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Multiview restoration — Motivation

® Given m corrupted images y',...,y™ of a same clean image

® What is the best approach to retrieve x7?



Multiview restoration — Sample mean

Average, a.k.a., sample mean estimator

£
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Why does it perform denoising?



Multiview restoration — Sample mean

Average, a.k.a., sample mean estimator

® Assume 3" are iid (independent and identically distributed), then

1 m m
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M= k=1
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® and Var[z] = Var Zy:|: QZVary}:—QZU = —
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Multiview restoration — Sample mean

1 m
2=

k=1

(Weak) Law of large numbers

pim =2 < Ve>0, lim P[|z —z|2>¢]=0
m—r o0

m—r0o0

The sample mean Z is said to be a consistent estimator of x.

As the number of views increase,
the restoration improves with high probability.



iew restorati Sample mean

SNR = — 2l vmz

= oo

\/Var|z] o m—00

But what if the assumptions are violated?



iew restorati Sample mean

(a) ¥* (Impulse noise) (b)y m=9 (c) m =81 (e)

For impulse noise E[y"] # =

If the assumptions are violated
® May not converge towards z (biased estimation).

® May not even converge.



(a) ¥* (Cauchy noise) (b)y m=9 (c) m =81 (e)

For Cauchy noise E[y*] and Var[y"] do not exist!

If the assumptions are violated
® May not converge towards x (biased estimation).

® May not even converge.



(a) ¥* (Cauchy noise) (b)y m=9 (c) m =81 (e)

For Cauchy noise E[y*] and Var[y"] do not exist!

If the assumptions are violated
® May not converge towards x (biased estimation).
® May not even converge.

Even though: the convergence can be too slow.



Multiview restoration — Alternatives

Possible alternatives:

Samples y* = 4,10, 3,6,2,3,2,2,4 Random variable Y
® Sample mean (average) ® Mean (expectation):
. +o0
4+10+3+6+2+3+2+7+4 _ (4} E[Y] = [m yp(y: ) dy
® Sample median (middle one) ® Median:
m o0 1
2,2,2,3,3,4,4,6,10 / p(y;z) dy =/ p(y; ) dy = 5
— 00 m
® Sample mode (most frequent ones) ® Mode (distribution peaks):
3x2,2x3, 2x4, 1x6, 1x 10 argm;XP(y;z)

Estimator Quantity being estimated



Multiview restoration — Alternatives

(d) Poisson law (e) Gamma law (f) Impulse law

® Mean/mode/median do not necessarily correspond to the unknown z,
® Often, function of z through a link function, ex: z = g(E[y]),

® Should take into account such a link between the images 3* and .

10



Multiview restoration — Method of moments

Method of moments (Karl Pearson, 1894)
® 4" are iid,
Assume ® & = g(E[y"]), and
® Var[y*] is finite.

1. Consistently estimate ;= E[y"] by sample mean

2. Next estimate z as

11



Multiview restoration — Method of moments

Properties of method of moments
® Easy to compute if we know g.
® Unbiased if g is linear.
® When g is sufficiently regular, asymptotically unbiased:
lim E[z] ==
m—ro0

..and consistent:

plim z ==z .
m—r o0

{ ® Biased for small m, since: E[g(1)] # g(E[a]),
® But:

® Often inefficient: slow convergence.
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Multiview restoration — Method of moments

Example (Impulse noise (1/3))
® Consider y and x defined in [0, L — 1] such as

1-P+P/L fy==x

Ply; @) = P/L otherwise

Model of aberrant pixels

0.8

z=5P=07,L=16

0 292999 (900090900909
0 5 10 15
y
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Multiview restoration — Method of moments

Example (Impulse noise (2/3))
® We have

Ely] = i yp(y; @)

=z(1-P+P/L)+P/L) y
y#x

= z(1 —P+P/L)+P/L( Lily —x)

1
=il@-1L

— 21— P)+ %P(L —1)
® Hence E[y] = h(z) with

h(z) = o(1 — P) + %P(L _1)

14



Multiview restoration — Method of moments

Example (Impulse noise (3/3))
® As E[y] = h(x) with

() = ] — 1) A %P(L _1)

® If P 1, his invertible, and for g = h™', we have

v =g(Ely]) with g(u)= %(]LD—U

® The moment estimator is thus

1 m k 1
o w2y —3PL 1)
=gy = T—p

i.e., an affine correction of the sample mean.
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Multiview restoration — Method of moments — Results

Sample mean

(a) ¥* (Impulse noise)

M. of mom. _

(b) m=9 (c) m =381 (d) m = 243

® Much better than the sample mean ©

16



Multiview restoration — Method of moments — Results

Sample mean

(a) ¥* (Impulse noise)

Sample mode M. of mom.

(b)y m=9

® Much better than the sample mean ©
® Clearly not as efficient as the sample mode ® Why?
16



Mean square error



Mean square error - Risk

Define optimality
® Choose a : l(x, %) such that

® l(z,z)=0
® ((xz,z) > 0: measure the proximity

® Write: & = @(y*,...,y™) with &: R" x ... x R" = R"
—————
m times
® Define the as

R(z,&) = /~--/f(w7:@(y17---,y"‘))p(yl,---,y'”;r) dy'...dy™

or in short E[¢(z, &)]
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Mean square error — Definition

Mean square error
® The choice of the loss depends on the application context.
® Most common choice for linear regression problems:

(or £2-loss)

n

Ua,@) = o — 3 = 3 (@i — 1)’

i=1

® The expected risk is thus called Mean Square Error (MSE)

R(z,&) = MSE(z, #) = Elo — &3

18



Mean square error - Bias and Variance

Bias-variance decomposition

n

MSE(z, &) = » (z: — E[#:])” + Z Varl[i;]

p=il
= |z — E[2]|” + tr Var[#]
—_——— —\

Bias2 Variance

Root MSE = vMSE

Object of interest a
What you get i

Dull effect + Residual noise

What you can expect
in average: E[#]

