
ECE 285 – Project B
Total Variation

Written by Charles Deledalle on June 7, 2019.

You will have to submit a notebook projectB.ipynb and the package imagetools/projectB.py.
Organize your notebook with headings (following the numbering of the questions). For writing questions,
answer directly in your notebook in markdown cells. For each section, it is indicated in brackets how
much it contributes to the grade.

This project focuses on image restoration with total variation. Before starting this project you will need
to have gone through all assignments. Functions developed in this project will complete the imagetools

package. We will be using the following assets

� assets/starfish.png • assets/flowers.png • assets/ball.png

1 Operators (25%)

We focus on the estimation of a clean image x0 form its degraded observation y satisfying

y = Hx0 + w

where w is a white Gaussian noise component with standard deviation σ, and H a linear operator.
We will consider three types of linear operators: identity (denoising problem), convolution (deblurring
problem), and random masking (inpainting problem).

We will need to be able to compute for any images x:

� the application of H to x: x 7→ Hx,

� the application of its adjoint: x 7→ H∗x,

� the application of its gram matrix: x 7→ H∗Hx,

� the resolvent of its gram matrix: x 7→ (Id + τH∗H)−1x.

A linear operator will be represented by a Python object as an instance of a class that inherits from our
homemade abstract class LinearOperator defined in imagetools/provided.py. Please have a look at
the code. Note that LinearOperator has a method norm2 that returns an approximation of the spectral
norm of the operator ‖ · ‖2 and normfro that returns an approximation of the Frobenius norm ‖ · ‖F . It
also has two properties ishape and oshape, the first one is the shape of the input of the operator, the
second is the shape of the output. Any class that inherits from it must implement (at least):

� call (self, x) • adjoint(self, x)

� gram(self, x) • gram resolvent(self, x, tau)

As an example, we provided Grad that reuses functions from the previous assignments to implement each
of these methods for the gradient operator. An object can be instantiated as H = im.Grad((n1, n2,

3)) for the gradient of a RGB image of shape (n1, n2, 3).

1

1. In imagetools/projectB.py, create a class Identity that implements the identity operator x 7→ x.
An object can be instantiated as H = im.Identity(shape).

2. Create a class Convolution that implements the convolution operator x 7→ ν ∗ x. An object
can be instantiated as Convolution(shape, nu, separable=None). As we will manipulate large
convolution kernels ν, all operations should be implemented in the Fourier domain. Note that during
this project, we will always consider periodical boundary conditions.

Hint: reuse functions from the assignments.

3. Create a class RandomMasking that implements the linear operator that sets a proportion p of
arbitrary pixels to zeros. An object can be instantiated as H = im.RandomMasking(shape, p).

4. In your notebook, load the image x0 = starfish. Create a version y for each of the three operators.
For the random masking we will consider p = .4. For the convolution we will consider the motion
kernel ν. Display the result and check that they are consistent with the following ones.

5. For the three linear operators, check that 〈Hx, y〉 = 〈x, H∗y〉 for any arbitrary arrays x and y of
shape H.ishape and H.oshape respectively (you can generate x and y randomly).

6. Check also that (Id + τH∗H)−1(x+ τH∗Hx) = x for any arbitrary image x of shape H.ishape.

2 Smoothed Total-Variation (25%)

The Total-Variation (TV) aims at reconstructing a piece-wise constant approximation of the image
x0 (refer to Chapter 4). Its discrete version minimizes, for τ > 0, the following energy

E(x) =
1

2
||y −Hx||22 + τ ||∇x||1 where ||∇x||1 =

n1∑
i=1

n2∑
j=1

2∑
k=1

3∑
c=1

|(∇x)i,j,k,c| (1)

7. Why does TV promote piece-wise constant solutions?

8. As a first step, we aim at solving TV by gradient descent. However, the energy is not differentiable
since the absolute value is not differentiable at 0. As an alternative, we will consider a smoothed
version by considering the approximation

|(∇x)i,j,k,c| ≈
√
|∇x|2i,j,k,c + ε . (2)

for a small ε > 0. Show that in this case the gradient is

∇E(x) = H∗(Hx− y)− τ div

(
∇x√
|∇x|2 + ε

)
(3)

where the fraction is to be understood pointwise.

2

9. In imagetools/projectB.py, create a function

def total_variation(y, sig, H=None, m=400, rho=1, return_energy=False):

...

if return_energy:

return x, e

else:
return x

that performs m iterations of gradient descent for the smoothed total-variation with τ = ρσ. The
argument sig is the noise standard deviation σ and H the linear operator H (identity if None).
If return energy=True, your function should also return a list e of size m of the energy E(xk)
obtained at each iteration. Recall that gradient descent is

xk+1 = xk − γ∇E(xk) for 0 < γ <
2

L
(4)

where L = sup
x
||∇2E(x)||2 when E is twice differentiable. We will admit that L = ||H||22 + τ√

ε
||∆||2.

We will consider x0 = H∗y, γ = 1
L and ε = 10−3σ2.

10. Add an optional argument scheme

def total_variation(y, sig, H=None, m=400, scheme='gd', return_energy=False)

and implement the Nesterov acceleration for the case where scheme=’nesterov’. Nesterov accel-
eration reads as

xk+1 = x̃k − γ∇E(x̃k) (5)

x̃k+1 = xk+1 + µk(xk+1 − xk) (6)

We will consider x0 = x̃0 = H∗y and choose

µk =
tk − 1

tk+1
, tk+1 =

1 +
√

1 + 4t2k

2
and t0 = 1 (7)

11. Create a noisy version y of x0 = starfish with noise standard deviation σ = 10/255. Run your
function for ρ = 1 and m = 400 iterations and compute the energy at each iteration (it should take
about 1 minute for each scheme). Repeat for both schemes. Display your results and check they
are consistent with the following ones.

