reduced by cooling the CCD, i.e., lower D = More expensive cameras

® Or by using a longer exposure time ¢
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Digital optical imagery — How to reduce noise?

43
SNR=———— where z=PQ.t, A= Dt
v+ A+ o2 @

® Cannot be reduced via camera design
® Reduced by using a longer exposure time ¢
® Reduced by increasing the scene luminosity, higher P (e.g., using a flash)

® Reduced by increasing the aperture, higher P

Thermal noise

® Reduced by cooling the CCD, i.e., lower D = More expensive cameras

® Or by using a longer exposure time ¢

Readout noise

® Reduced by employing carefully designed electronics, i.e., lower o

= More expensive cameras

Or, reduced by image restoration softwares.
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Digital optical imagery — Are these models accurate?

Processing pipeline

® There are always some pre-processing steps such as
® white balance: to make sure neutral colors appear neutral,
® demosaicing: to create a color image from incomplete color samples,
® ~-correction: to optimize the usage of bits,
and fit human perception of brightness,
® compression: to improve memory usage (e.g., JPEG).

® Technical details often hidden by the camera vendors.

® The noise in the resulting image becomes much harder to model.

. : Gain Control White CFA
— — 5
A/D Converter Balance Demosaicing
Sensor with color filter

AFE — Analog Front End

array
Sensor related processing

(ccp/cMmos)
Contrast Data Gamma Noise Color
Enhancement Formatting Correction Reduction Correction

Source: Y. Gong and Y. Lee
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Digital optical imagery — Noise models and post-processing

Example (y-correction)

(a) Non corrected (b) ~-corrected (c) Zoom x8 (d) Zoom %30

Gamma correction changes the nature of the noise. Since A and ~ are usually
not known, it becomes almost impracticable to model the noise accurately. In
many scenarios, approximative models are used. The additive white Gaussian

noise (AWGN) model is often considered for its simplicity.
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Noise models a

Example (Demosaicing)

—
ﬁ ﬁ ﬁ i

(a) Bayer filter (b) Bayer pattern (c) Demosaicing

Basic idea:

® Use interpolation techniques.

® Bilinear interpolation: the red value of a non-red pixel is computed as the
average of the two or four adjacent red pixels, and similarly for blue and green.

What is the influence on the noise?
® noise is no longer independent from one pixel to another,

® noise becomes spatially correlated.

Compression also creates spatial correlations.
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Digital optical imagery — Noise models and correlations

Reminder of basic statistics

® X and Y two real random variables (e.g., two pixel values)

® |ndependence: px,y(z,y) = px(z)py (v)

® Decorrelation: EXY] = E[X]E[Y]

® Covariance: Cov(X,Y) =E[(X — E[X])(Y — E[Y])]
E[XY] = E[X]E[Y] + Cov(X,Y)
Var(X) = Cov(X, X)

. rr on: orr = M

Correlation: Corr(X,Y) VarX[Var ]

Corr(X, X) =1

®  Independence &/=/<= Decorrelation ?

(>} Corr(X,Y) =1 &/=/< X=Y ?

® Cor(X,Y)=-1 &/=/<= X=aY +ba<0 7
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Digital optical imagery — Noise models and correlations

Reminder of multivariate statistics

X1 Yl
X2 YQ

° X = . and Y = . two real random vectors
XKn Yo

® Entries are independent: px (z) = [[, px, (zx)

® Covariance matrix: Var(X) = E[(X — E[X])(X — E[X])T] € R"*"
Var(X):; = Cov(X;, X;)

® Correlation matrix Corr(X);; = Corr(X;, X;)

® Cross-covariance matrix: Cov(X,Y)=E[(X-E[X])(Y -E[Y])T] € R**™

® Cross-correlation matrix: Corr(X,Y);; = Corr(Xjy, Y;)

Note: cross-correlation definition is slightly different in signal processing (in few slides)
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Digital optical imagery — Noise models and correlations

® See an image = as a vector of R",

® |ts observation y is a realization of a random vector
Y=+ W
® In general, noise is assumed to be zero-mean E[W] = 0, then
E[Y] =z and Var[Y]= Var[W]=EWW']=xX.

® 3 encodes variances and correlations (may depend on ).

® py is often modeled with a multivariate Gaussian/normal distribution

1 1 _
py (y; ) = WGXP (*5(1/ - x)Tz 1(9 - 33)) .