Minimizing the MSE = Minimizing bias® and variance
19



Mean square error — Bias and Variance

Local decomposition: bias and variance are often structure dependent
® Local map of bias: b, = |z; — E[z]4] Bias® = > b7

® Local map of variance: v; = Var[Z;] Variance = > v;

(a) Result & (b) Bias (c) Standard deviation (d) Root MSE

® residual noise = high estimation variance

® over-smoothing/blur = bias

20



Mean square error — Bias and Variance

MSE(z, &) = |« — E[2]]” 4 tr Var[#]
———— N———

Bias2 Variance

In general, the minimum MSE estimator has
non-zero bias and non-zero variance

noisy input

optimal smoothing

constant signal

S
Smoothing

Figure 1 — Smoothing more = increasing bias while reducing variance

Minimizino the MSE — Eindino & trade_nff in terme nf hise and varianco

21



Mean square error — Optimal estimation

Optimize for a class of estimators

® Choose the optimal estimator as the one minimizing the expected loss
2" = argmin {R(z,z) =E[l(z, )]}
iec
for C a class of estimators.
® \Without this restriction, solutions can be ,

A . ~ 1
ex: trivial solution Z(y™,...,y") ==

i.e., the solution would depend on the unknown.

22



Mean square error — Optimal estimation

Example (Amplified sample mean (1/3))
e Assume 3" iid with E[y*] =  and Var[y*] = o°Id,,.
® Consider the optimal estimator with respect to the MSE
#* = argmin {MSE(z, %) = E|z — 2|3}
#ec

® And the class of functions that amplify the sample mean

c={2:R"x...xR*">R"; JaecR, z@,..3™) =2 k
i P 3aER, 2y =Dy

m times k=1

® Finding Z* leads to find «* that minimizes the MSE.
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Mean square error — Optimal estimation

Example (Amplified sample mean (2/3))

® Study the first order derivative

OMSE(z,2) _ 9]z — Elz(y)]l3 + Otr Var [Z(y)]

oo oo Oa
_ |z —az|3 | 9a’trVar[y] /m
B o * (oo
_Jop20—0) , o 97
oo m O

2
=20zl — @) + E"(#a

® Moreover, the second order derivative is constant and positive

82MSE 2 2n 2
a2 _QHIH +EU
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Mean square error — Optimal estimation

Example (Amplified sample mean (3/3))
® Then the MSE is a quadratic function and its minimum is given for

OMSE _ ) o gef(l-a)+ PoPa=0
da m

]

LU
2
|zl + =%~

12
Define:  SNR? = %
no

e large SNR, 3" has good quality, average: & = 7,

o = SNR2 .
~ SNRZ2+1/m" . . . .
/ ® |ow SNR, x drawn in the noise: & = 0 is safer.

This is not realizable since it depends on the unknown z.
We need an alternative to direct MSE minimization.

25
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Unbiased estimators — Minimum Variance Unbiased Estimator

® |n the previous example

OMSE(z,4) _ OBias® " OVariance
(o' ()" (oo’
OBias®
(oo’

— 9loP(1—a) ang 2VEriance _2n o,

where
O m

® The dependency on |z|? arises from the bias term,

® This occurs in many situations.

Constrain the estimator to be unbiased.
Find the estimator that produces the minimum variance.
This will provide the minimum MSE among all unbiased estimators.

26



Unbiased estimators — Minimum Variance Unbiased Estimator

Minimum Variance Unbiased Estimator (MVUE)
An estimator £* € C is the MVUE for the class of estimators C if

(Vz, E2* =x) and VZeC, (Vz, EZ =z) = (Va, tr Var[2*] < tr Var[z])
~———

unbiasedness minimum variance

Example (Back to the amplified sample mean)

® An unbiased estimator that amplifies the sample mean should satisfy

Bias” = [ —E[% Zy’“} IP=(1-e)lz]’=0 = o" =1

k=1

® Then the sample mean is the only unbiased estimator of this class.

® |t is the MVUE of this class.

27



Unbiased estimators — Minimum Variance Unbiased Estimator

trVar[#!
> >

x

Variance of 3 unbiased estimators E[2'] =E[#?] =E[¢®] =z as a function of .

Quiz: which one is the MVUE on the left? on the right?

The MVUE does not always exist.
If it does exist, how to find it?

28



Unbiased estimators — Cramér-Rao bound

Cramér-Rao lower bound (~~ 1945)

® Provided the bound exists, any satisfies
& —logp(y',...,y™;x) }

Var[#] >Z~' where Z;; =E 0x;0x;

® Var[#] > Z~' means Var[Z] — Z~' is symmetric positive definite,

oyl ..y —p(yt,...,y™; ) is the law of the observations,

® x— p(y',...,y™; ) is the likelihood of the unknown,

® T the Fisher information matrix: expected Hessian of the log-likelihood,

® 7 measures the organization/entropy/simplicity of the problem,

Ex: small noise — likelihood peaky — large Hessian — small bound.

29



Unbiased estimators — Cramér-Rao bound

Consequence: Var[#] =7~ ' = & is the MVUE

If you find an unbiased estimator that reaches the Cramér-Rao bound,
then it is the MVUE.

/A The MVUE may not reach the Cramér-Rao bound,
in this case, no estimator reaches the bound.

30



Unbiased estimators — Efficiency

Efficiency

. trZ" _ . :
® The ratio 0 < riA < 1 is called efficiency of the estimator,
tr Var[z]

® Measures by how much the estimator is close to the Cramér-Rao bound,

An unbiased estimator with efficiency 100% is said to be efficient,

If an efficient estimator exists, it is the MVUE,

The MVUE is not necessarily efficient.

