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Multiprecision Computations: Goal

Multiprecision: from 38 to 1000 decimal digits.

Computations: Numerical differentiation, integration,
summation, extrapolation, evaluation of continued fractions,
Euler products and sums, complete finite sums such as Gauss
and Jacobi sums.
Unsolved Problem: compute the Kloosterman sum

K (p) =
∑

x∈(Z/pZ)∗
e2πi(x+x−1)/p

for p prime in O(p1−δ) for δ > 0.

In this talk, only integration, summation, and extrapolation.
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Multiprecision Numerical Analysis

In what follows, D is always the number of desired decimal
digits.
Can use multiprecision to compensate for errors in the
algorithms.

For instance, summing millions of terms we work at
accuracy D + 9 (same as D + 19 on 64 bit machines).
If for some reason there is a loss of accuracy (example:
compute the power series for e−x with x large), work at
accuracy 3D/2, 2D, or more.
If the algorithm is fundamentally unstable, we can hope to
compensate by working at accuracy D log(D) or similar.

All this is cheating, but works very well in practice.
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Integration on a Compact Interval
Integration on an Infinite Interval

Compendium of the Methods: Integration on [a,b]

At least nine methods studied:
1 Trapezes, Simpson, and more generally Newton–Cotes

methods with equally spaced abscissas.
2 Newton–Cotes methods with abscissas roots of

Chebyshev polynomials.
3 Classical Romberg method using Richardson

extrapolation, the intnumromb function of Pari/GP.
4 Romberg method using Richardson 2-3 extrapolation,

more efficient.
5 Extrapolation methods using Lagrange extrapolation.
6 Extrapolation methods using Zagier extrapolation (see

below for these extrapolation methods).
7 Gauss–Legendre integration.
8 Doubly-exponential methods, homemade.
9 The intnum function of Pari/GP also doubly-exponential.
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Newton–Cotes Methods: Theory

Subdivide the interval of integration into N equal small
subintervals.
In each subinterval, Lagrange-interpolate the integrand at k + 1
points by a polynomial of degree k .
Original trapezes, Simpson, Newton–Cotes: equally spaced
points with k = 1, 2, ≥ 4 (k = 2n + 1 is the same as k = 2n).
Problem: Runge’s phenomenon: approximation by large
degree polynomials is far from uniform. To diminish this effect:
Chebyshev nodes: instead, choose scaled roots of Chebyshev
polynomials in each subinterval.
Almost always better and more stable, attenuated Runge’s
phenomenon but still present.
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Newton–Cotes Methods: Implementation

Must choose N, k , and working accuracy. Experimentation
shows the following:

For the initial Newton–Cotes:
Choose N = 64 (note independent of D!!!), k = D/2, and
work at accuracy 3D/2 + 9.
For Newton–Cotes with Chebyshev nodes:
Choose also N = 64, but k = 5D/12 and work at accuracy
5D/4 + 9 (thus slightly lower k and working accuracy).
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Newton–Cotes Methods: Results

Very reasonable methods, even for D = 1000, although slower
by a factor of 5 to 50 than other methods: for D = 1000, with
the choice of parameters above, they require around 30000
function evaluations.
For the following computation, Newton–Cotes–Chebyshev is
the only method giving sensible results:

J(T ) =
1

2πi

∫
R(T )

ζ ′(z)

ζ(z)
dz ,

where R(T ) is the boundary of the rectangle [0,1]× [1,T ],
which counts the number of zeros of ζ(s) in the critical strip up
to height T (by far not the best way, but simply an example).
Very close to integers up to T = 100, still recognizable up to
T = 300.
No other method gives sensible results.

