Image and video restoration

Chapter I - Introduction

Charles Deledalle
May 31, 2019

Who?

Who am I?

- A visiting scholar from University of Bordeaux (France).
- Visiting UCSD since Jan 2017.
- PhD in signal processing (2011).
- Research in image processing / applied maths.
- Affiliated with CNRS (French scientific research institute).
- Email: cdeledalle@ucsd.edu
- www.charles-deledalle.fr

What?

What is it?

An advanced class about
 Algorithmic and mathematical/statistical models
 applied to
 Image and video restoration

- Implementation and theoretical aspects, but not a math class (most of the claims won't be proven).
- Implementation of these models for denoising, deblurring and inpainting through 6 assignments and 1 project (in Python).
- Covers 100 years of results from fundamental signal processing to modern data science, but no deep learning.

What? Syllabus

- Introduction to inverse problems in image/video restoration contexts: denoising, deblurring, super-resolution, tomography, compressed sensing, ...
- Basic tools of filtering:

Spatial filters: linear, non-linear, local, non-local filters and patches. Spectral: low-, high-pass filters, sharpening, sub-sampling.

- Variational methods:

Heat equation, PDE, numerical schemes, anisotropic filtering, Tikhonov regularization, total-variation, convex optimization.

- Bayesian techniques:

MVUE, Least-Square, Cramér-Rao, Maximum Likelihood, MMSE, MAP, Non-local Bayes, Whitening, Wiener filtering.

- Dictionary based techniques:

Sparsity, shrinkage functions and wavelets, BM3D,
Dictionary learning, structured sparsity, kSVD, PLE, EPLL.

Why?

Why image restoration?

- Images become a major communication media.
- Image data need to be analyzed automatically.
- Images are often noisy, blury, or have low-resolution.
- Many applications: robotic, medical, smart cars, ...

What for?

What for?

- Work in the field of signal/image/video processing, computer vision, or data science in general (in both industry or academy).
- Be able to understand and implement recent publications in that field.
- Understand latest machine learning and computer vision techniques.

Many deep learning concepts are based on tools that will be introduced in this class: convolution, transpose convolution, dilated convolutions, patches, total-variation, wavelets, filter-banks, a trous algorithm, gradient descent, Nesterov acceleration, ...

How? Prerequisites

- Linear algebra
- Differential calculus
- Probability and statistics
- Fourier transform
- Basics of optimization
- Python programming

Refer to the cookbook for data scientist

How?

How? - Teaching staff

Charles Deledalle

Teaching assistants

Tushar Dobhal

Harshul Gupta

How? - Schedule

- $30 \times 50 \mathbf{~ m i n}$ lectures (10 weeks)
- Mon/Wed/Fri 11-11:50pm
- Room WLH 2204.
- 10×2 hour optional labs
- Thursday 2-4pm
- Room 4309, Jacobs Hall.
- Weekly office hours
- Charles Deledalle, Tues 2-4pm, Room EBU1 4808, Jacobs Hall.
- Tushar Dobhal, TBA
- Google calendar: https://tinyurl.com/yyj7u4lv

How?

How? - Evaluation

- 6 assignments (individual). Grade is an average of the 5 best. ... 50\%
- 1 project (by groups of $2 / 3$). To be chosen among 4 subjects. ... 50%
- No midterms. No exams.
CalendarDeadline
(1) Assignment 0 - Python/Numpy/Matplotlib (Prereq) optional
(2) Assignment 1 - Watermarking April 12
(3) Assignment 2 - Basic Image Tools April 19
(4) Assignment 3 - Basic Filters April 26
(5) Assignment 4 - Non-local means May 3
(6) Assignment 5 - Fourier transform May 10
(7) Assignment 6 - Wiener deconvolution May 17
8 Project - A: Diffusion / B: TV / C: Wavelets / D: NLM June 7

How?

How? - Assignments overview

Assignment 1: Learn how to remove a simple watermark.

Assignment 2+3: Learn how to detect edges.

How? - Assignments overview

Assignment 4: Learn how to remove simple noises.

Assignment 5+6: Learn how to remove simple blurs.

How?

How? - Projects overview

Project $\mathbf{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$: 4 different techniques to remove more complex blurs

that can also be applied to recover images with strong corruptions.

How?

How? - Piazza

https://piazza.com/ucsd/spring2019/ece285ivr

If you cannot get access to it contact me asap at cdeledalle@ucsd.edu
(title: "[ECE285-IVR] [Piazza] Access issues").

Misc

Misc

Programming environment:

- We will use Python 3 and Jupyter notebook.
- We recommend you to install Conda/Python 3/Jupyter on your laptop.
- Please refer to documentations on Piazza for setting that up.

Communication:

- All your emails must have a title starting with "[ECE285-IVR]"
\rightarrow or it will end up in my spam/trash.
Note: "[ECE 285-IVR]", "[ece285 IVR]", "(ECE285IVR)" are invalid!
- But avoid emails, use Piazza to communicate instead.
- For questions that may interest everyone else, post on Piazza forums.

Some reference books

Image processing:

Maître, H. (2008). Image processing. Wiley-IEEE Press.

Milanfar, P. (2010). Super-resolution imaging. CRC press.

Vese, L. A., \& Le Guyader, C. (2015).
Variational methods in image processing.
CRC Press.
Sparsity and applications:

Mallat, S. (2008).
A wavelet tour of signal processing: the sparse way. Academic press.

Elad, M. (2010).
Sparse and Redundant Representations: From theory to applications in signal and image processing. Springer New York.

Starck, J. L., Murtagh, F., \& Fadili, J. (2015).

Sparse Image and Signal Processing:
Wavelets and Related
Geometric Multiscale
Analysis. Cambridge University Press.

Misc:

Kay, S. M. (1993).
Fundamentals of statistical signal processing, volume I: estimation theory., Prentice Hall

Stein, J (2000).
Digital Signal
Processing, Wiley
Interscience

Maître, H. (2015).
From Photon to Pixel: The Digital Camera Handbook. John Wiley\& Sons.

What is image restoration?