31



Unbiased estimators — Maximum Likelihood Estimator

Maximum likelihood estimators (MLE) [Fisher, 1913 and others]

® Define the MLE, for y* iid, as one of the global maxima of the likelihood

I € argmax p(yl, ..,y ¢) = argmax Hp(yk; x)

T a7 k1

® Then Z is asymptotically unbiased, asymptotically efficient and consistent

=il
lim E[#] =2, lim Var[]=0, plim 2=z and lim trZ _
m—oo m—oo =68 m—oo tI Var[aj]

® |f an efficient estimator exists, it is the MLE and, then, the MVUE.

® QOtherwise, the MVUE might be more efficient than the MLE.

32



Unbiased estimators — Maximum Likelihood Estimator
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® These curves are not laws but likelihoods: =+ p(y',...,y™; x).
® The considered samples are y* = 4,10, 3,6,2,3,2,2,4.
® MLE can be the sample mean, median, mode, or something else.
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Unbiased estimators — Maximum Likelihood Estimator

How to find the MLE for 3" iid?
® Rewrite the MLE as a

2" € argmax Hp(yk; x) = argmin Z — logp(yk; x)
* k=1 * k=1

()
® Why — log?
® Strictly decreasing function: same locations for the optima,
® Sums are easier to manipulate than products,

® [Ip(y*;x) very small: safer to manipulate —16 than 10~*6.

34



Unbiased estimators — Maximum Likelihood Estimator

How to find the MLE for 3" iid?
® If / differentiable: find #* that
® Twice diff. at #* and #"(&*) > 0: a local minimum
® / convex: a global minimum
U(az + By) < ad(x) + Bi(y)

® Twice diff. everywhere and ¢/(z) > 0: { convex
= a global minimum

® Often analytical solutions, otherwise use
(ex: Gradient descent, Newton-Raphson, Expectation-Maximization)

In multivariate setting, ¢”(x) > 0 means
the Hessian is symmetric positive definite at z.

35



Unbiased estimators — Maximum Likelihood Estimator

Example (Poisson noise (1/3))

® Consider samples 3',...,4™ € N iid versions of = > 0 such that
Ve "
p(y;z) = )l
® We have
m m

Ux) = —logp(y*;z) =Y —y"logz + z — logy"!

lh=1l k=1

36



Unbiased estimators — Maximum Likelihood Estimator

Example (Poisson noise (1/3))

® Consider samples 3',...,4™ € N iid versions of = > 0 such that
z¥e™®
p(y;z) = )l
® We have
m m
L(z) = Z —logp(y*;x) = Z —y*logx + x — log y"!
Jh=il k=1

e |t follows that £ is twice differentiable and

36



Unbiased estimators — Maximum Likelihood Estimator

Example (Poisson noise (1/3))

® Consider samples 3',...,4™ € N iid versions of = > 0 such that
z¥e™®
p(y;z) = )l
® We have
m m
L(z) = Z —logp(y*;x) = Z —y*logx + x — log y"!
Jh=il k=1

e |t follows that £ is twice differentiable and

m m

?(z) = Z(———i—l)—m—%Zyk and 7( )—%Zyk

k=1

® Forall z, /(x) > 0, then /" is convex and thus * satisfies

m-L3 o0 o 7;2’”:3/@
T* m e~

36



Unbiased estimators — Maximum Likelihood Estimator

Example (Poisson noise (2/3))
® The MLE for Poisson noise is unique and is the sample mean,
® Recall that for Poisson noise E[y*] =  and Var[y*] = z,

® |t follows that the variance of the MLE is

m

L e
Var(z :ﬁZVar[y m—z

k=1 k=1

37



Unbiased estimators — Maximum Likelihood Estimator

Example (Poisson noise (2/3))
® The MLE for Poisson noise is unique and is the sample mean,
® Recall that for Poisson noise E[y*] =  and Var[y*] = z,

® |t follows that the variance of the MLE is

m

L e
Var(z :ﬁZVar[y " Z

k=1 fe=il

® Besides, the Fisher information is

I:E[é"m]:E[;Zy’f] 72 e LY e

k=1
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Unbiased estimators — Maximum Likelihood Estimator

Example (Poisson noise (2/3))
® The MLE for Poisson noise is unique and is the sample mean,
® Recall that for Poisson noise E[y*] =  and Var[y*] = z,

® |t follows that the variance of the MLE is

m

L e
Var(z :ﬁZVar[y m—z

k=1 fe=il

® Besides, the Fisher information is

romp'e) =k | 53| = 3 = 53
k=1 k=1 k=1
® Hence
Var[#*] = 77!

® The MLE reaches the Cramér-Rao, even non-asymptotically.

® |t is 100% efficient for all m, it's the MVUE.

37



Unbiased estimators — Maximum Likelihood Estimator

Law MLE Comments MVUE
Gaussian ~ Sample mean 100% efficient for all m Vv
(sample median ~ 64%)
Poisson Sample mean 100% efficient for all m Vv
Gamma Sample mean 100% efficient for all m Vv
Cauchy No closed form  (sample median =~ 81%)
(24%-trimmed mean ~ 88%)
Laplacian  Sample median  asymptotically efficient with m
Impulse Sample mode no CR bound

Remarks: robust estimators

® Even though the sample mean is often the MLE, the sample median

(which always converges) or the trimmed mean are often preferred when

the noise distribution is unknown or known approximately.