Henri Cohen Numerical Recipes for Multiprecision Computations



Numerical Integration
Numerical Summation

Numerical Extrapolation

Integration on a Compact Interval
Integration on an Infinite Interval

Newton–Cotes Methods: Results

Very reasonable methods, even for D = 1000, although slower
by a factor of 5 to 50 than other methods: for D = 1000, with
the choice of parameters above, they require around 30000
function evaluations.
For the following computation, Newton–Cotes–Chebyshev is
the only method giving sensible results:

J(T ) =
1

2πi

∫
R(T )

ζ ′(z)

ζ(z)
dz ,

where R(T ) is the boundary of the rectangle [0,1]× [1,T ],
which counts the number of zeros of ζ(s) in the critical strip up
to height T (by far not the best way, but simply an example).
Very close to integers up to T = 100, still recognizable up to
T = 300.
No other method gives sensible results.

Henri Cohen Numerical Recipes for Multiprecision Computations



Numerical Integration
Numerical Summation

Numerical Extrapolation

Integration on a Compact Interval
Integration on an Infinite Interval

Extrapolation Methods: Theory I

To compute I =
∫ b

a f (x) dx , by trapezes we have
I = limn→∞ u(n) with

u(n) =
b − a

n

( f (a) + f (b)

2
+

∑
1≤j≤n−1

f
(

a + j
b − a

n

))
,

and by Euler–MacLaurin we have

u(n) = I +
c2

n2 +
c4

n4 +
c6

n6 + · · ·

(note: only even powers of 1/n).
Idea: extrapolate the sequence u(n), knowing its asymptotic
expansion.
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Extrapolation Methods: Theory II

Several methods: the most classical, Romberg integration, is
based on Richardson extrapolation:

u′(n) = (4u(2n)− u(n))/3 = I + c′4/n
4 + c′6/n

6 + · · · ,

continue in this way:

u′′(n) = (16u′(2n)− u′(n))/15 = I + c′′6/n
6 + · · · .

Convergence faster and faster.
In double precision, very nice since need to do this only a few
times. In multiprecision, inapplicable: time in O(exp(a · D1/2)).
Richardson can be improved (2-3 method), but still slow.
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Extrapolation Methods: Theory and Implementation

Much better extrapolation methods, but less robust, based on
Lagrange interpolation: look for a function f defined on the
reals such that u(n) = f (1/n2), so that around z = 0 we have
f (z) = I + c2z + c4z2 + · · · . Use Lagrange interpolation on
several values of u(n) to find a polynomial f , and compute

I = f (0) ≈ 2
(2N)!

N∑
n=1

(−1)N−n
(

2N
N − n

)
n2Nu(n) .

Experiment leads to choosing N = 0.9D and working at
accuracy 4D/3 leads to good results, and the times are
reasonable, contrary to Romberg.
Much slower than other methods (420000 function evaluations
for D = 1000) but still feasible at D = 1000, while Romberg
explodes at more than 57 decimals.
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Gaussian Integration: Theory I

This is a very classical method: it scales extremely well in
multiprecision computations, and when applicable, it is an order
of magnitude faster than all other methods, not including the
initialization step which is much longer but done once and for
all.
To compute a family of integrals

∫ b
a f (x)w(x) dx for a given

weight function w(x) (or more generally for a suitable measure
w(x)dx), using a suitable Gram–Schmidt orthogonalization
scheme we compute the unique family of monic polynomials Pn

of degree n such that
∫ b

a Pm(x)Pn(x)w(x) dx = 0 for m 6= n.
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Gaussian Integration: Theory II

Then for a suitable N we compute the roots xi of PN , the nodes,
which will all be real, simple, and in the interval ]a,b[, and then
we compute the weights wi by the formula

wi =
1

P ′N(xi)

∫ b

a
w(x)

PN(x)

x − xi
dx .