Ecce homo (Elias García), 1930
restored by Cecilia Giménez, 2012

Imaging sciences - Overview

- Imaging:

Modeling the image formation process

Imaging sciences - Overview

- Imaging:

Modeling the image formation process

- Computer graphics:

Rendering images/videos from symbolic representation

Imaging sciences - Overview

- Computer vision:

Extracting information from images/videos

Imaging sciences - Overview

- Computer vision:

Extracting information from images/videos

- Image/Video processing:

Producing new images/videos from input images/videos

Imaging sciences - Image processing

Imaging sciences - Image processing

Enhancement

Compression⿹ㅓㄱctf_2 32 KB JPEG Image國ctf_2 916 KB PostScript

Super-resolution

Source: lasonas Kokkinos

- Image processing: define a new image from an existing one
- Video processing: same problems + motion information

Imaging sciences - Image processing

Enhancement

Compression⿹..]ctf_2 32 KB JPEG Image國ctf_2 916 KB PostScript

Feature detection

Super-resolution

Source: lasonas Kokkinos

- Image processing: define a new image from an existing one
- Video processing: same problems + motion information

Imaging sciences - Image processing

Geometric transform

Change pixel location

Imaging sciences - Image processing

Colorimetric transform

- Filtering:
change pixel values
- Segmentation: provide an attribute to each pixel

Imaging sciences - Photo manipulation

Photo manipulation - Applications \& Techniques

Art

Editing (by Achraf Baznani)

Propaganda

- Media / Journalism / Advertising
- Restoration of cultural heritage
- Propaganda / Political purpose
- Art / Personal use

Joseph Stalin with Nikolai Yezhov entirely removed after retouching

Imaging sciences - Photo manipulation

Photo manipulation - Applications \& Techniques

Propaganda

Joseph Stalin with Nikolai Yezhov entirely removed after retouching

- Media / Journalism / Advertising
- Restoration of cultural heritage
- Propaganda / Political purpose
- Art / Personal use
- Color \& contrast enhancement
- Image sharpening (reduce blur)
- Removing elements (inpainting)
- Removing flaws (skin, scratches)
- Image compositing/fusion
- Image colorization

Imaging sciences - Photo manipulation

Photo manipulation - Applications \& Techniques

Propaganda

Art

Editing (by Achraf Baznani)

Joseph Stalin with Nikolai Yezhov entirely removed after retouching

- Media / Journalism / Advertising
- Restoration of cultural heritage
- Propaganda / Political purpose
- Art / Personal use
- Color \& contrast enhancement
- Image sharpening (reduce blur)
- Removing elements (inpainting)
- Removing flaws (skin, scratches)
- Image compositing/fusion
- Image colorization

Often handmade by graphic designers/artists/confirmed amateurs or aided with raster images/graphics editor

Classical editors: Adobe Photoshop (commercial), GIMP (free and open-source)

Imaging sciences - Is image processing = Photo manipulation?

Photo manipulation

- Manual/Computer aided
- Performed image per image
- Users: artists, graphic designers
- Target: general public
- Input: photography
- Goal: visual aspects

Main image processing purposes

- Automatic/Semi-supervised
- Applied to image datasets
V.S
- Users: industry, scientists
- Target: industry, sciences
- Input: any kind of $\geqslant 2 \mathrm{~d}$ signals
- Goal: measures, post analysis

Photo manipulation uses some image processing tools Scope of image processing is much wider than photography

Imaging sciences - Related fields

Multidisciplinary of Image processing

Intersection of several covering fields

- Physics and biology:
- Mathematics:
- Computer science:
- Statistics:
link between phenomena and measures analyze observations and make predictions algorithms to extract information account for uncertainties in data

Imaging sciences - Related fields

Multidisciplinary of Image processing

Intersection of several covering fields

- Physics and biology: link between phenomena and measures
- Mathematics:
- Computer science:
- Statistics:
analyze observations and make predictions algorithms to extract information account for uncertainties in data

Differences with signal processing

- Image processing:
- Inputs and outputs:
- Content: sound waves, stock prices behave differently
- Signals are usually causal: $f\left(t_{0}\right)$ depends only on $f(t)$ for any time $t \leqslant t_{0}$
- Images are non-causal: $\quad f\left(s_{0}\right)$ may depend on $f(s)$ for any position s

Imaging sciences - What is image restoration?

What is image restoration?

- Subset of image processing
- Input: corrupted image
- Output: estimate of the clean/original image
- Goal: reverse the degradation process

Image restoration requires accurate models for the degradation process.
Knowing and modeling the sources of corruptions is essential.

Imaging sciences - Why image restoration?

Why image restoration?

- Artistic value?
- or, Automatic image analysis?
- Object recognition
- Image indexation
- Image classification
- ...
- Usually one of the first steps in

Pointillism (Georges Seurat, 1884-1886) computer vision (CV) pipelines.

- A source of inspiration to perform higher level tasks.

What is an image?

La Trahison des images, René Magritte, 1928
(Los Angeles County Museum of Art)

Imaging sciences - What is an image for us?

A function?

- Think of an image as a function f from $\mathbb{R}^{2}(2 d$ space) to \mathbb{R} (values).
- $f\left(s_{1}, s_{2}\right)$ gives the intensity at location $\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}$.
- In practice, usually limited to: $f:[0,1]^{2} \rightarrow \mathbb{R}$.

Source: Steven Seitz
Convention: larger values correspond to brighter colors.

Imaging sciences - What is an image for us?

A function?

- Think of an image as a function f from $\mathbb{R}^{2}(2 d$ space) to \mathbb{R} (values).
- $f\left(s_{1}, s_{2}\right)$ gives the intensity at location $\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}$.
- In practice, usually limited to: $f:[0,1]^{2} \rightarrow \mathbb{R}$.

Source: Steven Seitz
Convention: larger values correspond to brighter colors.
A color image is defined similarly as a 3 component vector-valued function:

$$
f\left(s_{1}, s_{2}\right)=\left(\begin{array}{l}
r\left(s_{1}, s_{2}\right) \\
g\left(s_{1}, s_{2}\right) \\
b\left(s_{1}, s_{2}\right)
\end{array}\right) .
$$

Imaging sciences - Types of images

- Continuous images:
- Analog images/videos,
- Vector graphics editor, or
- 2d/3d+time graphics editors.
(Adobe Illustrator, Inkscape, ...) (Blender, 3d Studio Max, ...)
- Format: svg, pdf, eps, 3ds...
- Discrete images:
- Digital images/videos,
- Raster graphics editor.
(Adobe Photoshop, GIMP, ...)
- Format: jpeg, png, ppm...
- All are displayed on a digital screen as a digital image/video (rendering).

(a) Inkscape

(b) Gimp

Imaging sciences - Types of images - Analog photography

- Progressively changing recording medium,
- Often chemical or electronic,
- Modeled as a continuous signal, e.g.:
$\begin{array}{llr}\text { - Gray level images: } & {[0,1]^{2} \rightarrow \mathbb{R}} & \text { position to gray level, } \\ \text { - Color images: } & {[0,1]^{2} \rightarrow \mathbb{R}^{3}} & \text { position to } R G B \text { levels. }\end{array}$
- Color images:
$[0,1]^{2} \rightarrow \mathbb{R}^{3}$ position to RGB levels.

(a) Daguerrotype

Imaging sciences - Types of images - Analog photography

Example (Analog photography/video)

- First type of photography was analog.

(a) Daguerrotype

(b) Carbon print

(c) Silver halide
- Still in used by photographs and the movie industry for its artistic value.