(their efficiency often drops slower under mis-specified noise models)

® More robust to outliers, when some samples are not iid.
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Least square — Best Linear Unbiased Estimator

o ® The MVUE not always exist,
Motivation:
® Can be difficult to find.
® Restrict the estimator to be linear with respect to y,
Idea: ® Restrict the estimator to be unbiased,

Find the best one (i.e., with minimum variance)

Definition (BLUE: Best linear unbiased estimator)

e Consider y* € R™ and z € R?,

® BLUE is the MVUE for the class of linear estimators

C= {x JAy,... Am €RP (YL, Y™ :ZAkyk}
k=1

39



Least square — Best Linear Unbiased Estimator

Theorem (Gauss-Markov theorem)

® Assume

® H € R"*? with rank p < n (i.e., over-determined)
* E[y*] = Hz
® Var[y*] ==

® Then, the BLUE is

- - - 1 m
Ax H*E 1H 1H*2 i h = k.
z ( ) y where § m;y

® BLUE always exists for over-determined linear regression problems,
® Can be used even though we do not know precisely p(yl, oy a) as:

e H*Y'H is always sdp = can be inverted by conjugate gradient.
40



Least square — Best Linear Unbiased Estimator

MLE with Gaussian noise = BLUE = LSE

® Assume

® H e R"*P with rank p < n (i.e., over-determined),
® y* ~ N(Hz,X) and independent.

® Then, the MLE is unique and is the (LSE)

z* =argmin Y |7V (Hz — y*)[3
* k=1

_ (H*Ele)le*Eflg

® |t is also the BLUE and the MVUE.
(sub-optimal in general)

(optimal under this assumption)

41



Least square — Least square for super-resolution

pl, p2 = x.shapel[:2] % =0’ld
sigma = 60/255 f— (H*H)le*g
m =20

# Subsampling: each line is the average of two consecutive ones

H = lambda x: (x[0::2, :] + x[1::2, :1) / 2

y = [ H(x) + sigma * np.random.randn(int(pl / 2), p2, 3) for k in range(m) ]

# Adjoint of H: each line is duplicated and divided by two
Ha = lambda x: x[[int(i/2) for i in range(p1)], :1 / 2

# Least square solution with cg (Note: mon optimal)

ybar = np.mean(y, axis=0)
xblue = im.cg(lambda x: Ha(H(x)), Ha(ybar))

42



Least square — Under-determined least square

Oops, we have not checked that H* H was invertible.

In image processing tasks

® H is almost always under-determined = H™H is non-invertible.

Examples
® |Low-pass: sets high frequencies to zero, thus non-invertible,
® Radon transform: sets some frequencies to zero, thus non-invertible,
® Inpainting: sets some pixels to zero, thus non-invertible,

® Super-resolution: p > n the problem is under-determined.

If H is non-invertible, BLUE does not exist.
Realizable estimators cannot be unbiased.
They cannot guess, not even in average, what was lost.
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Least square — Least square and normal equation

Least-square estimator and normal equation

® im.cg finds one of the of the least square problem
x* € argmin |Hz — g3
©
® They are characterized by the
H'Hz* =H"y

® |f initialized to zero, im. cg finds the one with minimum norm |Z*|s.

® This solution reads as & =HT"y

where H € RP*™ is the Moore-Penrose pseudo-inverse of H.

44



Least square — Least square and normal equation

Moore-Penrose pseudo-inverse

® The Moore-Penrose pseudo-inverse is the unique matrix satisfying
© HH"H=H
®@ HTHH" =HT"
© (HHY) " =HH"
o (H'H*=H"H

The Moore-Penrose pseudo-inverse always exists.

If H is square and invertible: HT = H !

HT also satisfy: HY = (H*H)"H* = H*(HH*)™"

If H has full rank: H™=(H*H) 'H*, we recover Gauss-Markov thm.
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Least square — Moore-Penrose pseudo-inverse

Small detour to Singular Value Decompositions (SVD)

® Any matrix H € R™*™ admits a Singular Value Decomposition (SVD) as

e UecC", UU=UU=1d,
H=UXV"* with oV cC™™ V'V =VV*=1Id,

® 3 € R ™ a diagonal matrix.

® g; = X;; > 0: called singular values (often sorted in decreasing order),

® Rank r < min(n, m): number of non-zero singular values.

n : . E
-~ -~
m T

o1
N "2\4
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Least square — Moore-Penrose pseudo-inverse

SVD, image and null space

® |f the singular values are sorted in decreasing order

ImH]={y eR"; 3z e R™, y = Huz}
= Span({u; e R"; i € [1...7]}) (what can be observed)

Ker[H] = {z ¢ R" ; Hz = 0}
= Span({v; eR™; i € [r+1...m]}) (what is lost)

where u; are the columns of U and v; are the columns of V'
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Least square — Moore-Penrose pseudo-inverse

SVD and Moore-Penrose pseudo-inverse

® let H=UXV" be its SVD, the Moore-Penrose pseudo inverse is

L ifo; >0
H" =VvXtU* where of ={ 7 ha >_
0  otherwise

® For deconvolution: SVD 22 eigendecomposition =2 Fourier decomposition
= inversion of the non-zero frequencies.

e Difficulty: Ui can be very large (ill-conditioned matrix)
= numerical issues (refer to Assignment 6).

It is unbiased only on Ker[H]".
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Least square — Pseudo inverse for deconvolution

nl, n2 = x.shape[:2]
sigma = 2/255
m = 20

# Deconvolution problem setting

nu = im.kernel('gaussian', tau=2, s1=20, s2=20)

1bd = im.kernel2fft(nu, ni, n2)

H = lambda x: im.convolvefft(x, 1bd)

y = [ H(x) + sigma * np.random.randn(nl, n2, 3) for i in range(m) ]

# Numerical Fourier approzimation of the pseudo inverse

lbd_pinv = 1 / 1bd

1bd_pinv[np.abs(lbd) < 1e-2] =0 In practice, the threshold
ybar = np.mean(y, axis=0)

: : ) 1e-2 is difficult to choose
x_pinv = im.convolvefft(ybar, lbd_pinv)
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Least square and unbiased estimator issues

The M.-P. pseudo-inverse does not create new content on Ker[H],
it cannot recover missing information ®

Moreover, unbiased estimators amplify and colorize noise.