We then have

I =

∫ b

a
f (x)w(x) dx ≈

∑
1≤i≤N

wi f (xi) .
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Gaussian Integration: Theory III

Simplest weights w(x) such as w(x) = 1, w(x) = 1/
√

1− x2,
w(x) =

√
1− x2, etc... give rise to well-known families of

orthogonal polynomials such as Legendre polynomials or
Chebyshev polynomials of the first and second kind, for which
everything is known explicitly (the coefficients of the
polynomials, no need to compute an integral for the weights,
etc...).
For more complicated weights, there are explicit algorithms
which are rather unstable, so need to work at accuracy of the
type D log(D), but worth it since it is only the initialization step:
after, very fast.
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Gaussian Integration: Implementation I

Experiment shows that a good choice is N = 3D/4, and
working at accuracy 3D/2 + 9 for classical polynomials, but at
the much higher accuracy D log(D)/1.6 if one needs to
compute explicitly the orthogonal polynomials from scratch
(essentially from the moments of w(x)dx). For D = 1000,
requires only 750 function evaluations, compared to 30000 for
Newton–Cotes and 5000 to 15000 for doubly-exponential
methods, but 15 seconds initialization for classical polynomials.
Example:

∫ 1
0 log(Γ(1 + x)) dx for D = 1000 is computed in 8.33

seconds, compared to 2 minutes for doubly-exponential
methods, and 4 minutes for Newton–Cotes.
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Gaussian Integration: Implementation II

Method of choice, but less robust than doubly-exponential
methods: integrand needs to be “close” to a polynomial times
the weight measure w(x). Contrived example:∫ 1

0 dx/(xπ + x1.4 + 1) only 10% correct decimals. But∫ 3/2
0 tan(x) dx has only 30% correct decimals because of the

proximity of the pole at x = π/2. Even
∫ 1

0 tan(x) dx has only
90% correct decimals.

Henri Cohen Numerical Recipes for Multiprecision Computations



Numerical Integration
Numerical Summation

Numerical Extrapolation

Integration on a Compact Interval
Integration on an Infinite Interval

Doubly-Exponential Integration: Theory I

Method invented by Mori–Takahashi in 1968. Extremely robust,
although much slower than Gaussian integration when both
apply. Two ideas:
• Theorem: if F (t) tends to 0 doubly-exponentially as t → ±∞
(i.e., like exp(−a exp(b|t |))), the optimal way to compute
I =

∫∞
−∞ F (t) dt is to use Riemann sums (rectangles or

trapezes, same), i.e., to choose N and h and write

I ≈ h
∑

−N≤m≤N

F (mh) .
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Doubly-Exponential Integration: Theory II

• Reduce any other integral to this case by suitable changes of
variable: in the compact case [a,b], transform I =

∫ b
a f (x) dx

into the above by setting

x = φ(t) :=
a + b

2
+

b − a
2

tanh((π/2) sinh(t)) .

dx/dt = φ′(t) tends to 0 doubly-exponentially, and one can
show that π/2 is optimal for a wide class of functions.
Strong restriction, but in general satisfied in mathematical
practice: f (x) must be holomorphic (or at least meromorphic
with known polar parts) in a domain containing [a,b].
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Doubly-Exponential Integration: Implementation

Experimentation shows that reasonable choices for N and h are

N =
D log(D)

1.86
and h =

log(2πN/ log(N))

N
,

and since the method is very stable, one can simply work at
accuracy D + 9 to compensate for rounding errors in the sums.
Of course, all the hyperbolic functions are computed during
initialization.
Sample timings: for D = 1000, initialization takes 1.03 seconds,
the method requires 7430 function evaluations, and the times
vary between 0.05 and 5 seconds depending on the time taken
to compute the function, except for higher transcendental
functions such as Γ(x) or ζ(x) for which the time is of course
much larger.
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Doubly-Exponential Integration: Comment

The current intnum function of Pari/GP is about three times
slower due to a less efficient implementation. This should be
changed hopefully soon.
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Integration on Infinite Intervals: Methods

Can always reduce to [a,∞[. Need to distinguish functions
tending to 0 slowly or fast (can also treat oscillating functions,
but not in this talk). Evidently no need to tend to 0, and can go
from slow to fast by changes of variables. Still, good guiding
principle.
Not many methods available:

1 For slow functions f (x), Gauss–Legendre on f (1/x), or a
suitable change of variable for doubly-exponential
integration.