12. Is m = 50 iterations enough for gradient descent? for gradient descent with Nesterov acceleration?

13. Repeat first with a random masking with p = .4 σ = 2/255, and next with the motion blur and
σ = 2/255. Do you reach the same conclusion?

3

def total_variation(y, sig, H=None, m=400, rho=1, return_energy=False):
 ...
 if return_energy:
 return x, e
 else:
 return x

def total_variation(y, sig, H=None, m=400, scheme='gd', return_energy=False)

3 Advanced solvers for Total-Variation (25%)

In this section, we will investigate two other algorithms that solve our restoration problem much faster
than with gradient descent even with Nesterov acceleration.

14. Write the function

def softthresh(z, t):

that for an array z implements pointwise the soft-thresholding defined as:

z 7→


0 if |z| 6 t
z − t if z > t
z + t otherwise

(8)

Do not use loops!

Hint: You can write it in a single line by combining np.abs, np.maximum and np.sign.

15. ADMM (Alternating Direction Method of Multipliers) is another optimization algorithm that can
be used to solve our total-variation problem. It is a general technique that can be used to solve any
problems of the form

E(x) =
1

2
||y −Hx||22 + τ ||Γx||1 . (9)

In this case, ADMM reads as

xk+1 = (Idn + γH∗H)−1(x̃k + dkx + γH∗y)

zk+1 = softthresh(z̃k + dkz , γτ)

x̃k+1 = (Idn + Γ∗Γ)−1(xk+1 − dkx + Γ∗(zk+1 − dkz))
z̃k+1 = Γx̃k+1

dk+1
x = dkx − xk+1 + x̃k+1

dk+1
z = dkz − zk+1 + z̃k+1

and xk converges to a solution for any value γ > 0 and initializations (x̃0, z̃0, d0x, d
0
z). Note that the

x variables are images and the z variables are vector fields. Please refer to the class for more details
(chapter 6). Modify your function total variation to implement ADMM when scheme=’admm’.
Consider Γ = ∇, γ = 1, x̃0 = H∗y, z̃0 = ∇x̃0, d0x = 0 and d0z = 0.

16. An alternative to ADMM, is the Chambolle-Pock algorithm (also known as primal-dual algorithm).
It is a general technique that can also be used to solve such a problem. It reads as follows

z̃k+1 = zk + κΓ(vk)

zk+1 = z̃k+1 − softthresh(z̃k+1, τ)

x̃k+1 = xk − γΓ∗(zk+1)

xk+1 = (Id + γH∗H)−1(x̃k+1 + γH∗y)

vk+1 = xk+1 + θ(xk+1 − xk)

and xk converges to a solution for any choice of κ > 0 and γ > 0 satisfying κγ||Γ||22 < 1, and any
initializations (x0, z0, v0). Note that the x and v variables are images and z is a vector field. Mod-
ify your function total variation to implement Chambolle-Pock algorithm when scheme=’cp’.
Consider Γ = ∇, γ = θ = 1, κ = 1/||Γ||22, x0 = H∗y and z0 = v0 = 0.

4

def softthresh(z, t):

17. Create a blurry version y of x0 = flowers with noise standard deviation σ = 2/255 and motion
blur. Run TV on y with ADMM and Chambolle-Pock algorithm with m = 400 and ρ = 1. Compare
the speed of these algorithms with gradient descent and Nesterov acceleration. Check that your
results are consistent with the following ones.

18. What are the advantages of Chambolle-Pock algorithm compared to ADMM? (If you do not know,
start the next section, the answer should become clear)

4 Total Generalized Variation (25%)

The Total Generalized Variation (TGV) aims at reconstructing a piece-wise affine approximation of
the image x0. A simplified and discrete version of it minimizes, for τ > 0 and ζ > 0, the following energy

E(x) =
1

2
||y −Hx||22 + τ min

z
(||∇x− ζz||1 + ||div z||1) (10)

where z is a vector field.

19. Show that when ζ = 0, TGV is equivalent to TV.

20. Provide your interpretation on why does TGV promote piece-wise affine solutions?

21. Show that TGV can be rewritten, for X =

(
x
z

)
, as

E(X) =
1

2
||y − H̄X||22 + τ ||ΓX||1 with H̄ =

(
H 0

)
and Γ =

(
∇ −ζId
0 div

)
. (11)

22. In imagetools/projectB.py, create the function

def tgv(y, sig, H=None, zeta=.1, rho=1, m=400, return_energy=False)

that solves TGV for an arbitrary operator H and τ = ρσ. You can choose to implement the
algorithm of your choice (but choose wisely!). We will consider ζ = .1.

5

def tgv(y, sig, H=None, zeta=.1, rho=1, m=400, return_energy=False)

23. Create a blurry version y of x0 = ball with noise standard deviation σ = 10/255 and motion blur.
Compare TV and TGV with default parameters.

Results may look like the following ones:

(a) Original (b) Blurry

(c) Based on TV (26.06 dB) (d) Based on TGV (26.10 dB)

5 Bonus (+10% max)

• In denoising, for different noise levels and parameters, compare your implementation of TV with the
ones of Scikit image: skimage.restoration.denoise tv *.
• Implement super-resolution.
• We have implemented anisotropic TV (refer to Chapter 4). Implement isotropic TV.
• Implement and discuss further possible improvements.

6