® In practice, the number m of samples/frames/views is small,
® The asymptotic behavior when m — oo is far from being reached,

® |n fact, in our contexts of interest, we often have m = 1.
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Bayesian approach




Bayesian approach — Motivations

Why unbiased estimators are not working in our context?

Because they attempt to be optimal

whatever the underlying image z.

Bayesian answer:
Forget about unbiasedness and be optimal
only for the class of images « that looks like clean images.

Expected behavior:
If x looks like a clean image: small bias, small variance.
If  does not look like a clean image: large bias and/or large variance.
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Bayesian approach — Random vector models

Observed image y € R™ (n pixels): random vector with density

p(y) = /p(y,m) dr = /p(y|m)p(:r) dx (Marginalization)

where x € R™ is also a random vector modeling clean images.

Likelihood x + p(y | x) Prior 2 + p(x)

® p(y|z) degradation model — law of y|z — likelihood of x|y
® p(x) prior distribution of z
® n(y) marginal distribution of y
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Bayesian approach — How to choose the likelihood?

Modeling the likelihood p(y|x) (relatively easy)
® Based on the knowledge of the acquisition process
® |inear additive model: y=Hzx+w
® Multiplicative noise: Y= X w
® Poisson noise: pylr) = xy;;I
® White noise: E[w] = 0 and Var[w] diagonal

Unlikely to arise from
the degradation process

Likely to arise from
the degradation process

p(ylz) large p(y|z) low

53]



Bayesian approach — How to choose the prior?

Modeling the prior p(z) (hard)
® Based on your prior knowledge of the underlying signal

® Are clean images piece-wise smooth? simple? observable on the web? ...

Try to cover as many cases as possible without covering bad images.
The prior should help at separating signal and noise.
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Bayesian approach — Framework

Bayesian approach
® Model the likelihood: p(y | x),
® Choose a prior: p(z),

® Estimate the posterior distribution based on

TR R A——— R

p(y) Marginal

p(z|y) =
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Bayesian approach — Posterior mean

Posterior mean

® Compute the mean of the posterior, or

2" = Eloly] = [ op(z|y) do

® Potentially, compute the posterior variance

Var[z|y] = /(x — Elz[y])(z — Efz|y])"p(z | y) dx

to build regions of confidence, and account for uncertainty.

Efz|y]

p(x)

p(y)
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Bayesian approach — MAP

Maximum a Posteriori (MAP)

® Take a mode of the posterior, or

x* € argmax p(z | y)

argmax p(z | y)

Efz|y]
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Posterior mean estimator




Posterior mean

Posterior mean depends only on the likelihood and the prior

8(y) = Elz | ] = / ep(ely) dz

_ Jzp(yle)p(z) dz
p(y)
_ Japyle)p(x) dz
[p(y, ) dz
_ Jep(ylz)p(x) dz
[ p(ylz)p(z) dz
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Posterior mean

Bayesian MSE

As x is random, the mean square error (MSE) is defined as a double integral

MSE(#) = Ellz — #[] = [[ |e ~ #@)I5 p(y, ) dydz

Theorem (Optimality of the posterior mean)
The Minimum (Bayesian) MSE estimator (MMSE) is unique and given by the
posterior mean

&* = argmin MSE(2) = E[z | y] = /xp(;r |y) dz
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Posterior mean — Proof

Lemma — Conditional expectation.

Elf(@)] = [ f@p(o)da
= [[ f@)p(z,y) dedy
= [[ r@)p(aly)p(y) dzdy

/{/f p(z|y) dx} dy
:/ﬁuxnmmwdy
= E{E[f()ly]}
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Posterior mean — Proof

Proof.

The previous Lemma leads to
El|lz — 2(y)I3] = E{E[lz - &(»)I3 | ]}

— [ Ells - 3)13 14} 5(0) dy

This quantity is minimal if, for all y, we have

Z(y) € argmin E[|z — zHg | ]
z

Given y, we have to minimize with respect to z the quantity

Elle — 213 | y] = Ellz|* | 4] + |21* — 2 (=, E[z | 4])

The first order optimality condition gives
22" —2E[z |y|=0 <& 2z"=E[z]|y]
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Posterior mean

X p—tf
p(z)
p(y)
® Optimal in the MMSE sense © / (y|lz)p(z) d
rp(y|z)p(T) dT
® In general, difficult integration problem ®  E[z|y] =

® Explicit solutions in few cases /p(y|x)p(m) dx
(see, conjugate priors)

If no explicit solutions, several workarounds:

® LMMSE estimator: Restrict to linear estimators.

® Wiener estimator: Restrict to LTI estimators.

® Monte-Carlo estimator: Estimate E[z | y] from a data-set.
©® MCMC/Metropolis Hastings: Otherwise.
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Maximum A Posteriori (MAP) estimator

Forget about the optimality of the MMSE, and

argmaxp(z | y)

p(x) p(y| )

p(y)

Maximum A Posteriori (MAP) estimator

#(y) € argmax p(z | y) = argmax %ﬁ’(‘” = argmax plyla)p(z)

As for the posterior mean,

the MAP depends only on the likelihood and the prior.
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Maximum A Posteriori (MAP) estimator

Maximum A Posteriori (MAP) estimator

® The MAP is connected with variational methods:

#(y) € argmax p(y|z) p(z) = argmin —logp(y|z) —logp(z)
z T S——

Likelihood prior Data fit Regularisation

Data fit: —logp(y | ) @ Regularity: —log p(z)

Likelihood = p(y | )

U
i
U
|
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Maximum A Posteriori (MAP) estimator

MMSE MAP

Integration problem Optimization problem

® Integration can be intractable and/or leads to long computation time.

® Optimization is often simpler and faster (does not mean straightforward).

® We will see several examples later.