(d) Carol (2015, Super 16 mm)

(e) Hateful Eight ($2015,70 \mathrm{~mm}$)

(f) Grand Budapest Hotel (2014, 35mm)

Imaging sciences - Types of images - Digital imagery

Raster images

- Sampling: reduce the 2 d continuous space to a discrete grid $\Omega \subseteq \mathbb{Z}^{2}$
- Gray level image:
$\Omega \rightarrow \mathbb{R}$ (discrete position to gray level)
- Color image:
$\Omega \rightarrow \mathbb{R}^{3}$
(discrete position to RGB)

Imaging sciences - Types of images - Digital imagery

Bitmap image

- Quantization: map each value to a discrete set $[0, L-1]$ of L values (e.g., round to nearest integer)
- Often $L=2^{8}=256$
(8bit images \equiv unsigned char)
- Gray level image:
$\Omega \rightarrow[0,255]$ $\left(255=2^{8}-1\right)$
- Color image:

$$
\Omega \rightarrow[0,255]^{3}
$$

- Optional: assign instead an index to each pixel pointing to a color palette (format: .png, .bmp)

Image representation - Types of images - Digital imagery

Digital imagery

- Digital images: sampling + quantization:

\longrightarrow 8bit images can be seen as a matrix of integer values

We will refer to an element $s \in \Omega$ as a pixel location, $x(s)$ as a pixel value, and the pair $(s, x(s))$ as a pixel ("picture element").

Imaging sciences - Types of images - Digital imagery

Functional representation: $f: \Omega \subseteq \mathbb{Z}^{d} \rightarrow \mathbb{R}^{K}$

- $d: \quad$ dimension $(d=2$ for pictures, $d=3$ for videos, $\ldots)$
- K :
- $s=(i, j)$:
- $f(s)=f(i, j)$: number of channels ($K=1$ monochrome, 3 color, ...)
pixel position in Ω
pixel value(s) in \mathbb{R}^{K}

Imaging sciences - Types of images - Digital imagery

Functional representation: $f: \Omega \subseteq \mathbb{Z}^{d} \rightarrow \mathbb{R}^{K}$

- $d: \quad$ dimension ($d=2$ for pictures, $d=3$ for videos, \ldots)
- K :
- $s=(i, j)$:
- $f(s)=f(i, j)$: pixel value(s) in \mathbb{R}^{K}

Array representation $(d=2): x \in\left(\mathbb{R}^{K}\right)^{n_{1} \times n_{2}}$

- $n_{1} \times n_{2}$: $\quad n_{1}$: image height, and n_{2} : width
- $x_{i, j} \in \mathbb{R}^{K}: \quad$ pixel value(s) at position $s=(i, j): x_{i, j}=f(i, j)$

Imaging sciences - Types of images - Digital imagery

Vector representation: $y \in\left(\mathbb{R}^{K}\right)^{n}$

- $n=n_{1} \times n_{2}: \quad$ image size (number of pixels)
- $y_{k} \in \mathbb{R}^{K}: \quad$ value(s) of the k-th pixel at position $s_{k}: y_{k}=f\left(s_{k}\right)$

Imaging sciences - Types of images - Digital imagery

$\begin{array}{r} 139 \\ 66 \\ 95 \\ \hline \end{array}$	$\begin{array}{r} 162 \\ 121 \\ \hline \end{array}$	$\begin{array}{r} 44 \\ 83 \\ \hline \end{array}$	78 27 4	$\begin{aligned} & 126 \\ & 65 \\ & 106 \\ & \hline \end{aligned}$	$\begin{aligned} & 202 \\ & 160 \\ & 184 \\ & \hline \end{aligned}$
	188	110	85	159	218
54	42	32	38		185
86	80	II	82	143	204
	107	15	145	200	226
47.	26	40	89	160	198
86	69	86	128	187	210
	29	137	186	220	229
39	53	79	185	189	199
82	98	120	175	207	207
26	162	186	208	220	222
60		144	179	194	190
107	149	180	201	207	195
169	192	206	220	219	224
	148	170	189	187	187
156	171	182	195	192	194

Color 2d image: $\Omega \subseteq \mathbb{Z}^{2} \rightarrow[0,255]^{3}$

- Red, Green, Blue (RGB), $K=3$
- RGB: Usual colorspace for acquisition and display
- There exist other colorspaces for different purposes:

HSV (Hue, Saturation, Value), YUV, YCbCr. . .

Imaging sciences - Types of images - Digital imagery

Spectral image: $\Omega \subseteq \mathbb{Z}^{2} \rightarrow \mathbb{R}^{K}$

- Each of the K channels is a wavelength band
- For $K \approx 10$: multi-spectral imagery
- For $K \approx 200$: hyper-spectral imagery
- Used in astronomy, surveillance, mineralogy, agriculture, chemistry

Imaging sciences - Types of images - Digital imagery

The Horse in Motion (1878, Eadweard Muybridge)

Gray level video: $\Omega \subseteq \mathbb{Z}^{3} \rightarrow \mathbb{R}$

- 2 dimensions for space
- 1 dimension for time

MRI slices at different depths

3d brain scan: $\Omega \subseteq \mathbb{Z}^{3} \rightarrow \mathbb{R}$

- 3 dimensions for space
- 3d pixels are called voxels ("volume elements")

What is noise?

Degradation process
Forward model

Knowing and modeling the sources of corruptions is essential.

Analog optical imagery

Basic principle of silver-halide photography

Crystals are sensitive to light (chemical reaction during exposure and development)

Film grain:

- Depends on the amount of crystals (quality/type of film roll)
- Depends on the scale it is observed (noticeable in an over-enlarged picture)

Analog optical imagery

Analog television

Noise due to bad transmission and/or interference

Digital optical imagery / CCD

Include: • digital photography

- optical microscopy
- optical telescopes (e.g., Hubble, Planck, ...)
- optical earth observation satellite (e.g., Landsat, Quickbird, ...)

Planck (cosmic microwave background)

Digital optical imagery / CCD

Charge Coupled Device - Simplified description


```
Some photons, captured during the exposure time (shutter speed), are converted to electrons,
leading to a charge converted to voltage, next amplified, quantized and digitized, providing a grey level.
```


Digital optical imagery / CCD

Charge Coupled Device - Simplified description

Some photons,
captured during the exposure time (shutter speed), Shot noise
are converted to electrons, Thermal noise
leading to a charge converted to voltage, .. Readout noise
next amplified,
ISO sensitivity
quantized and digitized, .

