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Hypergeometry I

Joint with Fernando Rodriguez-Villegas.

Hypergeometric data :

α = (α1, . . . , αr ) , β = (β1, . . . , βr ) ,

Pochammer symbol (a)m = a(a + 1) · · · (a + m − 1), (generalized)
hypergeometric function :

F (α, β; t) =
∑
m≥0

∏
1≤j≤r (αj)m∏
1≤j≤r (βj)m

tm

(classical case βr = 1, so (βr )m = m!).
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Hypergeometry II

Satisfies a linear differential equation with regular singular points at 0,
1, and∞.
Monodromy at 1 is a complex reflection. Characteristic polynomials of
the monodromy at 0 and∞ :

P0(T ) =
∏

j

(T − e2iπβj ) , P∞(T ) =
∏

j

(T − e2iπαj ) .
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Hypergeometry III

Hypergeometric Assumption : we will assume that these
characteristic polynomials are products of coprime and cyclotomic
polynomials. Several equivalent formulations. The simplest is : αi and
βj rational and

P∞(T )/P0(T ) =
∏
ν≥1

(T ν − 1)γν

for some γν ∈ Z such that
∑

ν νγν = 0. We set γ(T ) =
∑

ν γνT ν .
More complicated but more concrete equivalent statement : for any
integer A, let R(A) be the set of φ(A) rational numbers a/A such that
(a,A) = 1 and 0 ≤ a < A. The assumption means that there exist
integers Ai and Bi such that α =

⋃
i R(Ai) and β =

⋃
i R(Bi)

(concatenation and not union since the Ai or Bi are not necessarily
distinct). It is clear that we may assume that the Ai are distinct from
the Bi , and that r =

∑
i φ(Ai) =

∑
i φ(Bi).
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Hypergeometry IV

Examples :
For r = 1, only possibility α = (1/2), β = (0). For r = 2 exactly 13
possibilities (enumeration given below), for instance α = (1/3,2/3),
β = (0,0).
Examples for r = 4 :

α = (1/2,1/2,1/3,2/3) , β = (1/6,1/6,5/6,5/6) ,

or
α = (1/5,2/5,3/5,4/5) , β = (0,0,0,0) .

In this example,

P0(T ) = (T − 1)4 , P∞(T ) = T 4 + T 3 + T 2 + T + 1 ,

P∞(T )/P0(T ) = (T 5 − 1)/(T − 1)5, hence γ(T ) = T 5 − 5T .
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Associated Motives I

Theorem (essentially N. Katz) : If (α, β) is hypergeometric data
satisfying the fundamental hypergeometric assumption above, for
each t ∈ P1(Q) \ {0,1,∞} there exists a motive H(α, β; t), which is
defined over Q, of rank r , and pure with a certain weight w , explicitly
given in terms of data.
Conjecture : there must therefore exist a global L-function Λ(s),
holomorphic sur C, with functional equation Λ(w + 1− s) = ±Λ(s),
and with an Euler product

Λ(s) = Ns/2L∞(s)L(s) with L(s) =
∏

p

Lp(p−s) =
∑
n≥1

a(n)

ns , where

Lp(T ) =
r∏

j=1

(1− ξjT )−1 , with |ξj | = pw/2

for almost all p.



6

Associated Motives I

Theorem (essentially N. Katz) : If (α, β) is hypergeometric data
satisfying the fundamental hypergeometric assumption above, for
each t ∈ P1(Q) \ {0,1,∞} there exists a motive H(α, β; t), which is
defined over Q, of rank r , and pure with a certain weight w , explicitly
given in terms of data.
Conjecture : there must therefore exist a global L-function Λ(s),
holomorphic sur C, with functional equation Λ(w + 1− s) = ±Λ(s),
and with an Euler product

Λ(s) = Ns/2L∞(s)L(s) with L(s) =
∏

p

Lp(p−s) =
∑
n≥1

a(n)

ns , where

Lp(T ) =
r∏

j=1

(1− ξjT )−1 , with |ξj | = pw/2

for almost all p.