But first, when do both estimators coincide?
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LMMSE estimator — Optimal linear filtering

Linear Minimum Mean Square Error (LMMSE)

® let y € R" and z € R? be two random vectors such that

Ely|z] = Hx and Var[y|z]=X
E[lz] =p and Var[z] =L
® Consider the class of affine estimators
= {fz; JA € RP*" b € RP, i(y):Ay—i—b}
® The LMMSE estimator is
&* = argmin E[|z — |3
#ec

=p+LH (HLH" + %) '(y — Hp)

® Unlike BLUE, H can be under-determined here because L and X are
always sdp, hence invertible.
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LMMSE estimator — Optimal linear filtering

As for the BLUE, the LMMSE depends only on the means and variances

If these are known, the best linear estimator is realizable, it’s the LMMSE

Law y — p(y | z) Prior z — p(z)

Even though, these are unknown
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LMMSE estimator — Optimal linear filtering

MAP with Gaussian models = LMMSE = Penalized Least Square

® Let y € R" and x € R? be independent and such that

ylz ~ N(Hz, X)
z ~ N (u, L)

® Then, the MAP is a (PLSE)

2* = argmin — logp(y|:fc) — Ing(j)

= argmin |S712(y = Ha)I3 + |L~°( — 0l

Data fit Penalization
—pu+(H'S'H+L Y)Y 'H'S '(y— Hp) (Null gradient)
=u+LH"(HLH" +X) '(y — Hp) (Woodbury)

® |t is also the MMSE and the LMMSE.
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LMMSE estimator — Optimal linear filtering

LMMSE under white noise

® For simplicity add the restriction that the noise is white
Varly|z] = = = ¢°Id

® |n this case the LMMSE has a simplified expression

. .1 . - .
#* = axgmin 5 ly - Hal + |L™2(2 - )3
=p+(H'H+0°L)"H"(y— Hp)

® H*H + o>L " always invertible and symmetric positive definite
(you can always use conjugate gradient ®)
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LMMSE estimator — Optimal linear filtering

P =p+(HH+L Y 'H*(y— Hp)

LMMSE vs BLUE

e Define SNR? — tr L Uncertainty on the signal

no2 ~ Variation of the noise

® |f H over-determined, the LMMSE tends to the BLUE (least square)

c Ak * —1 * _
gdim @ =p+ (HH) H'(y—Hup)
—u+(H'H) 'Hy— (H'H) '"H"Hp
—_—
»

=(H"'H) 'H'y
= H+y
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LMMSE estimator — Optimal linear filtering

LMMSE for denoising

® |If moreover H = Id (denoising problem), this simplifies as

~x
xz

1, /2
argmin — |y — 2|3 + [L7/(@ — p)[3

p+L(L+0°1d) " (y — p)
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LMMSE estimator — Optimal linear filtering

Example (Lets pick a naive model)
® Consider y = z +w € R" with  and w independent such that
Ely|z] =2 and Var[y|z] = o’Id,,
E[z] =0 and Var[z] = L = \’Id,.
® Then the LMMSE filter reads as

& =p+L(L+0°1d) " (y — p)
=0+ A*(N\Id + ¢%Id) ' (y — 0)

)\2
TNt Y

SNR? . g A
= mg with SNR” = o2

® |t's similar to the optimal amplified estimator except this one is realizable.
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LMMSE estimator — Naive model — Limitations

(a)  (unknown) (b) y (observation) (c) &* (estimate)

Limitations of this naive model
® Amplifying the noisy input will never allow us removing noise,

® Would work only if all clean images were like pure white noise.
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LMMSE estimator — Naive model — Limitations

[zl = A

(a) We assumed z to be likely somewhere here. (b) but it was somewhere there.

Limitations of this naive model
® |mages contain structures that must be captured by p and L,
® Goal: define/find the ellipsoid localizing = with high probability,

® How: make use of the eigendecomposition: L = EAE™.
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LMMSE estimator — Filtering in the eigenspace

= p+ L(L+0°1d) " (y — p)

® Consider the eigendecomposition: L = EAE™, then

A%
/\§+02 0
¥
2 -1 A2 +o2 2
L(L +0%1d,)" ' = E E
)\gl
0 X247

= The LMMSE filter can be re-written as

N
ok 5 A i *
2" =p+ EZ where 2, =-—F5——z and z=E"(y—p)
A2 + o2
Come back N e’ Change of origin and basis
shrinkage

® Shrinkage adapts to the SNR in each eigendirection: SNR? = \? /0.
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Wiener filtering




Wiener filtering — Whitening via the Fourier transform

Whitening
Let L~/ = A~'/2E*. Let x be a random variable. Then

Elz]=p and Var[z] =L

n=L"Y*xz—pu) with E[l=0 and Var[y =1Id,

T=pu+ LY
e
lInll =¢
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Wiener filtering — Whitening via the Fourier transform

Modeling the two first moments of x

Find the affine transform that makes it look like white noise

What kind of transform can make typical images white?

7



Wiener filtering — Whitening via the Fourier transform

Whitening using DFT
® Assume Fourier coefficients to be decorrelated,

® Choose x =0 and L = EAE ! with

EEnm
VAN
E= N == Columns form the Fourier basis
=ZZUY
=ZZ%% .

DFT: F

E ' =\nF!

A = diagonal, real and positive (L is sdp)
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Wiener filtering — Whitening via the Fourier transform

Whitening using DFT

A clean image x Whitening 7 = L™"/%z
close to white noise

Standard deviation \;
for each frequency

® FE and p fixed: L =Cov[z] < A=Var[E*"(z— )
® In our case: X =n~! x E[|(Fz):|*] = mean power spectral density

= variance for each frequency
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Wiener filtering — Whitening via the Fourier transform

Mean power spectral density
Si = E[|(Fz)i|*]

® Estimate it from a collection of clean images x1, z2, ...