2 For functions f (x) = e−xg(x), use Gauss–Laguerre,
Gauss–Legendre on g(1/x), or a suitable change of
variable for doubly-exponential integration.

Henri Cohen Numerical Recipes for Multiprecision Computations



Numerical Integration
Numerical Summation

Numerical Extrapolation

Integration on a Compact Interval
Integration on an Infinite Interval

Integration on Infinite Intervals: Methods

Can always reduce to [a,∞[. Need to distinguish functions
tending to 0 slowly or fast (can also treat oscillating functions,
but not in this talk). Evidently no need to tend to 0, and can go
from slow to fast by changes of variables. Still, good guiding
principle.
Not many methods available:

1 For slow functions f (x), Gauss–Legendre on f (1/x), or a
suitable change of variable for doubly-exponential
integration.

2 For functions f (x) = e−xg(x), use Gauss–Laguerre,
Gauss–Legendre on g(1/x), or a suitable change of
variable for doubly-exponential integration.

Henri Cohen Numerical Recipes for Multiprecision Computations



Numerical Integration
Numerical Summation

Numerical Extrapolation

Integration on a Compact Interval
Integration on an Infinite Interval

Integration on Infinite Intervals: Gaussian Methods

For slow functions: change x into 1/x . For instance∫∞
1 f (x) dx =

∫ 1
0 (f (1/x)/x2) dx , and compute the latter integral

by Gauss–Legendre. Inapplicable for fast since for instance∫∞
1 e−xg(x) dx =

∫ 1
0 (e−1/xg(x)/x2) dx , and e−1/x has a bad

singularity at x = 0.
For fast functions: typical examples f (x) = e−xg(x). The
textbook method is Gauss–Laguerre: unfortunately rarely
applicable because g(x) rarely well approximated by
polynomials.
Gauss–Laguerre inverse (new?): approximate instead g(1/x)
by polynomials. This now works in many other (still few) cases,
such as

∫∞
0 e−x/(1 + x) dx . Need to compute specific

orthogonal polynomials, slow initialization.
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Integration on Infinite Intervals: Doubly-Exponential
Methods

For computing
∫∞

0 f (x) dx :
If f tends to 0 slowly, use the change of variable

x = φ(t) := exp(sinh(t)) .

If f tends to 0 simply exponentially, say as e−x (easy to modify),
use the change of variable

x = φ(t) := exp(t − exp(−t)) .

Implementation: choose the larger value N = D log(D)/1.05 if
slow and N = D log(D)/1.76 if fast, and the same h as in the
compact case. Same comments: use Gaussian methods if
possible (10 times faster at D = 1000), otherwise
doubly-exponential methods, quite robust.
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Summation Methods: Alternating Series I

We come to numerical summation methods. We consider only
two types of sums:

∑
n≥a f (n) (series with positive terms) and

alternating series
∑

n≥a(−1)nf (n), in both cases with f (n) > 0
and tending regularly to 0 at infinity.
For alternating series, I have implemented five different
methods, all having an analogue for series with positive terms.
No need to go into details: the sumalt function (implemented in
Pari/GP), explained in detail in a paper of Rodriguez-Villegas,
Zagier, and the author, but known before, is at the same time
the fastest, most robust, and simplest method, and in addition
is the only method which uses only the values of f (n) for n
integral, and not the extension of f to the real line. In some
cases (when the summand takes a long time to compute), a
variant of this method can be faster.
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Summation of Alternating Series II

Idea: write f (n) =
∫ 1

0 xnw(x) dx for some measure w(x)dx ,
assumed positive. Then
S :=

∑
n≥0(−1)nf (n) =

∫ 1
0 (w(x)/(1 + x)) dx , so for any

polynomial PN such that PN(−1) 6= 0 we have

S =
1

PN(−1)

∑
0≤j≤N−1

cN,ju(j)+RN , with |RN | ≤
supx∈[0,1] |PN(x)|
|PN(−1)|

S ,

where
PN(−1)− PN(X )

X + 1
=

∑
0≤j≤N−1

cN,jX j .
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Summation of Alternating Series III