7

Associated Motives II

Katz’s theorem gives precise recipes for the weight w , the
archimedean factor L∞, and the factors Lp for the good primes p. On
the other hand, not for the conductor N (of course divisible only by the
bad primes), nor for the Lp for bad primes, nor for the sign ± of the
f.e. Goal of our work : numerical check of the conjecture, and deduce
conjectures for the unknown quantities (N, Lp for p bad, and ±).
We have treated hundreds of examples, in degree r = 2, r = 4, and
r = 6. One of the best-known is the case

α = (1/5,2/5,3/5,4/5) , β = (0,0,0,0) ,

which in fact corresponds to the theory of mirror symmetry on the
Calabi–Yau quintic threefold

x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − 5tx1x2x3x4x5 .
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Details on the Motive : The function L(x) I

Recall that if P0 and P∞ are the characteristic polynomials of the
monodromies at 0 and∞ of the hypergeometric diff. eq. we set

P∞(T )/P0(T ) =
∏
ν≥1

(T ν − 1)γν

for some γν ∈ Z such that
∑

ν νγν = 0, and γ(T ) =
∑

ν γνT ν .

We define
L(x) :=

∑
ν≥1

γν({νx} − 1/2) ,

where {z} is the fractional part of z. Then L is locally constant, right
continuous, periodic of period 1, and such that

L+(−x) = −L−(x) where L±(x) := lim
y→x±

L(x) .

Note that by right continuity we have L+(x) = L(x).
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The function L(x) II

We define the weight w of the motive as

w = max
x∈[0,1[

L(x)− min
x∈[0,1[

L(x)− 1 .

It is a nonnegative integer,

max
x∈[0,1[

L(x) = − min
x∈[0,1[

L(x) =
w + 1

2
,

so that L±(x) + (w + 1)/2 is integral-valued.

Since
L−(1) =

∑
ν≥1

γν(ν − 1/2) = −(1/2)
∑
ν≥1

γν

and L−(x) + (w + 1)/2 is integral valued, it follows that

w + 1 ≡
∑
ν≥1

γν (mod 2) .
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The Hodge Polynomial I

Set
`(x) := L+(x)− L−(x) ,

which measures the jumps at discontinuities. It is integral valued and
in fact

`(x) = |{i | αi = x}| − |{j | βj = x}| .

We also have `(−x) = `(x).

We define the Hodge polynomial h(T ) as

h(T ) :=
∑
`(x)>0

TL
−(x)+(w+1)/2[`(x)] ,

where
[`] := 1 + T + · · ·+ T `−1 .
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The Hodge Polynomial II

Easy to show that :
1 h is reciprocal of degree w (T wh(1/T ) = h(T )) and has

nonnegative integer coefficients.
2

h(T ) =
∑
`(x)<0

TL
+(x)+(w+1)/2[−`(x)] .

Conjecture (Corti–Golyshev) : The Hodge numbers of the motive
H(α, β; t) are the coefficients of h(T ) :

h(T ) =
∑

p+q=w

hp,qT p .

As already mentioned this gives the gamma factors of Λ(s) at least
when w is odd (otherwise must look at action of complex conjugation
on (w/2,w/2) piece) :

L∞(s) =
∏
p<q

ΓC(s − p)hp,q .
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Recipe for the Lp for good primes p I

We will define below the trace of Frobenius aq(t) = Tr(Frobq), and we
will then set as usual

Lp(T ) = exp

(∑
f≥1

apf (t)
f

T f

)
.

The fundamental quantity which occurs in the definition of aq(t) is the
following : for any multiplicative character χ of F∗q we set

Q(χ) =
∏
ν

g(χν)γν ,

where γν is as above and g(χν) is the corresponding Gauss sum.
Using Möbius inversion and elementary formulas for Gauss sums, for
suitable easily computed integers a and b we also have

Q(χ) = (−1)aqb

∏
i
∏

d |Ai
g(χ−d )µ(Ai/d)∏

i
∏

d |Bi
g(χ−d )µ(Bi/d) ,

where the Ai and Bi are as above.
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Recipe for the Lp for good primes p II

The hypergeometric assumptions imply that Q(χ) can be expressed
only in terms of Jacobi sums (which belong to a smaller number
field), see below.

Finally, for t 6= 0, 1, or∞ we set

aq(t) =
qd

1− q

1 +
∑
χ 6=χ0

χ(Mt)Q(χ)

 ,

where χ ranges over all nontrivial characters of Fq, for certain
constants d and M which I do not define here (of course M is only a
normalizing factor, could change Mt into t , but less clean). By Galois
theory this is in Q, and it is easy to show that it is in fact in Z, as it
should if it is indeed a trace.
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Computation of the Lp for good primes p I

In the case (α, β) = (1/5,2/5,3/5,4/5), (0,0,0,0) mentioned above,
we have the precise formula :

aq(t) =
1

1− q

1 +
∑
χ 6=χ0

χ(55t)J(χ, χ, χ, χ)

 ,

where q = pf and J is the generalized Jacobi sum :

J(χ1, . . . , χr ) =
∑

x1+···+xr=1

χ1(x1) · · ·χr (xr ) .

