
ECE 285 – Assignment #2
Basic Image Tools

Written by Charles Deledalle on May 1, 2019.

In this assignment we will embellish our image manipulation package imagetools with very basic
functions.

First, start a Jupyter Notebook, go into the subdirectory ece285 IVR assignments (or whatever you
named it), and create a new notebook assignment2 basics.ipynb and import

%load_ext autoreload

%autoreload 2

import numpy as np

import matplotlib

import matplotlib.pyplot as plt

import time

import imagetools.assignment2 as im

%matplotlib notebook

We will use the files

� assets/lake.png • assets/windmill.png

For the following questions, please write your code and answers directly in your notebook. Organize
your notebook with headings, markdown and code cells (following the numbering of the questions).

1 Image shift

Shifting an image x of size (n1, n2) in a direction (k, l) consists of creating a new image xshifted of size
(n1, n2) such that

xshifted[i, j] = x[i+ k, j + l] .

In practice, boundary conditions should be considered for pixels (i, j) such that (i + k, j + l) /∈ [0, n1 −
1]× [0, n2 − 1]. A typical example is to consider periodical boundary conditions such that

xshifted[i, j] = x[i+ k mod n1, j + l mod n2] .

1. Create in imagetools/assignment2.py a function implementing the shifting of an image x as

def shift(x, k, l, boundary='periodical')

...

return xshifted

where the fourth argument is a string that specifies the type of boundary conditions to use (refer to
the class). It takes one of the values: 'periodical', 'extension', 'zero-padding' or 'mirror'.

Hint: First write it using loops as
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%load_ext autoreload
%autoreload 2
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import time
import imagetools.assignment2 as im

%matplotlib notebook



def shift(x, k, l, boundary='periodical')
    ...
    return xshifted




n1, n2 = x.shape[:2]

if boundary is 'periodical_naive':

xshifted = np.zeros(x.shape)

# Main part

for i in range(max(-k, 0), min(n1-k, n1)):

for j in range(max(-l, 0), min(n2-l, n2)):

xshifted[i, j] = x[i + k, j + l]

# Corners

for i in range(n1 - k, n1):

for j in range(n2 - l, n2):

xshifted[i, j] = x[i + k - n1, j + l - n2]

for i in range(n1 - k, n1):

for j in range(0, -l):

xshifted[i, j] = x[i + k - n1, j + l + n2]

for ...

Next try to get rid of the loops. Each case can be written with few lines, as:

if boundary is 'periodical':

irange = np.mod(np.arange(n1) + k, n1)

jrange = np.mod(np.arange(n2) + l, n2)

xshifted = x[irange, :][:, jrange]

Your function should work likewise for grayscale images of shape (n1, n2), or RGB images of shape
(n1, n2, 3).

Note: if you cannot figure out all the cases, implement periodical and one more from the other
three to receive full credits for this question, and then move to the next questions! Although,
implementing all is highly recommended.

2. Complete your notebook to test your shift function for the boundary conditions implemented on
x = windmill. The script should produce one figure with subplots as follows (do not forget to add
a title to each subplot):

(a) Original (b) Periodical (c) Extension (d) Zero-padding (e) Mirror

Figure 1: Shift in the direction (k, l) = (+100,−50) with different boundary conditions

3. Check on x = windmill and y = lake, if this operation is linear, i.e.,

shift(a * x + b * y, k, l) = a * shift(x, k, l) + b * shift(y, k, l) ?
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n1, n2 = x.shape[:2]
if boundary is 'periodical_naive':
    xshifted = np.zeros(x.shape)
    # Main part
    for i in range(max(-k, 0), min(n1-k, n1)):
        for j in range(max(-l, 0), min(n2-l, n2)):
            xshifted[i, j] = x[i + k, j + l]
    # Corners
    for i in range(n1 - k, n1):
        for j in range(n2 - l, n2):
            xshifted[i, j] = x[i + k - n1, j + l - n2]
    for i in range(n1 - k, n1):
        for j in range(0, -l):
            xshifted[i, j] = x[i + k - n1, j + l + n2]
    for ...



if boundary is 'periodical':
    irange = np.mod(np.arange(n1) + k, n1)
    jrange = np.mod(np.arange(n2) + l, n2)
    xshifted = x[irange, :][:, jrange]




for any arbitrary values of a and b. Does that depend on the boundary conditions?