An almost optimal choice is the shifted Chebyshev polynomial
PN(X ) = TN(1− 2X ) for which the relative error |RN/S|
satisfies |RN/S| ≤ (3 + 2

√
2)−N , so it is immediate to determine

that N = 1.31D. An additional advantage of these polynomials
is that the coefficients cN,j can be computed “on the fly”.
For D = 1000, the implementation requires between 10
milliseconds and 1 second depending on the complexity of
computing the summand.
Note that all alternating summation methods can correctly
compute the “sum” of nonconvergent series such as∑

n≥2(−1)n log(n) or
∑

n≥2(−1)nn.
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Summation of Positive Series: Compendium

Five methods studied:

1 van Wijngaarten’s method.
2 Use of the Euler–MacLaurin formula.
3 Use of the Abel–Plana formula.
4 Discrete Euler–MacLaurin formula.
5 Gaussian summation, method due to H. Monien.
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van Wijngaarten’s Method

Corresponds to the sumpos function of Pari/GP. Uses the
formula

S :=
∑
n≥1

f (n) =
∑
a≥1

(−1)a−1F (a) with F (a) =
∑
j≥0

2j f (2ja) ,

so transforms a series with positive terms into an alternating
series.
Uses f (n) for very large values of n: thus useless if f (n) takes
long to compute when n is large, but useful if f (n) is “explicit”.
In addition, as for sumalt, only uses values of f at integral
points. Apart from that, orders of magnitude slower than other
methods when f (n) tends to 0 slowly (otherwise in general sum
easy to compute).
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Euler–MacLaurin: Theory

Very classical method: see Bourbaki. Basic formula (many
variants), assuming

∑
m≥a f (m) converges:

∑
m≥a

f (m) =
∑

a≤m≤N−1

f (m) +
f (N)

2
+

∫ ∞
N

f (t) dt

−
∑

1≤j≤bk/2c

B2j

(2j)!
f (2j−1)(N) +

(−1)k

k !

∫ ∞
N

f (k)(t)Bk ({t}) dt ,

with B2j the Bernoulli numbers and Bk (t) the Bernoulli
polynomials.
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Euler–MacLaurin: Implementation

Need to compute
∫∞

N f (t) dt , done using one of the methods
seen above (usually doubly-exponential integration since
infinite interval). However, need also to compute the derivatives
f (2j−1)(N), not always easy. In some cases, explicit. In many
other cases, under Pari/GP simply write f (N + x) computed as
a power series in x , and obtain the derivatives from its
coefficients. In other cases, impossible to do this.
Analysis and experimentation shows that a good choice is k
close to 0.41D and even, and N = 6.6D. This is quite heuristic
but works well. Very reasonable method, but only if one can
compute the derivatives.
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Abel–Plana

This is currently the sumnum function of Pari/GP (should be
changed soon). Based on the following result:
Assume that a ∈ Z, that f is holomorphic on <(z) ≥ a,
f (z) = o(exp(2π|=(z)|)) as |=(z)| → ∞ in vertical strips of
bounded width, and f (x) and its derivatives have constant sign
and tend to 0 when x →∞. Then:∑
n≥a

f (n) =

∫ ∞
a−1/2

f (t) dt−i
∫ ∞

0

f (a− 1/2 + it)− f (a− 1/2− it)
e2πt + 1

dt .

Can compute the last integral using the doubly-exponential
methods. Interesting in principle, but between three and ten
times slower than other methods.
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Discrete Euler–MacLaurin: Theory I

As we have seen, the main problem with Euler–MacLaurin is
the difficulty of computing the derivatives f (2j−1)(N). The
discrete forms avoids this problem. Let d be a small positive
real number, and set ∆d (f )(x) = (f (x + d)− f (x − d))/(2d),
which is an approximation to the derivative. First note that it is
trivial to iterate:

∆k
d (f )(x) =

1
(2d)k

∑
0≤j≤k

(−1)k−j
(

k
j

)
f (x − (k − 2j)d) .