Elementary idea 1 : the local factors Lp have degree 4 and are
Weil-symmetrical. Therefore only need to compute ap and ap2 .
Elementary idea 2 : To obtain B terms of the Dirichlet series, need of
course ap for p ≤ B, but ap2 only for p ≤ B1/2.
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Computation of the Lp for good primes p II

Main computational task is the computation of the Jacobi sums.
(1) : Direct method.

By elementary properties of Jacobi sums, an order r Jacobi sum as
above can be expressed as a product of r − 1 usual Jacobi sums of
order 2, of the form :

J(χ1, χ2) =
∑
x∈Fq

χ1(x)χ2(1− x) .

The direct computation of these sums requires essentially O(q)
operations, neglecting the computation of the χi values, and since we
need q − 2 Jacobi sums, the total cost of the computation of aq(t) is
of the order of O((r − 1)q2).
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Computation of the Lp for good primes p III

(2). The use of Gauss sums.

Recall that

g(χ) =
∑
x∈F∗

q

χ(x) exp(2iπ TrFq/Fp (x)/p) .

It is well-known that

J(χ1, . . . , χr ) =

∏
j g(χj)

g(
∏

j χj)

when all the characters are nontrivial (and simpler formulas
otherwise). A priori, why use Gauss sums, more complicated than
Jacobi sums, and belong to a larger number field than Jacobi sums ?
A posteriori, they are in fact useful.
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Computation of the Lp for good primes p IV

Let ω be a generator of the cyclic group F̂∗q. Taking our favorite
example, we thus have

aq(t) =
1

1− q

1 +
∑

1≤r≤q−2

ωr (55t)J(ωr , ωr , ωr , ωr )

 .

If we compute once and for all the g(ωr ) for 1 ≤ r ≤ q − 2, the above
computation requires time O(q), for a total time of O(q2), hence gain
of a factor r − 1.
(3). Use of Θ functions.
Idea of S. Louboutin : when q = p is prime (by far the largest part of
the computation), Gauss sums are direcly linked to the root numbers
in the functional equation of L-functions, but even better, of
Θ-functions, associated to the characters. These can be computed in
time O(q1/2+ε), so a considerable gain : combined with the preceding
ideal, total cost O(q3/2+ε).
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Computation of the Lp for good primes p V

(4). Use of p-adic methods.
The marvelous formula of Gross–Koblitz allows us to express Gauss
sums (for all q, not only for q = p) in terms of the Morita p-adic
gamma function Γp. There exist efficient methods to compute this
function, time O(p1+ε), so in principle no more efficient, even less
than using theta functions.

The main interest of the method is that we only need to compute
values modulo p or p2, since we know that aq(t) is an integer and
that we have Weil–Deligne bounds. Although this is a O(q2) method,
it is the best available when q = p2, and even when q = p, since we
can work mod p and the implicit constant of O() is very small, it is
quite competitive in practice (p ≤ 104 for instance).
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Verification of the Functional Equation I

(Also Implemented in several computer packages such as
T. Dokschitser and lcalc of M. Rubinstein).
Even assuming that we know N and Lp for p bad, to check the
functional equation Λ(w + 1− s) = ±Λ(s) need to compute Λ(s). For
this, efficient general recipes :
Let K (x) be the inverse Mellin transform of L∞(s), i.e.,∫ ∞

0
ts−1K (t) dt = L∞(s) ,

and set
γ(s, x) =

∫ ∞
x

ts−1K (t) dt .

For any t0 > 0 we have

L∞(s)L(s) =
∑
n≥1

a(n)

ns γ(s,nt0/N1/2)±
∑
n≥1

a(n)

nw+1−s γ(w+1−s,n/(t0N1/2)) .