42 providing a grey level. (Often followed by non-linear post-processing and lossy compression)

Light intensity

Photon emission

Electronic
fluctuations

Digital
Image

Random fluctuations lead to noise

Digital optical imagery - Noise modeling

- Take several pictures of the same scene, and focus on one given pixel,
- There are always unwanted fluctuations around the "true" pixel value,
- These fluctuations are called noise,
- Usually described by a probability density or mass function (pdf/pmf),
- Stochastic process Y parametrized by a deterministic signal of interest x.

Digital optical imagery - Noise modeling

- Take several pictures of the same scene, and focus on one given pixel,
- There are always unwanted fluctuations around the "true" pixel value,
- These fluctuations are called noise,
- Usually described by a probability density or mass function (pdf/pmf),
- Stochastic process Y parametrized by a deterministic signal of interest x.

Digital optical imagery - Noise modeling

- Take several pictures of the same scene, and focus on one given pixel,
- There are always unwanted fluctuations around the "true" pixel value,
- These fluctuations are called noise,
- Usually described by a probability density or mass function (pdf/pmf),
- Stochastic process Y parametrized by a deterministic signal of interest x.

Digital optical imagery - Noise modeling

- Take several pictures of the same scene, and focus on one given pixel,
- There are always unwanted fluctuations around the "true" pixel value,
- These fluctuations are called noise,
- Usually described by a probability density or mass function (pdf/pmf),
- Stochastic process Y parametrized by a deterministic signal of interest x.

Digital optical imagery - Noise modeling

- Take several pictures of the same scene, and focus on one given pixel,
- There are always unwanted fluctuations around the "true" pixel value,
- These fluctuations are called noise,
- Usually described by a probability density or mass function (pdf/pmf),
- Stochastic process Y parametrized by a deterministic signal of interest x.

x true unknown pixel value, y noisy observed value (a realization of Y), link: $p_{Y}(y ; x)$ noise model

Digital optical imagery - Shot noise

Shot noise

- Number of captured photons $y \in \mathbb{N}$ fluctuates around the signal of interest

$$
x=P Q_{e} t
$$

- x : expected quantity of light
- Q_{e} : quantum efficiency (depends on wavelength)
- $P: \quad$ photon flux (depends on light intensity and pixel size)
- t : integration time
- Variations depend on exposure times and light conditions.

Digital optical imagery - Shot noise

Shot noise

- Number of captured photons $y \in \mathbb{N}$ fluctuates around the signal of interest

$$
x=P Q_{e} t
$$

- x : expected quantity of light
- Q_{e} : quantum efficiency (depends on wavelength)
- $P: \quad$ photon flux (depends on light intensity and pixel size)
- t : integration time
- Variations depend on exposure times and light conditions.

Digital optical imagery - Shot noise

Shot noise and Poisson distribution

- Distribution of Y modeled by the Poisson distribution

$$
p_{Y}(y ; x)=\frac{x^{y} e^{-x}}{y!}
$$

- Number of photons $y \in \mathbb{N}$ fluctuates around the signal of interest $x \in \mathbb{R}$

$$
\mathbb{E}[Y]=\sum_{y=0}^{\infty} y p_{Y}(y ; x)=x
$$

- Fluctuations proportional to $\operatorname{Std}[Y]=\sqrt{\operatorname{Var}[Y]}=\sqrt{x}$

$$
\operatorname{Var}[Y]=\sum_{y=0}^{\infty}(y-x)^{2} p_{Y}(y ; x)=x
$$

- Inherent when counting particles in a given time window

We write $Y \sim \mathcal{P}(x)$

Digital optical imagery - Shot noise

Figure 1 - Distribution of Y for a given quantity of light x

- For $x=0.5: \quad$ mostly 0 photons,
- For $x=1$: mostly 0 or 1 photons,
- For $x \gg 1$: bell shape around x,

Spread ≈ 0.7
Spread $=1$
Spread $=\sqrt{x}$

Digital optical imagery - Shot noise

(a) Peak $=0.05$

(b) Peak $=0.40$

(c) Peak $=3.14$

(d) Peak $=24.37$

Figure 2 - Aspect of shot noise under different light conditions. Peak $=\max _{i} x_{i}$.

Digital optical imagery - Shot noise

(a) Peak $=0.05$
(b) Peak $=0.40$
(c) Peak $=3.14$
(d) Peak $=24.37$

Figure 2 - Aspect of shot noise under different light conditions. Peak $=\max _{i} x_{i}$.

Signal to Noise Ratio

$$
\mathrm{SNR}=\frac{x}{\sqrt{\operatorname{Var}[Y]}}, \quad \text { for shot noise } \quad \mathrm{SNR}=\sqrt{x}
$$

- Measure of difficulty/quality
- The higher the easier/better
- Rose criterion: an SNR of at least 5 is needed to be able to distinguish image features at 100% certainty.

The spread (variance) is not informative, what matters is the spread relatively to the signal (SNR)

Digital optical imagery - Readout noise

Readout noise (a.k.a, electronic noise)

- Inherent to the process of converting CCD charges into voltage
- Measures $y \in \mathbb{R}$ fluctuate around a voltage $x \in \mathbb{R}$

$$
\mathbb{E}[Y]=\int y p_{Y}(y ; x) \mathrm{d} y=x
$$

- Fluctuations are independent of x

$$
\operatorname{Var}[Y]=\int(y-x)^{2} p_{Y}(y ; x) \mathrm{d} y=\sigma^{2}
$$

- Described as Gaussian distributed

$$
p_{Y}(y ; x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(y-x)^{2}}{2 \sigma^{2}}\right)
$$

- Additive behavior: $Y=x+W, \quad W \sim \mathcal{N}\left(0, \sigma^{2}\right)$

$$
\text { We write } Y \sim \mathcal{N}\left(x, \sigma^{2}\right)
$$

Digital optical imagery - Readout noise

Gaussian/Normal distribution

- Symmetric with bell shape.
- Common to models $\pm \sigma$ uncertainties with very few outliers $\mathbb{P}[|Y-x| \leqslant \sigma] \approx 0.68, \mathbb{P}[|Y-x| \leqslant 2 \sigma] \approx 0.95, \mathbb{P}[|Y-x| \leqslant 3 \sigma] \approx 0.99$.
- Arises in many problems due to the Central Limit Theorem.
- Simple to manipulate: eases computation in many cases.

