ECE 285 — Assignment #5
Fourier transform

Written by Charles Deledalle on May 8, 2019.

In this assignment we will study the Fourier transform, and next implement convolutions in the
Fourier domain as part of our image manipulation library imagetools.

First, start a Jupyter Notebook, go into the subdirectory ece285_IVR_assignments (or whatever you
named it), and create a new notebook assignment5 fourier.ipynb with

%load_ext autoreload

Jhautoreload 2

import numpy as np

import numpy.fft as npf

import matplotlib

import matplotlib.pyplot as plt
import time

import imagetools.assignment5 as im

/matplotlib notebook

We will use
e assets/house.png e assets/map.png e assets/motionblur.npy
e assets/montreuil.png e assets/lady.png

For the following questions, please write your code and answers directly in your notebook. Organize
your notebook with headings, markdown and code cells (following the numbering of the questions).

1 Spectral analysis

1. In your notebook, create an image with a horizontal sinusoidal a:

256

np.arange (n)

np.pi / 16 * np.ones(n)
np.sin(np.outer(i, j))
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Visualize this image and the amplitude of its spectrum in one single figure as

fig, axes = plt.subplots(ncols=2, figsize=(7,3))
im.show(x, ax=axes[0])

im.showfft(x, ax=axes[1], apply_fft=True)
fig.show()



%load_ext autoreload
%autoreload 2
import numpy as np
import numpy.fft as npf
import matplotlib
import matplotlib.pyplot as plt
import time
import imagetools.assignment5 as im

%matplotlib notebook



n = 256
i = np.arange(n)
j = np.pi / 16 * np.ones(n)
x = np.sin(np.outer(i, j))



Explain what you observe: number of bright points, their locations and their amplitude.
2. Repeat the same analysis for

e a vertical sinusoidal:

i2 = 2 * np.pi * 3 / 64 * np.ones(n)
j2 = np.arange(n)
x = 4 * np.sin(np.outer(i2, j2))

a variant of the vertical sinusoidal:

i3 = 2 * np.pi * (3 + 1/8) / 64 * np.ones(256)
x = np.sin(ap.outer(i3, j2))

a diagonal sinusoidal

x = np.sin(np.outer(i, j) + np.outer(i2, j2))

® a Square

x = np.zeros((256, 256))
x[62:190, 62:190] = 1

e a sinusoidal in a window

x = x * np.sin(np.outer(i, j))

3. Load the image x = house. Display this image and the logarithm of its spectrum as

im.showfft(x, ax=axes[1], apply_fft=True, apply_log=True)

What does the horizontal, vertical and oblique structures that you observe represent?
4. Repeat with the image map, montreuil and lady, and interpret what you observe.

5. For the three images, perform a spatial sub-sampling by a factor 2 in each direction

x = x[::2, ::2]
Inspect their spectrum, repeat with a factor 4, and explain how aliasing impacts these images.

2 Spectral convolution

6. Run convolve on x = lady with a Gaussian convolution of bandwidth 7 = 2 using periodical
boundary conditions. Display the image and its spectrum (in logarithm) before and after convolu-
tion. Explain what you observe.

7. Repeat with a box kernel 7 = 5. Explain what you observe.
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fig, axes = plt.subplots(ncols=2, figsize=(7,3))
im.show(x, ax=axes[0])
im.showfft(x, ax=axes[1], apply_fft=True)
fig.show()



i2 = 2 * np.pi * 3 / 64 * np.ones(n)
j2 = np.arange(n)
x = 4 * np.sin(np.outer(i2, j2))



i3 = 2 * np.pi * (3 + 1/8) / 64 * np.ones(256)
x = np.sin(np.outer(i3, j2))



x = np.sin(np.outer(i, j) + np.outer(i2, j2))



x = np.zeros((256, 256))
x[62:190, 62:190] = 1



x = x * np.sin(np.outer(i, j))



im.showfft(x, ax=axes[1], apply_fft=True, apply_log=True)



x = x[::2, ::2]



8. Create a function

def kernel2fft(nu, nl, n2, separable=None):

tmp = np.zeros((nl, n2))
tmp[:s1+1, :s2+1] =

return lbd

nul[s1:2xs1+1, s2:2%s2+1]

that creates a n1 X no complex valued array lambda corresponding to the frequential response of
the convolution kernel function with impulse response nu that is limited to window of support
[—s1,51] X [—s2, s2]. The format of nu is the same as the one for convolve and is determined by
the optional argument separable (default: None). Refer to the following figure for more details:
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9. Create in imagetools/assignment5.py, the function

def convolvefft(x, 1lbd)

fItshift

i

fit2  frequential
—>

response A

—

Temporary variable tmp

that implements the convolution (in the Fourier domain) of  with a convolution kernel whose
frequential response is given by A.

Hint: Don’t forget to take the real part.

10. Test your new convolution function on x =

lady. Compare the results with convolve for different
kernel functions using periodical boundary conditions. Check that the error between the two is zero
(up to machine precision).

11. Compare the computation time of convolve and convolvefft for a box kernel with 7 = 0 to 4.
Make the comparison when the spatial convolution is separable and non-separable (with the box
kernel). Average the computation time on 100 runs. Draw the curves of average computation time

as a function of 7 (do not forget about title, axis names, and legend). Check that your curves are
consistent with the ones below.
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def kernel2fft(nu, n1, n2, separable=None):
    ...
    tmp = np.zeros((n1, n2))
    tmp[:s1+1, :s2+1] = nu[s1:2*s1+1, s2:2*s2+1]
    ...
    return lbd



def convolvefft(x, lbd)



What are the complexities of the two methods with respect to 7 and the separability? When is the
spectral convolution favorable against the spatial convolution?

3 Adjoint

The convolution H : x — v*x where v is the convolution kernel, is a linear operator with respect to x.
As any linear operators, it has a unique adjoint H* such that for all images x and y, (Hz, y) = (x, H*y).

12. Copy paste the function kernel from imagetools/assignment3.py into assignment4.py. Modify
the function in order to implement name='motion', in which case it loads the convolution kernel
stored in assets/motionblur.npy. All optional arguments are ignored in this case.

13. In your notebook, load the motion kernel, display it and display its application to x = house using
convolve.

14. The adjoint H* is also a convolution, H* : x — p*x. What is p compared to v? In your notebook,
modify v into p. Using convolve, check that (Hzx, y) = (z, H*y) for x = house and y = map.

15. What is the frequential response of 1 compared to the one of v? In your notebook, using kernel2fft,
create A\ the frequential response of v, and modify it into the one of pu. Using convolvefft, check
that (Hz, y) = (z, H*y) for x = house and y = map.