Second, note that the asymptotic series
T =

∑
j≥1(−1)j(Bj/j!)f (j−1)(N) which occurs in

Euler–MacLaurin can be written T = W (f )(N), where W is the
differential operator
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Discrete Euler–MacLaurin: Theory II

W =
∑
j≥1

(−1)j Bj

j!
Dj−1 =

1
eD − 1

− 1
D

+ 1 ,

where D = d/dx .
Thus, if δ = D +

∑
i≥2 aiDi is some formal differential operator,

we can compute the reverse power series
D = φ(δ) := δ +

∑
i≥2 a′iδ

i , and replace this in W so as to obtain

W =
1

eφ(δ) − 1
− 1
φ(δ)

+ 1 =
∑
j≥1

(−1)j bj(δ)

j!
δj−1

for some new coefficients bj attached to the operator δ.
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Discrete Euler–MacLaurin: Implementation

In the case δ = ∆d , to avoid catastrophic cancellation we write
for k even:

k∑
j=2

(−1)j bj(∆d )

j!
∆j−1

d (f )(N) =

k/2∑
m=−k/2+1

(−1)m+1cj,mf (N−(2m−1)d)

cj,m =
∑

max(m,1−m)≤j≤k/2

(−1)j
(

2j − 1
j −m

)
b2j(∆d )

(2d)2j−1(2j)!
.

Analysis and experiment suggest choosing d = 1/4,
N = 0.873D, and k = 1.049D, even. The results are
spectacular: it is the most robust of all methods, and apart from
Gauss–Monien summation when applicable, it is also the
fastest: between 0.3 and 30 seconds for D = 1000 depending
on the difficulty of computing the summand. Thus, method of
choice.
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Gauss–Monien Summation: Theory I

Basic ideas of this method:
First idea: use Gaussian integration with respect to the scalar
product

〈f ,g〉 =
∑
n≥1

f (1/n)g(1/n)

n2 ,

equivalent to giving a suitable measure: using the general
Gaussian procedures, compute the moments of the measure
(here ζ(k + 2)), then the coefficients of the three-term recursion
by a Cholesky decomposition, then the orthogonal polynomials
Pn, the nodes as the roots of PN , and finally the weights by the
formula given above. Quite slow initialization, although as usual
afterwards the computation is very fast.
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Gauss–Monien Summation: Theory II

Second idea: to find the orthogonal polynomials Pn, instead of
doing the above, use continued fraction approximations to the
kernel function, here Φ(z) =

∑
n≥1(1/(n − z)− 1/n) (equal to

ψ(1− z) + γ with ψ the logarithmic derivative of the gamma
function, but we do not need this). Write

Φ(z) =
∑
n≥1

(1/(n−z)−1/n) = c(0)z/(1+c(1)z/(1+c(2)z/(1+· · · ))) ,

and let as usual pn(z)/qn(z) be the nth convergent of the
continued fraction. We let Pn(z) = p2n+1(z) and
Qn(z) = q2n+1(z), polynomials of degree n. Then the nodes xi
of Gaussian summation of order N are the roots xi of QN (real,
simple, greater or equal to 1, and in fact the first N/2 are very
close to 1, 2, 3,... ), and the weights wi are simply given by
wi = Pn(xi)/Q′n(xi).
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Gauss–Monien Summation: Implementation

Three aspects:
1 To convert a power series into a continued fraction, we use

the quotient-difference algorithm, interesting in itself:
construct recursively a triangular array from the coefficients
of the series, and read off the coefficients of the continued
fraction from its diagonal. However, quite unstable, so
need to double or triple the working accuracy.

2 To compute the roots of QN , we use fundamentally the fact
that the first half are very close to 1, 2, 3,...: direct Newton
iteration on those, and then compute the last half with
polroots.

3 Analysis shows that a good choice of N is
N = D log(10)/(log(D log(10))− 1), and to work at
accuracy 2D to partly compensate for the instability of the
quotient-difference algorithm.
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that the first half are very close to 1, 2, 3,...: direct Newton
iteration on those, and then compute the last half with
polroots.