Digital optical imagery - Shot noise vs Readout noise

Shot noise is signal-dependent (Poisson noise)

Readout noise is signal-independent (Gaussian noise)

Digital optical imagery - Thermal and total noise

Thermal noise (a.k.a, dark noise)

- Number of generated electrons fluctuates with the CCD temperature
- Additive Poisson distributed: $Y=x+N$ with $\quad N \sim \mathcal{P}(\lambda)$
- Signal independent

Digital optical imagery - Thermal and total noise

Thermal noise (a.k.a, dark noise)

- Number of generated electrons fluctuates with the CCD temperature
- Additive Poisson distributed: $Y=x+N$ with $\quad N \sim \mathcal{P}(\lambda)$
- Signal independent

Total noise in CCD models

$$
\begin{gathered}
Y=Z+N+W \\
\text { with } \begin{cases}Z \sim \mathcal{P}(x), & \bullet t: \\
\begin{array}{ll}
N \sim \mathcal{P}(\lambda), & \\
W \sim \mathcal{N}\left(0, \sigma^{2}\right) . & \bullet Q_{e}: \\
\text { exposure time } \\
\text { photon flux per pixel } \\
\text { (depends on luminosity) }
\end{array} \\
\text { SNR }=\frac{x}{\sqrt{x+\lambda+\sigma^{2}}} & \text { •D: } \begin{array}{l}
\text { (depends on wavelength) } \\
\text { dark current } \\
\text { (depends on temperature) }
\end{array} \\
\text { where } \quad x=P Q_{e} t, \quad \lambda=D t & \bullet \sigma: \begin{array}{c}
\text { readout noise }
\end{array} \\
\text { (depends on electronic design) }\end{cases}
\end{gathered}
$$

Digital optical imagery - How to reduce noise?

$$
\mathrm{SNR}=\frac{x}{\sqrt{x+\lambda+\sigma^{2}}} \quad \text { where } \quad x=P Q_{e} t, \quad \lambda=D t
$$

Photon noise

- Cannot be reduced via camera design
- Reduced by using a longer exposure time t
- Reduced by increasing the scene luminosity, higher P (e.g., using a flash)
- Reduced by increasing the aperture, higher P

Digital optical imagery - How to reduce noise?

$$
\mathrm{SNR}=\frac{x}{\sqrt{x+\lambda+\sigma^{2}}} \quad \text { where } \quad x=P Q_{e} t, \quad \lambda=D t
$$

Photon noise

- Cannot be reduced via camera design
- Reduced by using a longer exposure time t
- Reduced by increasing the scene luminosity, higher P (e.g., using a flash)
- Reduced by increasing the aperture, higher P

Thermal noise

- Reduced by cooling the CCD, i.e., lower $D \quad \Rightarrow$ More expensive cameras
- Or by using a longer exposure time t

Digital optical imagery - How to reduce noise?

$$
\mathrm{SNR}=\frac{x}{\sqrt{x+\lambda+\sigma^{2}}} \quad \text { where } \quad x=P Q_{e} t, \quad \lambda=D t
$$

Photon noise

- Cannot be reduced via camera design
- Reduced by using a longer exposure time t
- Reduced by increasing the scene luminosity, higher P (e.g., using a flash)
- Reduced by increasing the aperture, higher P

Thermal noise

- Reduced by cooling the CCD, i.e., lower $D \quad \Rightarrow$ More expensive cameras
- Or by using a longer exposure time t

Readout noise

- Reduced by employing carefully designed electronics, i.e., lower σ
\Rightarrow More expensive cameras

Digital optical imagery - Are these models accurate?

Processing pipeline

- There are always some pre-processing steps such as
- white balance: to make sure neutral colors appear neutral,
- demosaicing: to create a color image from incomplete color samples,
- γ-correction: to optimize the usage of bits, and fit human perception of brightness,
- compression: to improve memory usage (e.g., JPEG).
- Technical details often hidden by the camera vendors.
- The noise in the resulting image becomes much harder to model.

Source: Y. Gong and Y. Lee

Digital optical imagery - Noise models and post-processing

Example (γ-correction)

$$
y^{(\text {new })}=A y^{\gamma}
$$

(a) Non corrected

(b) γ-corrected

(c) Zoom $\times 8$

(d) Zoom $\times 30$

Gamma correction changes the nature of the noise. Since A and γ are usually not known, it becomes almost impracticable to model the noise accurately. In many scenarios, approximative models are used. The additive white Gaussian noise (AWGN) model is often considered for its simplicity.

Digital optical imagery - Noise models and post-processing

Example (Demosaicing)

(a) Bayer filter

(b) Bayer pattern

(c) Demosaicing

Basic idea:

- Use interpolation techniques.
- Bilinear interpolation: the red value of a non-red pixel is computed as the average of the two or four adjacent red pixels, and similarly for blue and green.

What is the influence on the noise?

- noise is no longer independent from one pixel to another,
- noise becomes spatially correlated.

Compression also creates spatial correlations.

Digital optical imagery - Noise models and correlations

Reminder of basic statistics

- X and Y two real random variables (e.g., two pixel values)
- Independence: $\quad p_{X, Y}(x, y)=p_{X}(x) p_{Y}(y)$
- Decorrelation: $\mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$
- Covariance:

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=\mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])] \\
& \mathbb{E}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]+\operatorname{Cov}(X, Y) \\
& \operatorname{Var}(X)=\operatorname{Cov}(X, X)
\end{aligned}
$$

- Correlation:

$$
\begin{aligned}
& \operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X] \operatorname{Var}[Y]}} \\
& \operatorname{Corr}(X, X)=1
\end{aligned}
$$

(1) Independence
(2) $\operatorname{Corr}(X, Y)=1$
(3) $\operatorname{Corr}(X, Y)=-1$

$$
\begin{aligned}
& \Leftrightarrow / \Rightarrow / \Leftarrow \\
& \Leftrightarrow / \Rightarrow / \Leftarrow \\
& \Leftrightarrow / \Rightarrow / \Leftarrow
\end{aligned}
$$?

$X=Y$?

$$
X=a Y+b, a<0 \quad ?
$$

Digital optical imagery - Noise models and correlations

Reminder of multivariate statistics

- $X=\left(\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{n}\end{array}\right)$ and $Y=\left(\begin{array}{c}Y_{1} \\ Y_{2} \\ \vdots \\ Y_{m}\end{array}\right)$ two real random vectors
- Entries are independent: $p_{X}(x)=\prod_{k} p_{X_{k}}\left(x_{k}\right)$
- Covariance matrix: $\quad \operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])(X-\mathbb{E}[X])^{T}\right] \in \mathbb{R}^{n \times n}$

$$
\operatorname{Var}(X)_{i j}=\operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

- Correlation matrix $\operatorname{Corr}(X)_{i j}=\operatorname{Corr}\left(X_{i}, X_{j}\right)$
- Cross-covariance matrix: $\operatorname{Cov}(X, Y)=\mathbb{E}\left[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])^{T}\right] \in \mathbb{R}^{n \times m}$
- Cross-correlation matrix: $\operatorname{Corr}(X, Y)_{i j}=\operatorname{Corr}\left(X_{i}, Y_{j}\right)$

Note: cross-correlation definition is slightly different in signal processing (in few slides)