Q

Underlying noise distribution Gaussian approximation Y ~ N (z; ) 60



Digital optical imagery — Noise models and correlations

Properties of covariance matrices
® ¥ = Var[Y] is square, symmetric and non-negative definite:

"2z >0, forall x# 0 (eigenvalues \; > 0).

® |f all Y, are linearly independent, then

® 3 is positive definite: 7 3z > 0, for all  # 0 (\; > 0),

® 3 is invertible and X! is also symmetric positive definite,

® Mahalanobis distance: \/(y — 2)TZ1(y — z) = |~ 3(y — z)]|2,

® |ts isoline {y ; [Z7Y2(y — x)|2 = ¢,c > 0} describes an ellipsoid of

center x and semi-axes the eigenvectors e; with length c);.

Y2

1 HE’I/Q("(/;.’I:)szl
n 61



Digital optical imagery — Noise dictionary

Vocabulary in signal processing

® White noise: zero-mean noise + no correlations
® Stationary noise: identically distributed whatever the location
® Colored noise: stationary with pixels influencing their neighborhood

® Signal dependent:  noise statistics depends on the signal intensity

® Space dependent: noise statistics depends on the location

°* AWGN: Additive White Gaussian Noise: Y ~ N (z;0°Id,,)
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Digital optical imagery — Noise models and correlations

How is it encoded in X7

@ X diagonal: noise is uncorrelated
O X ;= f(si): variance depends on pixel location s;
O X = f(z): variance depends on pixel value z;

O X;; = f(s; —s;) : correlations depends on the shift

a b e @
. 2 2 d
For 1d signals, X is Toeplitz: X = e
b
v 0 e d a
[5 I - : noise is homoscedastic
o (# heteroscedastic)
0 o2
=021d,

0 >
Y2 (c)
L (],)@ (D
Y
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Digital optical imagery — Settings to avoid noise

(a) Very short exposure (b) Short exposure (c) Flash

' .‘0"'

(d) Normal exposure (e) Long exposure (f) Long + hand shaking

® Short exposure: too much noise
® Using a flash: change the aspect of the scene
® Long exposure: subject to blur and saturation (use a tripod)
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What is blur?

Blur: The best of, 2000



Digital optical imagery — Blur

Motion blur
® Moving object

® Camera shake

Motion blur

® Atmospheric turbulence

® Long exposure time

Camera blur
® [imited resolution
® Diffraction

® Bad focus

Camera blur

® Wrong optical design

Bokeh

® Qut-of-focus parts

Bokeh

® Often for artistic purpose Christmas tree Mulholand drive (2001)
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Digital optical imagery — Blur

Motion blur
® Moving object

® Camera shake

Motion blur

® Atmospheric turbulence

® Long exposure time

Camera blur
® [imited resolution
® Diffraction

® Bad focus

Camera blur

® Wrong optical design

Bokeh

® Qut-of-focus parts

Bokeh

® Often for artistic purpose Christmas tree Mulholand drive (2001)

How to model blur?
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Digital optical imagery — Blur — Linear property

Blur = Blur

= Blur + Blur

Blur is linear
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Digital optical imagery — Linear blur

Linear model of blur

® Observed pixel values are a mixture of the underlying ones

n n n
Yi,j = Zzhi’j’k’lmk’l where hk,l 2 0 and th,l =1
=1

k=1 1=1

® Matrix/vector representation: y = Hx y€eER™ zeR”, HeR""
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Digital optical imagery — Linear blur

Linear model of blur

® Observed pixel values are a mixture of the underlying ones

k=1 1=1

n n n
Yi,j = Zzhi’j’k’lmk’l where hk,l 2 0 and th,l =1
1=1
® Matrix/vector representation: y = Hx

y€eER™ zeR”, HeR""

First line

Last line
Z1,1
’11,1,1,1 h1,1,1,n2 hl,l,nl,l hl,l,nl,nq
B o5
h1ns,1,1 hins 1m0 Digpyongl  sea Do 1n2
y =
hny1,11  oor RBng1im, hny 1m0 (o ilon s Ty 1
Ry ng,11 Rt no,1ns Ry ng,ni hny,ng,ny,na Tny,ngy
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Digital optical imagery — Point Spread Function (PSF)

b,
0 .
hij—15
»J—1,%,7
h higig  heaig -0 hniaig
1,7,%,7 “reshape”
Hx |[1| =], "~ | ———— :
4,5+1,4,5
Pingsii h2naig oo hnynaig
System'’s impulse response at location (%, j)
called, Point spread function
0
Y hningi;
Only one 1 for

some pixel (7, j) One column of H
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Digital optical imagery — Point Spread Function (PSF)

Spatially varying PSF — non-stationary blur
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Digital optical imagery — Stationary blur

Stationary blur

® Shift invariant: blurring depends only on the relative position:
Wi et = BR—3 =i

i.e., same PSF everywhere.