This series converges exponentially fast, but slows down if N is large.
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Verification of the Functional Equation II

The “method” is thus as follows : we guess values for N and the bad
Euler factors Lp (a lot of information is known about them), and we
test if the above expression is independent of t0, by choosing for
instance t0 = 1 and t0 = 1.1.
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Verification of the Functional Equation III

In the above computation, must do three costly computations. First,
compute the inverse Mellin transform K (x) (see below). Second,
compute the partial Mellin transforms

∫∞
x ts−1K (t) dt . Finally, the third

consists in computing the two series of the form.∑
n≥1(a(n)/ns)γ(s,nt0/N1/2).

Elementary idea 3 : to check the functional equation, there is no
need to come back to the Dirichlet series by computing

∫∞
x ts−1K (t).

Indeed, we can write

Λ(s) =

∫ ∞
0

ts−1F (N1/2t) dt ,

so the f.eq. is in our case equivalent to

F (1/t) = ±tw+1F (t) .

Thus we only check this, and so only need to compute K (x) and
series sums.
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Verification of the Functional Equation IV

The archimedean factor L∞(s) is up to exponential factors Qs, of the
form Γ(s), Γ(s)Γ(s − 1), Γ(s)Γ(s − 1)Γ(s − 2) for instance (can of
course also have Γ(s/2), etc...) The precise recipe for this factor in a
very general context is due to Serre around 1970. It depends on the
Hodge numbers hp,q of the motive, which can easily be computed
from the hypergeometric data, as can the weight w . More precisely :
if as usual ΓC(s) = (2π)−sΓ(s) and ΓR(s) = π−s/2Γ(s/2) then

L∞(s) = Ns/2
∏
p<q

p+q=w

ΓC(s−p)hp,q
∏

p=q=w/2

ΓR(s−p)h+
p,p ΓR(s−p+1)h−

p,p ,

where the second product of course occurs only in even weight and
h±p,p are the dimensions of the ±-eigenspaces of complex conjugation
on Hp,p of the motive.
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Verification of the Functional Equation V

The computation of the inverse Mellin transform of the archimedean
factor is a fundamental problem for which many solutions exist, and of
course have been implemented.

Recall that the inverse Mellin transform is given by

K (x) =
1

2iπ

∫ σ+i∞

σ−i∞
γ(s)x−s ds ,

for σ sufficiently large. We move the line of integration to the left until
−∞, and we catch all the residues along the way. This allows us to
express K (x) as a power series, together with finitely many
logarithmic terms or negative powers of x .
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Verification of the Functional Equation VI

It is easy to show that these series converge like the series∑
n≥0

(−1)n xn

(n!)r/2 ,

where r is the degree of the motive, in other words the number of α or
of β, or equivalently the number of Γ(s/2) factors, recalling that
Γ(s − p) counts for 2.
In the case r = 2, the factor is Γ(s) whose inverse Mellin transform is
e−x , nothing to add. For r = 4, the inverse Mellin transform is
essentially the well-known K -Bessel function K1(x). For r = 6 the
convergence is in 1/n!3.
Although some cancellation exists, it is no problem to use the above
series even when x is large, for r ≥ 2, and even better for r ≥ 4.
Otherwise, there exist asymptotic expansions for x →∞.
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Conjectures I

Three types of prime numbers :
(1) Wild : those which divide the denominator of one of the αj or βj .
(2) Tame : not wild, and such that either vp(t) > 0, vp(1/t) > 0, or
vp(t − 1) > 0.
(3) Good : all the other primes.
We have given the recipe for Lp(T ) when p is good, and in that case
p - N, the conductor. When p is tame, we have been able to obtain
precise (but complicated) conjectures, both for Lp(T ) and for vp(N).
They should not be too difficult to prove.
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Conjectures II

When p is wild, a lot of experimental data and conjectures, very little
precise conjectures. Sample phenomenon, only partly understood : if
p is wild and vp(t) tends to −∞, then vp(N) has a behavior of the
form (almost random numbers) :

12, 8, 9, 6, 5, 6, 4, 3, 0, 2, 2, 0, 2, 2, 0, 2, 2, 0

for vp(t) = −1, −2, −3, · · · . In other words it starts to “decrease”,
with possible local increases, then it reaches 0 for a certain critical
value of vp(t), and then it is periodic with small amplitued. We have a
precise conjecture for the critical value.
Example in dimension 0 : the Belyi polynomials which occur for
suitable hypergeometric data : let a ≥ 2 and b ≥ 2 be coprime (not
absolutely necessary) and let

Pt (X ) = X a(1− X )b − aabb

(a + b)a+bt
.