Digital optical imagery - Noise models and correlations

- See an image x as a vector of \mathbb{R}^{n},
- Its observation y is a realization of a random vector

$$
Y=x+W
$$

- In general, noise is assumed to be zero-mean $\mathbb{E}[W]=0$, then

$$
\mathbb{E}[Y]=x \quad \text { and } \quad \operatorname{Var}[Y]=\operatorname{Var}[W]=\mathbb{E}\left[W W^{T}\right]=\boldsymbol{\Sigma}
$$

- Σ encodes variances and correlations (may depend on x).
- p_{Y} is often modeled with a multivariate Gaussian/normal distribution

$$
p_{Y}(y ; x) \approx \frac{1}{\sqrt{2 \pi}^{n}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2}(y-x)^{T} \boldsymbol{\Sigma}^{-1}(y-x)\right)
$$

Gaussian approximation $Y \sim \mathcal{N}(x ; \Sigma)$

Digital optical imagery - Noise models and correlations

Properties of covariance matrices

- $\boldsymbol{\Sigma}=\operatorname{Var}[Y]$ is square, symmetric and non-negative definite:

$$
\left.x^{T} \boldsymbol{\Sigma} x \geqslant 0, \quad \text { for all } x \neq 0 \text { (eigenvalues } \lambda_{i} \geqslant 0\right)
$$

- If all Y_{k} are linearly independent, then
- $\boldsymbol{\Sigma}$ is positive definite: $x^{T} \boldsymbol{\Sigma} x>0$, for all $x \neq 0\left(\lambda_{i}>0\right)$,
- $\boldsymbol{\Sigma}$ is invertible and $\boldsymbol{\Sigma}^{-1}$ is also symmetric positive definite,
- Mahalanobis distance: $\sqrt{(y-x)^{T} \boldsymbol{\Sigma}^{-1}(y-x)}=\left\|\boldsymbol{\Sigma}^{-1 / 2}(y-x)\right\|_{2}$,
- Its isoline $\left\{y ;\left\|\boldsymbol{\Sigma}^{-1 / 2}(y-x)\right\|_{2}=c, c>0\right\}$ describes an ellipsoid of center x and semi-axes the eigenvectors e_{i} with length $c \lambda_{i}$.

Digital optical imagery - Noise dictionary

Vocabulary in signal processing

- White noise:
- Stationary noise:
- Colored noise:
- Signal dependent:
- Space dependent:
- AWGN:
zero-mean noise + no correlations
identically distributed whatever the location
stationary with pixels influencing their neighborhood
noise statistics depends on the signal intensity
noise statistics depends on the location Additive White Gaussian Noise: $Y \sim \mathcal{N}\left(x ; \sigma^{2} \mathrm{Id}_{n}\right)$

Digital optical imagery - Noise models and correlations

How is it encoded in Σ ?
(1) Σ diagonal: noise is uncorrelated - white
(2) $\boldsymbol{\Sigma}_{i, i}=f\left(s_{i}\right): \quad$ variance depends on pixel location s_{i}-space dependent
(3) $\boldsymbol{\Sigma}_{i, i}=f\left(x_{i}\right): \quad$ variance depends on pixel value x_{i}-signal dependent
(4) $\boldsymbol{\Sigma}_{i, j}=f\left(s_{i}-s_{j}\right)$: correlations depends on the shift -stationary

For 1d signals, $\boldsymbol{\Sigma}$ is Toeplitz: $\boldsymbol{\Sigma}=\left(\begin{array}{cccc}a & b & \cdots & c \\ d & a & \ddots & \vdots \\ \vdots & \ddots & \ddots & b \\ e & \cdots & d & a\end{array}\right)$
noise is $\underset{\substack{\text { homoscedastic } \\ \\ \text { neteroscedastic })}}{ } \quad-$ white + stationary
5 $\boldsymbol{\Sigma}=\underbrace{\left(\begin{array}{ccc}\sigma^{2} & & 0 \\ & \ddots & \\ 0 & & \sigma^{2}\end{array}\right)}_{=\sigma^{2} \operatorname{Id}_{n}}:$ noise is homoscedastic $\begin{array}{ccc}(\neq \text { heteroscedastic }) & & \\ e & \ldots & d\end{array})$

Digital optical imagery - Settings to avoid noise

(a) Very short exposure

(d) Normal exposure

(b) Short exposure

(e) Long exposure

(c) Flash

(f) Long + hand shaking

- Short exposure: too much noise
- Using a flash: change the aspect of the scene
- Long exposure: subject to blur and saturation (use a tripod)

What is blur?

Blur: The best of, 2000

Digital optical imagery - Blur

Motion blur

- Moving object
- Camera shake
- Atmospheric turbulence
- Long exposure time

Camera blur

- Limited resolution
- Diffraction
- Bad focus
- Wrong optical design

Bokeh

- Out-of-focus parts
- Often for artistic purpose

Hubble Space Telescope (NASA)

Digital optical imagery - Blur

Motion blur

- Moving object
- Camera shake
- Atmospheric turbulence
- Long exposure time

Camera blur

- Limited resolution
- Diffraction
- Bad focus

Hubble Space Telescope (NASA)

- Wrong optical design

Bokeh

- Out-of-focus parts
- Often for artistic purpose

How to model blur?

Digital optical imagery - Blur - Linear property

Blur is linear

Digital optical imagery - Linear blur

Linear model of blur

- Observed pixel values are a mixture of the underlying ones

$$
y_{i, j}=\sum_{k=1}^{n} \sum_{l=1}^{n} h_{i, j, k, l} x_{k, l} \quad \text { where } \quad h_{k, l} \geqslant 0 \text { and } \sum_{l=1}^{n} h_{k, l}=1
$$

- Matrix/vector representation: $y=\boldsymbol{H} x \quad y \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}, \boldsymbol{H} \in \mathbb{R}^{n \times n}$

Digital optical imagery - Linear blur

Linear model of blur

- Observed pixel values are a mixture of the underlying ones

$$
y_{i, j}=\sum_{k=1}^{n} \sum_{l=1}^{n} h_{i, j, k, l} x_{k, l} \quad \text { where } \quad h_{k, l} \geqslant 0 \text { and } \sum_{l=1}^{n} h_{k, l}=1
$$

- Matrix/vector representation: $y=\boldsymbol{H} x \quad y \in \mathbb{R}^{n}, x \in \mathbb{R}^{n}, \boldsymbol{H} \in \mathbb{R}^{n \times n}$

Digital optical imagery - Point Spread Function (PSF)

Digital optical imagery - Point Spread Function (PSF)

Spatially varying PSF - non-stationary blur

Digital optical imagery - Stationary blur

Stationary blur

- Shift invariant: blurring depends only on the relative position:

$$
h_{i, j, k, l}=\kappa_{k-i, l-j},
$$

i.e., same PSF everywhere.