® Corresponds to the (discrete) cross-correlation (not the same as in statistics)
“+ o0 “+oo
Y=K*xT << Yij = E E Kk Titk,j+1
k=—o00l=—c0
K 7
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Digital optical imagery — Stationary blur

Stationary blur

® Shift invariant: blurring depends only on the relative position:

(081l = =i =i

i.e., same PSF everywhere.

® Corresponds to the (discrete) cross-correlation

Y=r*xT < VYij =

(not the same as in statistics)

“+ o0 “+oo
E E Kk, 1Zitk,j41
k=—o00 l=—00

Here k has a ¢ = 3 X 3 support

-3 5 =

=—o0l=—o0

+1 41

> 2.

k=—11=—1
q called window size.

Direct computation requires
O(ng).

=q<n 70



Digital optical imagery — Stationary blur

Cross-correlation vs Convolution product

® |f k is complex then the cross-correlation becomes

+oo +oo
-
Y=K*xT <<  Yij= E E Ko 1 Titk,j+1-
k=—o0 l=—00

® Complex conjugate: (a +ib)* = a — ib.

® y = k% x can be re-written as the (discrete) convolution product

—+o0 —+oo
. *
Y=v*xT & Yij= E E Vk1ZTi—k,j—1 With vp; =kKZp .
k=—o00 l=—0o0

®  called convolution kernel.

Why convolution instead of cross-correlation?

® Associative: (fxg)xh=fx(g*h)
¢ Commutative: fxg=gxf

For cross-correlation, only true if the signal is Hermitian, i.e., if fo1 = f2, _;.
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Digital optical imagery — Stationary blur

3 x 3 box convolution

Source: Steven Seitz
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Digital optical imagery — Stationary blur

3 x 3 box convolution

90 90 | 90 90 90

90 | 90 | 90 90 90

90 | 90 | 90 90 90

90 90 90 90

90 | 90 | 90 90 90

90

Source: Steven Seitz
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Digital optical imagery — Stationary blur

3 x 3 box convolution

90 | 90 § 90 90 90

90 | 90 | 90 90 90

90 | 90 | 90 90 90

90 90 90 90

90 | 90 | 90 90 90

90

Source: Steven Seitz
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Digital optical imagery — Stationary blur

3 x 3 box convolution

90 | 90 | 90 90 90

90 | 90 | 90 90 90

90 | 90 | 90 90 90

90 90 90 90

90 | 90 | 90 90 90

90

Source: Steven Seitz
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Digital optical imagery — Stationary blur

3 x 3 box convolution

90 | 90 | 90 90 90

90 | 90 | 90 90 90

90 | 90 | 90 90 90

90 90 90 90

90 | 90 | 90 90 90

90

Source: Steven Seitz
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Digital optical imagery — Stationary blur

3 x 3 box convolution

Source: Steven Seitz
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Digital optical imagery — Convolution kernels

Classical kernels

® Box kernel:

Z | 0 otherwise

1 1 if max(|i],|7]) <7
Ri,j = 7

® Gaussian kernel:
. L i? + 52
= —exp (-
T g P 272

® Exponential kernel:

1
Kij = 7 €XP | — g

® 7 normalization constant s.t. E Gy = 1l
2%}

—
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Digital optical imagery — Gaussian kernel

1 24 2
rij = 7 P (=50

Influence of 7

° \/i%2 + j52: distance to the central pixel,

° T controls the influence of neighbor pixels,
i.e., the strength of the blur

Small 7
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Digital optical imagery — Boundary conditions

How to deal when the kernel window overlaps outside the image domain?

v L] boundary issues

i
.
no boundary issues Ej

i.e., how to evaluate y;; = >°, | Kk, i1Titk,j+1 When (i +k,j+1) ¢ Q7
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Digital optical imagery — Boundary conditions

Standard techniques:

mirror periodical
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Other common problems

Source: Wikipedia



Digital optical imagery — Other “standard” noise models

Transmission, encoding, compression, rendering can lead to other models of
corruptions assimilated to noise.