Hint: use np.allclose.

4. After shifting the image in the direction (k, l), shift it back in the direction (−k,−l). Interpret the
results. Which shift is one-to-one? What is the null-space of this operation?

2 Image convolution

5. Create in imagetools/assignment2.py, the function

def kernel(name, tau=1, eps=1e-3):

...

return nu

that produces a (2s1+1)×(2s2+1) array ν encoding a convolution kernel of finite support (−s1, s1)×
(−s2, s2), defined as

ν[i, j] =
1

Z
f(i− s1, j − s2) and Z =

s1∑
i=−s1

s2∑
i=−s2

f(i, j) (1)

where f is the kernel function to be specified and Z is the normalization constant. Note that the
central value is ν[s1, s2]. The first argument name is a string that specifies the type of kernel (refer to
the class): ’gaussian’, ’exponential’ or ’box’. Because these functions f may have an infinite
support, the values of s1 and s2 must be automatically determined as the smallest integers such
that all locations (i, j) satisfying f(i, j) > ε are located inside the window, i.e., −s1 6 i 6 s1 and
−s2 6 j 6 s2. Make sure that for the Gaussian kernel of bandwidth τ = 1, you get s1 = s2 = 3,
and for the exponential kernel of bandwidth τ = 3, you get s1 = s2 = 20.

Hint: use np.meshgrid(..., indexing=’ij’).

6. Create in imagetools/assignment2.py, the function

def convolve_naive(x, nu)

that performs (except around boundaries) the convolution between x and ν (with odd shape) with
four loops as

n1, n2 = x.shape[:2]

s1 = int((nu.shape[0] - 1) / 2)

s2 = int((nu.shape[1] - 1) / 2)

xconv = np.zeros(x.shape)

for i in range(s1, n1-s1):

for j in range(s2, n2-s2):

for k in range(-s1, s1+1):

for l in range(-s2, s2+1):

# complete

Your function should work likewise for grayscale images of shape (n1, n2), or RGB images of shape
(n1, n2, 3).
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  shift(a * x + b * y, k, l) = a * shift(x, k, l) + b * shift(y, k, l) ?



def kernel(name, tau=1, eps=1e-3):
    ...
    return nu



def convolve_naive(x, nu)



n1, n2 = x.shape[:2]
s1 = int((nu.shape[0] - 1) / 2)
s2 = int((nu.shape[1] - 1) / 2)
xconv = np.zeros(x.shape)
for i in range(s1, n1-s1):
    for j in range(s2, n2-s2):
        for k in range(-s1, s1+1):
            for l in range(-s2, s2+1):
                # complete




7. Create in imagetools/assignment2.py, the function

def convolve(x, nu, boundary='periodical')

that performs the convolution between x and ν including around boundaries. The idea is to switch
the k, l loops with the i, j loops, and then make use of shift. The final code should read with only
two loops as

xconv = np.zeros(x.shape)

for k in range(-s1, s1+1):

for l in range(-s2, s2+1):

# complete

8. Compare the results and the execution times of convolve naive and convolve for different bound-
ary conditions (use time.time()). Check that you obtain something similar to

(a) Original (b) Naive (5.31s) (c) Spatial+ZP (0.03s) (d) Spatial+mirror (0.02s)

Figure 2: Gaussian blur with τ = 1.

9. Check on x = windmill and y = lake, if this operation is linear. Does that depend on ν? on the
boundary conditions?
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def convolve(x, nu, boundary='periodical')



xconv = np.zeros(x.shape)
for k in range(-s1, s1+1):
    for l in range(-s2, s2+1):
        # complete