- Corresponds to the (discrete) cross-correlation

$$
y=\kappa \star x \quad \Leftrightarrow \quad y_{i, j}=\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \kappa_{k, l} x_{i+k, j+l}
$$

Digital optical imagery - Stationary blur

Stationary blur

- Shift invariant: blurring depends only on the relative position:

$$
h_{i, j, k, l}=\kappa_{k-i, l-j}
$$

i.e., same PSF everywhere.

- Corresponds to the (discrete) cross-correlation

$$
y=\kappa \star x \quad \Leftrightarrow \quad y_{i, j}=\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \kappa_{k, l} x_{i+k, j+l}
$$

Here κ has a $q=3 \times 3$ support

$$
\Rightarrow \sum_{\substack{k=-\infty \\ q \text { called window size }}}^{+\infty} \sum_{\substack{l=-\infty}}^{+\infty} \equiv \sum_{l=-1}^{+1} \sum_{l=-1}^{+1}
$$

Direct computation requires

$$
\begin{aligned}
& O(n q) \\
\Rightarrow & q \ll n
\end{aligned}
$$

Digital optical imagery - Stationary blur

Cross-correlation vs Convolution product

- If κ is complex then the cross-correlation becomes

$$
y=\kappa \star x \quad \Leftrightarrow \quad y_{i, j}=\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \kappa_{k, l}^{*} x_{i+k, j+l} .
$$

- Complex conjugate: $(a+i b)^{*}=a-i b$.
- $y=\kappa \star x$ can be re-written as the (discrete) convolution product

$$
y=\nu * x \quad \Leftrightarrow \quad y_{i, j}=\sum_{k=-\infty}^{+\infty} \sum_{l=-\infty}^{+\infty} \nu_{k, l} x_{i-k, j-l} \quad \text { with } \quad \nu_{k, l}=\kappa_{-k,-l}^{*} .
$$

- ν called convolution kernel.

Why convolution instead of cross-correlation?

- Associative: $\quad(f * g) * h=f *(g * h)$
- Commutative: $\quad f * g=g * f$

For cross-correlation, only true if the signal is Hermitian, i.e., if $f_{k, l}=f_{-k,-l}^{*}$.

Digital optical imagery - Stationary blur

3×3 box convolution

Digital optical imagery - Stationary blur

3×3 box convolution

Digital optical imagery - Stationary blur

3×3 box convolution

Digital optical imagery - Stationary blur

3×3 box convolution

Digital optical imagery - Stationary blur

3×3 box convolution

Digital optical imagery - Stationary blur

3×3 box convolution

	0			30					
	0		40	60	60	60	40		
	0		60	90	90	90	60		
	0		50	80	80	90	60		
	0		50	80	80	90	60		
	0			50	50	60	40		
				30		30			
				0	0	0	0	0	

Digital optical imagery - Convolution kernels

Classical kernels

- Box kernel:

$$
\kappa_{i, j}=\frac{1}{Z} \begin{cases}1 & \text { if } \max (|i|,|j|) \leqslant \tau \\ 0 & \text { otherwise }\end{cases}
$$

- Gaussian kernel:

$$
\kappa_{i, j}=\frac{1}{Z} \exp \left(-\frac{i^{2}+j^{2}}{2 \tau^{2}}\right)
$$

- Exponential kernel:

$$
\kappa_{i, j}=\frac{1}{Z} \exp \left(-\frac{\sqrt{i^{2}+j^{2}}}{\tau}\right)
$$

- Z normalization constant s.t. $\sum_{i, j} \kappa_{i, j}=1$

Digital optical imagery - Gaussian kernel

$$
\kappa_{i, j}=\frac{1}{Z} \exp \left(-\frac{i^{2}+j^{2}}{2 \tau^{2}}\right)
$$

Influence of τ

- $\sqrt{i^{2}+j^{2}}$: distance to the central pixel,
- τ :
controls the influence of neighbor pixels, i.e., the strength of the blur

Small τ

Medium τ

Large τ

Digital optical imagery - Boundary conditions

How to deal when the kernel window overlaps outside the image domain?

i.e., how to evaluate $y_{i, j}=\sum_{k, l} \kappa_{k, l} x_{i+k, j+l}$ when $(i+k, j+l) \notin \Omega$?

Digital optical imagery - Boundary conditions

Standard techniques:

zero-padding

extension

Other common problems

Source: Wikipedia

Digital optical imagery - Other "standard" noise models

Transmission, encoding, compression, rendering can lead to other models of corruptions assimilated to noise.

Salt-and-pepper noise

- Randomly saturated pixels to black (value 0) or white (value $L-1$)

$$
P=10 \%
$$

$$
p_{Y}(y ; x)= \begin{cases}1-P & \text { if } y=x \\ P / 2 & \text { if } y=0 \\ P / 2 & \text { if } y=L-1 \\ 0 & \text { otherwise }\end{cases}
$$

Digital optical imagery - Other "standard" noise models

Impulse noise

- Some pixels take "arbitrary" values

$$
p_{Y}(y ; x)= \begin{cases}1-P+P / L & \text { if } y=x \\ P / L & \text { otherwise }\end{cases}
$$

$$
P=40 \%
$$

Digital optical imagery - Corruptions assimilated to noise

Corruptions assimilated to noise

- compression artifacts,
- data corruption,
- rendering (e.g., half-toning).

Digital optical imagery - Other linear problems

Deconvolution subject to noise

Goal: Retrieve the sharp and clean image \boldsymbol{x} from \boldsymbol{y}

Digital optical imagery - Other linear problems

Goal: Fill the hole

Digital optical imagery - Other linear problems

Single-frame super-resolution (sub-sampling + convolution + noise)

Goal: Increase the resolution of the Low Resolution (LR) image \boldsymbol{y} to retrieve the High Resolution (HR) image \boldsymbol{x}

Digital optical imagery - Other linear problems

Multi-frame super-resolution (different sub-pixel shifts + noise)

Goal: Combine the information of LR images \boldsymbol{y}_{k} to retrieve the HR image \boldsymbol{x}

Digital optical imagery - Other linear problems

Compressed sensing

- Goal: compress the quantity of information, e.g., to reduce acquisition time or transmission cost, and provide guarantee to reconstruct or approximate \boldsymbol{x}.
- Unlike classical compression techniques (jpeg, ...):
- no compression steps,
- sensor designed to provide directly the coefficients \boldsymbol{y},
- the decompression time is usually not an issue.

Digital optical imagery - Other sources of corruptions

- Quantization
- Saturation
- Aliasing
- Compression artifacts

(b) Saturation (overexposure)

(c) Color aberrations

(d) Compression artifacts

(e) Hot pixels

Digital optical imagery - A technique to avoid saturation

Figure 3 - Fusion of under- and over-exposed images (St Louis, Missouri, USA)

High dynamic range imaging

- Goal: avoid saturation effects
- Technique:
- Tone mapping:
- Remark:
merge several images with different exposure times problem of displaying an HDR image on a screen there also exist HDR sensors

Digital optical imagery - Why chromatic aberrations?