3 Analysis shows that a good choice of N is
N = D log(10)/(log(D log(10))− 1), and to work at
accuracy 2D to partly compensate for the instability of the
quotient-difference algorithm.
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Gauss–Monien Summation: Results

As usual with Gaussian methods, orders of magnitude faster
than anything else after initialization, when applicable. For a
spectacular example: S =

∑
n≥1 log(Γ(1 + 1/n))/n for

D = 1000 is computed in 4.8 seconds by this method
(initialization requires 18 seconds), while Euler–MacLaurin
needs 8 minutes, and discrete Euler–MacLaurin needs 2
minutes.
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Generalized Gauss–Monien Summation

This method is made for sums
∑

n≥a f (n) where f has the
asymptotic expansion f (n) = a2/n2 + a3/n3 + · · · . Easy to
generalize to the case f (n) =

∑
m≥2 am/nα(m−1)+β, and also to

sums of the form
∑

n≥a w(n)f (n) for some regular weight
function w(n). Only the initialization step becomes longer, as in
all Gaussian methods, the summation itself is very fast.
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Summation with Positive Terms: Conclusion

The conclusion is clear: whenever possible, use Gauss–Monien
summation. Otherwise, use discrete Euler–MacLaurin.
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Extrapolation Methods: Compendium

Here, we let u(n) be a sequence tending to a limit u as n→∞
in a regular manner, and we want to compute u. The main point
is that u(n) is a priori only defined for n ∈ Z≥0. Seven methods
studied:

1 Use of the sumpos summation program.
2 Use of an integer version of Gauss–Monien summation.
3 Standard Richardson extrapolation.
4 Richardson 3/2-2 extrapolation.
5 Richardson 2-3 extrapolation.
6 Lagrange interpolation.
7 Extrapolation using Zagier’s method.

Henri Cohen Numerical Recipes for Multiprecision Computations



Numerical Integration
Numerical Summation

Numerical Extrapolation

Use of Summation Programs
Richardson Methods
Lagrange Type Methods

Extrapolation Methods: Compendium

Here, we let u(n) be a sequence tending to a limit u as n→∞
in a regular manner, and we want to compute u. The main point
is that u(n) is a priori only defined for n ∈ Z≥0. Seven methods
studied:

1 Use of the sumpos summation program.
2 Use of an integer version of Gauss–Monien summation.
3 Standard Richardson extrapolation.
4 Richardson 3/2-2 extrapolation.
5 Richardson 2-3 extrapolation.
6 Lagrange interpolation.
7 Extrapolation using Zagier’s method.

Henri Cohen Numerical Recipes for Multiprecision Computations



Numerical Integration
Numerical Summation

Numerical Extrapolation

Use of Summation Programs
Richardson Methods
Lagrange Type Methods

Use of Summation Programs

We can of course write u = u(0) +
∑

n≥0(u(n + 1)− u(n)) and
use a summation program: however, only the built-in sumpos
program uses only values of u(n) for integers n. In addition,
sumpos is applicable only to very special sequences.
One can modify Gauss–Monien summation to also have this
restriction: recall that one-half of the nodes xi are very close to
integers 1, 2, 3, etc... Idea: take as new nodes the closest
integer to all the xi , and compute the corresponding weights
using a linear system.
This works, and gives a reasonable method which is orders of
magnitude faster than the above, and applicable to most
sequences. It is usually a little slower than Lagrange-based
methods, but it is the fastest when higher transcendental
functions need to be computed, such as
u(n) = log(Γ(n))− ((n − 1/2) log(n)− n).
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Richardson Methods: the Basic Method