Salt-and-pepper noise

® Randomly saturated pixels to black (value 0) or white (value L — 1)

1-P ify==zx

] P2 ify=o0
W=\ p fy—rL-1
0 otherwise

Model of saturated pixels

x=5P=07L=16

P - 10% 0 5 10 15

7



Digital optical imagery — Other “standard” noise models

Impulse noise

® Some pixels take “arbitrary” values

1-P+P/L ify==x

py(y; @) = P/L otherwise

Model of aberrant pixels

x=5P=07L=16

0 29009 90000009090
0 5 10 15
v

(other models exist: Laplacian, Cauchy, ...
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Digital optical imagery — Corruptions assimilated to noise

Corruptions assimilated to noise
® compression artifacts,
® data corruption,

® rendering (e.g., half-toning).

(a) Source image (b) Half-toned image
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Digital optical imagery — Other linear problems

Deconvolution subject to noise

y Blur < 4 w

Goal: Retrieve the sharp and clean image x from y
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Digital optical imagery — Other linear problems

Inpainting (mask)

Yy Mask T

Goal: Fill the hole
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Digital optical imagery — Other linear problems

Single-frame super-resolution (sub-sampling + convolution + noise)

y Sub-sampling Blur r z w

Goal: Increase the resolution of the Low Resolution (LR) image y to retrieve
the High Resolution (HR) image «
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Digital optical imagery — Other linear problems

Multi-frame super-resolution (different sub-pixel shifts + noise)

\g“}:

M Different sub-samplings Blur

Goal: Combine the information of LR images y;, to retrieve the HR image
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Digital optical imagery — Other linear problems

Compressed sensing

® Goal: compress the quantity of information,
e.g., to reduce acquisition time or transmission cost,
and provide guarantee to reconstruct or approximate .

® Unlike classical compression techniques (jpeg, .. .):

® no compression steps,
® sensor designed to provide directly the coefficients y,
® the decompression time is usually not an issue.
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Digital optical imagery — Other sources of corruptions

® Quantization ® Aliasing ® Chromatic aberrations

® Saturation ® Compression artifacts ® Dead/Stuck/Hot pixels

(a) 4-bit quantization

(c) Color aberrations (d) Compression artifacts (e) Hot pixels

Sources: Wikipedia, David C. Pearson, Dpreview

85



Digital optical imagery — A technique to avoid saturation

Figure 3 — Fusion of under- and over-exposed images (St Louis, Missouri, USA)

High dynamic range imaging

® Goal:
® Technique:
® Tone mapping:

® Remark:

avoid saturation effects
merge several images with different exposure times
problem of displaying an HDR image on a screen

there also exist HDR sensors
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Digital optical imagery — Why chromatic aberrations?

TLE ‘
HEE

(a) Bayer filter ) Bayer pattern (c) Demosaicing

(d) Results of different algorithms (Source: DMMD)

Demosaicing
® Goal: reconstruct a color image from the incomplete color samples

® Problem: standard interpolation techniques lead to chromatic aberrations
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Non-conventional imagery

Depiction of aurochs, horses and deer (Lascaux, France)



Passive versus active imagery

o

-

VAl
@

Passive Remote Sensing Active Remote Sensing

Microwave Infrared Visible: Ultraviolet X-ray

® Passive: optical (visible), infrared, hyper-spectral (several frequencies).

® Active: radar (microwave), sonar (radio), CT scans (X-ray), MRI (radio).
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Synthetic aperture radar (SAR) imagery

Synthetic aperture radar (SAR) imaging systems
® Mounted on an aircraft or spacecraft,
® Measures echoes of a back-scattered electromagnetic wave (microwave),

® Signal carries information about geophysical properties of the scene,

Used for earth monitoring and military surveillance,

® deforestation, flooding, urban growth, earthquake, glaciology, ...

Performs day and night and in any weather conditions.

Multiple Single Double
bounces bounce bounce

NN

Ground
L
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Synthetic aperture radar (SAR) imagery

(a) Optical (b) SAR (c) Denoising result

SAR images are corrupted by speckle
® Source of fluctuation: arbitrary roughness/rugosity of the scene
® Magnitude y € R™ fluctuates around its means € R™
® Fluctuations proportional to x

® Gamma distributed

Multiplicative behavior: y = x X s

Signal dependent with constant SNR
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Other examples of speckle

Sonar imagery Ultrasound imagery

Wre lected wave

Object

Sender/ j) 1

Receiver |

original wave'

istance

Submerged plane wreckage Ultrasound image of a fetus
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Computed tomography (CT) imaging systems