(a) Bayer filter

(b) Bayer pattern

(d) Results of different algorithms (Source: DMMD)

Demosaicing

- Goal: reconstruct a color image from the incomplete color samples
- Problem: standard interpolation techniques lead to chromatic aberrations

Non-conventional imagery

Passive versus active imagery

- Passive: optical (visible), infrared, hyper-spectral (several frequencies).
- Active: radar (microwave), sonar (radio), CT scans (X-ray), MRI (radio).

Synthetic aperture radar (SAR) imagery

Synthetic aperture radar (SAR) imaging systems

- Mounted on an aircraft or spacecraft,
- Measures echoes of a back-scattered electromagnetic wave (microwave),
- Signal carries information about geophysical properties of the scene,
- Used for earth monitoring and military surveillance,
- deforestation, flooding, urban growth, earthquake, glaciology, ...
- Performs day and night and in any weather conditions.

Synthetic aperture radar (SAR) imagery

(a) Optical

(b) SAR

(c) Denoising result

SAR images are corrupted by speckle

- Source of fluctuation: arbitrary roughness/rugosity of the scene
- Magnitude $y \in \mathbb{R}^{+}$fluctuates around its means $x \in \mathbb{R}^{+}$
- Fluctuations proportional to x
- Gamma distributed
- Multiplicative behavior: $y=x \times s$
- Signal dependent with constant SNR

Other examples of speckle

Sonar imagery

Submerged plane wreckage

Ultrasound imagery

Ultrasound image of a fetus

Computed tomography (CT) imaging systems

- Uses irradiations to scan a 3d volume
- Measures attenuations in several directions
- Runs a 3d reconstruction algorithm

- Industry
- Defect analysis
- Computer-aided design
- Material analysis
- Petrophysics
- ...
- Medical imagery
- X-ray CT
- Positron emission tomography (PET)
- Medical diagnoses

Computed tomography (CT) imaging systems

Shot noise

- Due to the limited number of X-ray photons reaching the detector,
- Poisson distributed, - SNR increases with exposure time,
- Higher exposure \Rightarrow higher irradiation ©.

Computed tomography (CT) imaging systems

Shot noise

- Due to the limited number of X-ray photons reaching the detector,
- Poisson distributed, - SNR increases with exposure time,
- Higher exposure \Rightarrow higher irradiation ©.

Streaking

- Due to the limited number of projection angles,
- Linear degradation model: $y=\boldsymbol{H} x$,
- More projections \Rightarrow better reconstruction $)_{\text {, but higher irradiation })}$.

Magnetic resonance imaging (MRI)

- Apply a strong magnetic field varying along the patient (gradient),
- Hydrogen nucleus' spins align with the field,
- Emit a pulse to change the alignments of spins in a given slice,
- Nuclei return to equilibrium: measure its released radio frequency signal,
- Repeat for the different slices by applying different frequency pulses,
- Use algorithms to reconstruct a 3d volume from raw signals.

Magnetic resonance imaging (MRI)

- Apply a strong magnetic field varying along the patient (gradient),
- Hydrogen nucleus' spins align with the field,
- Emit a pulse to change the alignments of spins in a given slice,
- Nuclei return to equilibrium: measure its released radio frequency signal,
- Repeat for the different slices by applying different frequency pulses,
- Use algorithms to reconstruct a 3d volume from raw signals.

Unlike CT scans, no harmful radiation!

Magnetic resonance imaging (MRI)

Rician noise

- Main source of noise: thermal motions in patient's body emit radio waves
- Magnitude $y \in \mathbb{R}^{+}$fluctuates (for x large enough) around: $\sqrt{x^{2}+\sigma^{2}}$
- Fluctuations approximately equal (for x large enough) to σ^{2}
- Rician distributed

Streaking: due to limited number of acquisitions

- As in CT scans, linear corruptions: $y=\boldsymbol{H} x$.
\Rightarrow using a longer acquisition time, but limited by $\left\{\begin{array}{l}\bullet \text { cost, } \\ \bullet \text { patient comfort. }\end{array}\right.$

Major image restoration issues

Jacques Hadamard (1865-1963)

Major image restoration issues

Usual image degradation models

- Images often viewed through a linear operator (e.g., blur or streaking)

$$
y=\boldsymbol{H} x \Leftrightarrow \begin{cases}h_{11} x_{1}+h_{12} x_{2}+\ldots+h_{1 n} x_{n} & =y_{1} \\ h_{21} x_{1}+h_{22} x_{2}+\ldots+h_{2 n} x_{n} & =y_{2} \\ \vdots & \\ h_{n 1} x_{1}+h_{n 2} x_{2}+\ldots+h_{n n} x_{n} & =y_{n}\end{cases}
$$

- Retrieving $x \Rightarrow$ Inverting \boldsymbol{H} (i.e., solving the system of linear equations)

$$
\hat{x}=\boldsymbol{H}^{-1} y
$$

(a) Unknown image x

(b) Observation y

(c) Estimate \hat{x}

Major image restoration issues

Limitations

- \boldsymbol{H} is often non-invertible
- equations are linearly dependent,
- system is under-determined,
- infinite number of solutions,
- which one to choose?
- The system is said to be ill-posed in opposition to well-posed.

Well-posed problem

(1) a solution exists,
(2) the solution is unique,
(3) the solution's behavior changes continuously with the initial conditions.

Major image restoration issues

Limitations

- Or, \boldsymbol{H} is invertible but ill-conditioned:
- small perturbations in y lead to large errors in $\hat{x}=\boldsymbol{H}^{-1} y$,
- and unfortunately y is often corrupted by noise: $y=\boldsymbol{H} x+w$,
- and unfortunately y is often encoded with limited precision.

(a) Unknown image x

(b) Observation y

(c) Estimate \hat{x}
- Condition-number: $\kappa(\boldsymbol{H})=\left\|\boldsymbol{H}^{-1}\right\|_{2}\|\boldsymbol{H}\|_{2}=\frac{\sigma_{\text {max }}}{\sigma_{\text {min }}}$ (σ_{k} singular values of \boldsymbol{H}, refer to cookbook)
- the larger $\kappa(\boldsymbol{H}) \geqslant 1$, the more ill-conditioned/difficult is the inversion.

Questions?

Next class: basics of filtering

Sources, images courtesy and acknowledgment

L. Condat

DLR
DMMD
Dpreview

I. Kokkinos	V. Tong Ta
J.-M. Nicolas	P. Tilakaratna
A. Newson	Wikipedia
D. C. Pearson	R. Willett
S. Seitz	Y. Lee

A. Horodniceanu