We have explained in the numerical integration section how
Richardson extrapolation works: if for instance
u(n) = u + a/nk + O(1/nk+1) converges to u as 1/nk , then
(2ku(2n)− u(n))/(2k − 1) = u + O(1/nk+1) will converge to u
faster, as 1/nk+1, and we apply this idea recursively.
The main problem with this method is that it requires the
computation of u(2mn) for large m. This is not a difficulty in
double-precision computations, but is usually prohibitive in
multiprecision. It can only be used if there is a “formula” for
u(n), say if u(n) can be computed in time polynomial in log(n).
In those cases, this basic Richardson method is almost always
the best available.
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Richardson Methods: Modified Methods

To attenuate the 2m explosion, we can modify the basic method
in several ways. First, by choosing n divisible by some large
power of 2, say 2a, so that we can first perform a
Richardson-type acceleration with factor 3/2 instead of 2 a
times, and the rest with the usual factor 2.
A second method which is always much better is to use instead
of the sequence M(m) = 2m the sequence M(2m − 1) = 2m

and M(2m) = 3 · 2m, by using after the first doubling the single
auxilliary sequence (3ku(3n)− u(n))/(3k − 1) for a suitable k .
The conclusion is surprising: when u(n) can be computed in
time polynomial in log(n) (a reasonable polynomial of course),
the best extrapolation method is basic Richardson. Otherwise,
non-Richardson methods are always much faster, so the
modified Richardson methods, although theoretically better, are
completely useless!
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Lagrange Interpolation

We have also already seen this in the context of numerical
integration: If for instance u(n) = u +

∑
m≥1 am/nαm, we look

for a function f (x) such that u(n) = f (1/nα), so that u = f (0).
The function f can be obtained by simple Lagrange
interpolation, and the formula for f (0) is particularly simple
when α = 1 or 2, the most frequent cases.
Analysis and experiments show that for α = 1 one should
choose a polynomial of degree N = 1.1D, and work at accuracy
5D/3, while for α = 2 we choose N = 0.9D and accuracy
4D/3. Similar constants can be computed for general α.
This is the fastest method for extrapolation, but is not always
robust, i.e., it may fail in a number of cases.
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Zagier Extrapolation: Theory

Essentially the same as Lagrange, but first presented
differently, and second applied to the sequence u(rn) for some
r with 20 ≤ r ≤ 100, say. Not faster, but much more robust.
Idea: assume for simplicity u(n) = u +

∑
m≥1 am/nm. Choose

suitable k and set v(n) = nku(rn). If ∆ is the forward difference
operator ∆(w)(n) = w(n + 1)− w(n), we have

∆k (v)(n)/k ! = u +
∑

m≥k+1

bm/nm

for other coefficients bm, so much faster convergence to u.
Of course we use

∆k (v)(n) =
∑

0≤j≤k

(−1)k−j
(

k
j

)
v(n + j) .
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Zagier Extrapolation: Implementation

Need to choose r , k , and the working accuracy. Good choices
for r are r = 20, 30,...,100, and the corresponding values of k
are k = z(r)D, with z(20) = 0.48, z(30) = 0.43,...
z(100) = 0.35. Using a working accuracy of 5D/4 + 9 is
sufficient.
This method can be slower or faster than pure Lagrange
interpolation (which essentially corresponds to r = 1), but is
much more robust, so should be used instead if time is not
essential. Roughly: for sequences which take a polynomial
time in log(n) to compute, it is usually faster (but when
applicable, basic Richardson is even faster in that case), and
for other sequences Lagrange interpolation is much faster.
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Extrapolation: Conclusion

Except in very special cases, use Lagrange or Zagier
extrapolation, both being good methods. Zagier extrapolation
being much more robust, if one wants to compute asymptotic
expansions, one uses Zagier extrapolation recursively, and in
this way it is easy to compute 20 or so coefficients of usual
expansions, such as Stirling or similar.
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Thank you for your attention !

Henri Cohen Numerical Recipes for Multiprecision Computations


	Numerical Integration
	Integration on a Compact Interval
	Integration on an Infinite Interval

	Numerical Summation
	Summation: Alternating Sums
	Summation: Positive Terms

	Numerical Extrapolation
	Use of Summation Programs
	Richardson Methods
	Lagrange Type Methods