Then the discriminant N of the number field generated by Pt has
similar behavior for p | ab(a + b) (i.e., wild).
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Examples

We give examples for r = 2. As mentioned, there are exactly 13 pairs
(α, β) of possible hypergeometric data. Three have motivic weight 0
(hence functional equation s 7→ 1− s), corresponding to three
families of number fields. The other ten have motivic weight 1 (func.
eq. s 7→ 2− s), and correspond to families of elliptic curves, hence by
Wiles to families of modular cusp forms of weight 2.
Even though very explicit and general, we do not know how to prove
modularity of these ten families without Wiles, and a dream is that
perhaps it could be possible, since the data is purely of a
combinatorial (as opposed to geometric) nature.
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Case (1)

α = {1/2,1/2}, β = (0,0) .

ap(t) =
1

1− p

1 +
∑

1≤r≤p−2

J(r , r)2ωr (16t)

 .

If vp(t) = 0 :
ap(t) = p − 3− Np(t) ,

Np(t) number of affine Fp-points on x(x − 1)y(y − 1) = a, with
a = 1/(16t).

ap(t) = p + 1−Mp(t) ,

Mp(t) number of projective points on

Y 2 + XY = X (X − a)2 .
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Case (2)

α = {1/3,2/3}, β = (0,0) .

ap(t) =
1

1− p

1 +
∑

1≤r≤p−2

J(r , r , r)ωr (27t)

 .

If vp(t) = 0 :
ap(t) = p − 2− Np(t) ,

Np(t) number of affine Fp-points on xy(1− x − y) = a, with
a = 1/(27t).

ap(t) = p + 1−Mp(t) ,

Mp(t) number of projective points on

Y 2 + XY + aY = X 3 .
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Case (3)

α = {1/4,3/4}, β = (0,0) .

ap(t) =
1

1− p

1 +
(
−t
p

)
p +

∑
1≤r≤p−2

J(r , r ,2r)ωr (64t)

 .

If vp(t) = 0 :
ap(t) = p − 2−

(
−t
p

)
− Np(t) ,

Np(t) number of affine Fp-points on x2y(1− x − y) = a, with
a = 1/(64t).

ap(t) = p + 1−Mp(t) ,

Mp(t) number of projective points on

Y 2 + XY = X 3 + aX ; .
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Case (4)

α = {1/6,5/6}, β = (0,0) .

ap(t) =
1

1− p

(
1 +

((−3t
p

)
+
(

2t
p

)
3

+
(

2t
p

)−1

3

)
p

+
∑

1≤r≤p−2

J(r ,2r ,3r)ωr (432t)
)
.

If vp(t) = 0 :

ap(t) = p − 2−
((−3t

p

)
+
(

2t
p

)
3

+
(

2t
p

)−1

3

)
− Np(t) ,

Np(t) number of affine Fp-points on x3y2(1− x − y) = a, with
a = 1/(432t).

ap(t) = p + 1−Mp(t) ,

Mp(t) number of projective points on

Y 2 + XY = X 3 − a .
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Case (8)

α = {1/2,1/2}, β = (1/3,2/3) .

If vp(t) = 0 :

ap(t) = p −
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−3t

p

)
+
(
−3t

p

)
4

+
(
−3t

p

)−1

4

)
− Np(t) ,
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a = 27/(16t).
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Case (9)

α = {1/2,1/2}, β = (1/4,3/4) .

If vp(t) = 0 :
ap(t) = p −

(
−t
p
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− Np(t) ,
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Case (10)

α = {1/2,1/2}, β = (1/6,5/6) .

If vp(t) = 0 :

pap(t) = p(p2+6p−12)−
((
−3t

p

)
+
(

t
p

)
3
J(ρ3, ρ3)2+

(
t
p

)−1

3
J(ρ−1

3 , ρ−1
3 )2

)
−Np(t) ,

Np(t) number of affine Fp-points on the threefold :
x3y2(1− x − y) = z(1− z)w(1− w)/a, with a = 27/t .

ap(t) = p + 1−Mp(t) ,

Mp(t) number of projective points on

Y 2 = X 3 − (a/4)(X − 1)2 .
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Case (11)
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Mp(t) number of projective points on

Y 2 − aY = X 3 − aX .
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Case (12)
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Y 2 = X 3 − 3aX + 4a + a2/4 .
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Case (13)
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Y 2 = X 3 − aX + a .
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