® Uses irradiations to scan a 3d volume
® Measures attenuations in several directions

® Runs a 3d reconstruction algorithm

Obiect

® |ndustry
® Defect analysis
® Computer-aided design
® Material analysis

® Petrophysics 2 radiograph 34 CT volume g oy g

rendering : rendering

® Medical imagery
® X-ray CT
® Positron emission tomography (PET)

® Medical diagnoses
[ ]
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Computed tomography (CT) imaging systems

Shot noise
® Due to the limited number of X-ray photons reaching the detector,
® Poisson distributed, e SNR increases with exposure time,

® Higher exposure = higher irradiation ®.
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Computed tomography (CT) imaging systems

Shot noise
® Due to the limited number of X-ray photons reaching the detector,
® Poisson distributed, e SNR increases with exposure time,

® Higher exposure = higher irradiation ®.

Streaking
® Due to the limited number of projection angles,
® | inear degradation model: y = Hz,

® More projections = better reconstruction ®, but higher irradiation ®.
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Magnetic resonance imaging (MRI)

® Apply a strong magnetic field varying along the patient (gradient),
® Hydrogen nucleus’ spins align with the field,
® Emit a pulse to change the alignments of spins in a given slice,

® Nuclei return to equilibrium: measure its released radio frequency signal,

Repeat for the different slices by applying different frequency pulses,

Use algorithms to reconstruct a 3d volume from raw signals.

High frequency
radio pulse

N
Lower frequency
radio pulse

i

Stronger Water molecule in Water Strong
magnetic field  resonance with HF pulse  molecule  magnetic field
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Magnetic resonance imaging (MRI)

® Apply a strong magnetic field varying along the patient (gradient),
® Hydrogen nucleus’ spins align with the field,
® Emit a pulse to change the alignments of spins in a given slice,

® Nuclei return to equilibrium: measure its released radio frequency signal,

Repeat for the different slices by applying different frequency pulses,

Use algorithms to reconstruct a 3d volume from raw signals.

High frequency
radio pulse

N
Lower frequency
radio pulse

i

Stronger Water molecule in Water Strong
magnetic field  resonance with HF pulse  molecule  magnetic field

Unlike CT scans, no harmful radiation!
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Magnetic resonance imaging (MRI)

Rician noise
® Main source of noise: thermal motions in patient’s body emit radio waves
® Magnitude y € R fluctuates (for = large enough) around: /22 + o2
® Fluctuations approximately equal (for x large enough) to o

® Rician distributed

Streaking: due to limited number of acquisitions

® As in CT scans, linear corruptions: y = Hx.

® cost,
= using a longer acquisition time, but limited by

® patient comfort.
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Major image restoration issues

Wiaeid

Jacques Hadamard (1865-1963)
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Major image restoration issues

Usual image degradation models

® Images often viewed through a linear operator (e.g., blur or streaking)

hi11x1 + hi2xa + ... + hinTn =
hoixi + hooxa + ...+ honTn = Yy2
y=Hzx <

hnlxl ar hn2m2 A ooo T hnnfvn = Yn

® Retrieving 2 = Inverting H (i.e., solving the system of linear equations)

(c) Estimate &

(a) Unknown image x (b) Observation y

Is image restoration solved then? o



Major image restoration issues

Limitations

® H is often non-invertible

® equations are linearly dependent,
® system is under-determined,

® infinite number of solutions,

® which one to choose?

® The system is said to be ill-posed in opposition to well-posed.

Well-posed problem (Hadamard)
@® a solution exists,
® the solution is unique,

© the solution’s behavior changes continuously with the initial conditions.
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Major image restoration issues

Limitations

® Or, H is invertible but ill-conditioned:
® small perturbations in y lead to large errors in & = H 'y,
® and unfortunately y is often corrupted by noise: y = Hx + w,
® and unfortunately y is often encoded with limited precision.

(a) Unknown image = (b) Observation y (c) Estimate &

* Condition-number: xk(H) = |[H '|2|H |, = Zmax

(of singular values of H, refer to cookbook)

® the larger k(H) > 1, the more ill-conditioned /difficult is the inversion.
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Questions?

Next class: basics of filtering

Sources, images courtesy and acknowledgment

L. Condat

I. Kokkinos V. Tong Ta
DLR

J.-M. Nicolas P. Tilakaratna
DMMD

A. Newson Wikipedia
Dpreview

D. C. Pearson R. Willett
Y. Gong

S. Seitz Y. Lee

A. Horodniceanu
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