® Use a model to reduce its degree of freedom [Van der Schaafa et al., 1996]

U4 2 Vg 2
S; = ne? — ) +({—
n1 N2

® Estimate « and 3 by least square in log-log (see assignment).

® Arbitrary zero frequency (DC component): its variance goes to infinity.

\\\\\\\“‘
lll N

i\ \\\\\\
il \\\\\
””’ ‘\\\\
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Wiener filtering — Whitening via the Fourier transform

Prior localization for clean images
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Wiener filtering — Denoising

Wiener filter for denoising

® |n denoising, this LMMSE is called Wiener filter and reads

. 1. . A2
2 =F'2 where 3% = mzi and z= Fy
iDFT _1/_, DET

shrink each frequency

® Using Ao — oo: DC is unchanged.

@y=s+w ®) = © iy ) 2 (&) &
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Wiener filterin

2

A2
(@) y (b) = (c) A?ﬁ
y = x + sigma * np.random.randn(x.shape) 2z = \/ﬁ_le
Py
z = nf.fft2(y, axes=(0, 1)) 3 = 27121
zhat = 1bd**2 / (lbd**2+ sigma**2) * z A +o?
xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) 7= \/HF*%}

The technique auto-adapts to the noise level ®

Results are blurry, too smooth ®
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Wiener filtering — Deno

Results of Wiener filtering in denoising

2

A2 . )

oF (b) = © 2y (6) 2 ()

k2
y = x + sigma * np.random.randn(x.shape) 2z = \/ﬁ_le
N

z = nf.fft2(y, axes=(0, 1)) 3 = 272221
zhat = 1bd**2 / (lbd**2+ sigma**2) * z Aito
xhat = np.real(nf.ifft2(zhat, axes=(0, 1))) 7= \/HF*%}

The technique auto-adapts to the noise level ©

Results are blurry, too smooth ®
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Wiener filtering — Denoising

Results of Wiener filtering in denoising
%

b

2

A2 . )
(@) v (b) 2 (<) T2 (d) 2 (e) 2
y = x + sigma * np.random.randn(x.shape) 2z = V@E_ll?y
N2
z = nf.fft2(y, axes=(0, 1)) 3 = AffgigTizi
zhat = 1bd**2 / (lbd**2+ sigma**2) * z Aito

xhat = np.real(nf.ifft2(zhat, axes=(0, 1)))

The technique auto-adapts to the noise level ©

Results are blurry, too smooth ®
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Wiener filtering — Limits and connections to LTI filters

Wiener filtering for denoising

2
. Aj - "
Zi = ————= 2% T=Vv*xy
)\? + o2 ———
convolution = moving average
elementwise product

® Wiener filter: in the Bayesian MMSE sense,
= ltisa , I.e., a weighted average.
0.025 T T T T T
Wiener kernel

0.02 + B
0.015 |- B
0.01 B
0.005 [ B

o ‘

-30 -20 -10 0 10 20 30
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Wiener filtering — Application to deconvolution

Wiener deconvolution
® For deconvolution, the LMMSE filter reads as
¥ =p+ (HH+0"L7) " H (y — )
with H a circulant matrix: H = F~'QF with Q = diag(w, . ..,ws).
® We get that
= (F'QFF'QF +o°F 'A'F) 'F'Q Fy

= F ' (Q'Q+7 A ) 'Q Fy

® Or equivalently

o
& —1l & N w;
2 =F "2 where 3 2

i |OJL|2 +02/)\%Z an z Yy

® Filter adapts to the SNR for each frequency.
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Wiener filtering — Application to deconvolution

() = Tor T eZ/aE (@) 2

Wiener deconvolution: optimal spectral sharpening.




Wiener filtering — Application to deconvolution

Wiener versus pseudo inverse

(a) Observation y (b) PINV HTy (c) Wiener &*

Invert attenuated frequencies while preventing from amplifying the noise.
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Wiener filtering — Application to deconvolution

Wiener versus pseudo inverse

(a) Observation y (b) PINV HTy (c) Wiener &*

Invert attenuated frequencies while preventing from amplifying the noise.
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Learning the LMMSE filter with PCA




LMMSE + Learning with PCA

Use an external data-set
® |let xy1,...,xk be a collection of images.
® Estimate = E[z] and L = Var[zy] from the samples

1 & 1 &
p:?ka and L:ﬁ;(xkfﬂ)(ﬂkaﬂ)

k=1

Problem: computing L requires to store n” values,

® For an image of size n = 256 x 256
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LMMSE + Learning with PCA

Use SVD

'Letik:xkfuand)z: ;71(51 ... Tk ),wehave

K
1 * o ok
L= ﬁZ(l’k -z —p)" = XX
=1l
® The SVD of X reads X = EAY?V* for some V =V .
Proof: L =XX*=EAY*V*VAY?E* = EAE*

® The SVD decomposition of X gives E and A.
® No need to build X X*, but still E is a n x n matrix (16 Gb) ®
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LMMSE + Learning with PCA

Low rank property

® X is an x K matrix (K < n), whose columns are zero on average:

L L K
~k __ k _ E_ . _
ESIEERD DR S,
k=1 k=1 k=1
® One of the columns is a linear combination of the others
K K
Yoir=0 & #=-) &
k=1 k=2

® The family {#*} has K — 1 independent vectors.
® The rank of X is r = K — 1.
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LMMSE + Learning with PCA

Reduced SVD

® X has only r non-zero singular values

~ 1/2 v
wemwva (2 (47 ) () -maie

® [ has only r non-zero eigenvalues and depends only on F; and A;

* Al 0 Ef *
L=FEAE" =(E, E =FEAME
Ly § x EN
n| X = L —
. ]

Require to store only n x r + r values

(r vectors e, € R™ + r values \; € R™")
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LMMSE + Learning with PCA

Principle component analysis (PCA)

® Assume the rank r being K — 1 or even lower

L=EAE" = E\ME; =) Meie]
i=1
= Clean images are a linear combination of a few 7 images
z=p+L"n= M+Z77i)\i€i
i=1
with controlled weights E[n;] = 0 and Var[n;] = 1.
® The r directions e; are called principle direction.
® Best way to capture most of variability with r dimensions only,

ie., to
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LMMSE + Learning with PCA

Example (Face dataset with additive white Gaussian noise)

® AT&T Database of Faces

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase. html
® 40 subjects, 10 images per subject (400 images in total)
® Gray-scale images of size 92 x 112 = 10304 pixels
® 39 subjects for the ) and 1 subject for y = =z + w

E7, N
X390

w ~ N(0,0°Id,,)

X = (z1,...,ZK)
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LMMSE + Learning with PCA — Example

import numpy.linalg as nl

# Learning step (K = 390 files)
fs [ 'filetrainl.png', ... ]
X = np.zeros((n, K))
for i in range(X):

X[:, i] = plt.imread(fs{i}) .reshape(-1,)
mu = X.mean(axis=1)

X =X -mu
X =X / np.sqrt(X-1)
E, L, _ = nl.svd(X, full_matrices=False)

‘__- ) i - ) n=
‘ | ‘3
- ] x 390
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LMMSE + Learning with PCA — Filtering

# Denoising step

sig = 40 z=E"(y—p)
X = plt.imread('filetest.png') .reshape(-1,) R A2

y = x + sig * np.random.randn(size(x)) Zi = mzz
z = E.T.dot(y - mu) ‘

hatz = L*x2 / (L¥*2 + sigk*2) * z T=p+Ez

hatx = mu + E.dot(hatz)

(a) = (unknown) (b) y (observation) (c) & (estimate)
Was there a bug somewhere?
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LMMSE + Learning with PCA — Checking the model

Did the model learn correctly on the training samples?

Testing sample

Training sample

(a) « (unknown) (b) y (observation) (c) Z (estimate)

Yes. But it cannot generalize to new samples (over-fitting).
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LMMSE + Learning with PCA — Checking the model

® Generate samples from A/ (u, L)

How to assess the model quality?
® Judge if representative of targeted images.

How to generate samples from N (u, L)?

n ~N(0,Id,) ~
~ L
{ F —u+ EAY? = I~N(uL)

The model does not generate realistic faces.
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LMMSE + Learning with PCA — Limits

Accuracy problem
® L ER™ n degrees of freedom

® LeR"™™: (n? +n)/2 degrees of freedom
For the estimation to be accurate: nv K > degrees of freedom!

® For a size n = 256 x 256: = K >1,073,840,130 ®
® For asizen=8x8: =K>1,122 ©

Scaling/Memory problem (assume 1Gb available)
® Storing E and A require 4(n x K + n) bytes in single precision
® For n = 256 x 256: = K <4,096 O
® Forn =8 X 8: = K <4,194,304 ©
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Non-Local Bayes

Non-Local Bayes [Lebrun, Buades, Morel, 2013]
® Apply LMMSE on patches by mimicking the (block) Non-Local means,

® |nstead of taking only the average of similar patches

lli = %Zwi,jyj and 7 = Zwi,j
J J

® Estimate also the covariance matrix of the patches in the stack

";> ';>
QO

';>
S)»
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Non-Local Bayes

Non-Local Bayes [Lebrun, Buades, Morel, 2013]

® Assuming the noise to be additive Gaussian, we have
]E[él] =L;+3%;

® which provides us a local estimate for L;:

Li=C -3

® [; may have negative eigenvalues, set them to zero
(often required for small stacks or low SNR).
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Non-Local Bayes

Non-Local Bayes [Lebrun, Buades, Morel, 2013]

® Plug these estimators in the LMMSE to denoise each patch of the stack

&; = p+ Li(Li + )7 (y; — )

® Note: As fi; and L; depends on y;, in fact non-linear filter.

® Reproject each patch at their original location,

® Average overlapping patches together.

s

1
R ——
find similar
patches

=

Stack of similar
patches

Avera ra
pixel value

Q 3
Averaged patch m
/u"v

use suitable
estimator

patch space image space
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Non-Local Bayes

Non-Local Bayes [Lebrun, Buades, Morel, 2013]
® By estimating the statistics of similar patches,

® The estimators may amplify random patterns in the noise.

(a) Noisy image (b) 1st step (c) 2nd step

Workaround: 2 steps filtering
® Repeat the filter a second time,
® Estimate p; and L; from patches of the first estimate,

® Assume them to be clean: L; = C;.
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Non-Local Bayes

(a) Noisy image




Non-Local Bayes

(b) 1st step




Non-Local Bayes

(c) 2nd step




Non-Local Bayes

(d) Block Non-Local means




Non-Local Bayes
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Non-Local Bayes

(b) 1st step




Non-Local Bayes

(c) 2nd step




Non-Local Bayes

(d) Block Non-Local means




Non-Local Bayes and LMMSE

Pros and cons (compared to Non-Local means)

By taking into account the covariance (2nd order moment):

® More degrees of freedom
= capture complex patterns/textures even with low SNR,
® Too much flexibility, over-fit the low-frequency components of the noise,

= Use a multi-scale approach + Trick for homogeneous regions
[Lebrun, Colom, Morel, 2015]

Conclusions about LMMSE
® Except if it is made spatially adaptive for patches (hence non-linear),
= The LMMSE is linear, thus inappropriate for image processing.
® As: Assuming Gaussian noise + Gaussian prior = LMMSE,

= The limitation of the LMMSE means that:
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Questions?

Next class: Shrinkage and wavelets

Sources, images courtesy and acknowledgment

L. Condat

R. Willet
A. Horodniceanu

Wikipedia
S. Kay
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