EXERCISES N° 1, BASIC NOTIONS

Note. Exercises marked with $a \star$ are more difficult.

Exercise 1 (A short quizz). Let $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]$ code and $G m, H$ be respectively a generator and a parity check matrix of C. In what follow we list operations on G yielding a new matrix G^{\prime}. For any one:

- does G^{\prime} generate the same code?
- if not,
- has the new code generated by G^{\prime} the same length?
- a larger dimension?
- a smaller dimension?
- might this code have a larger minimum distance?
- a smaller minimum distance?
(1) Removing a row;
(2) swapping two rows;
(3) removing a column;
(4) swapping two columns;
(5) adding an additional row drawn at random;
(6) adding an additional row defined as the sum of all the other rows;
(7) adding an additional column defined as the sum of all the other columns.

Same questions when the operations are applied to H.

Exercise $2\left((u \mid u+v)\right.$ construction). Let C, C^{\prime} be two codes of respective parameters $[n, k, d]_{q}$ and $\left[n, k^{\prime}, d^{\prime}\right]_{q}$ with $d^{\prime} \geqslant 2 d$. We consider the code $C^{\prime \prime}$ defined as:

$$
C^{\prime \prime}=\left\{(u \mid u+v), \text { such that } u \in C, v \in C^{\prime}\right\}
$$

where "" denotes the concatenation of words. Prove that $C^{\prime \prime}$ has parameters $\left[2 n, k+k^{\prime}, 2 d\right]$.

Exercise 3 (Product of codes). \star Given two codes $C, C^{\prime} \subseteq \mathbb{F}_{q}^{n}$, the product $C \otimes C^{\prime}$ is defined as
$C \otimes C^{\prime}:=\operatorname{span}_{\mathbb{F}_{q}}\left\{\left(c_{1} c_{1}^{\prime}, \ldots, c_{1} c_{n}^{\prime}, c_{2} c_{1}^{\prime}, \ldots, c_{2} c_{n}^{\prime}, \ldots, c_{n} c_{1}^{\prime}, \ldots, c_{n} c_{n}^{\prime}\right)\right.$, such that, $\left.c \in C, c^{\prime} \in C^{\prime}\right\}$.
A far more comfortable way to see them is to see codewords of $C \otimes C^{\prime}$ as $n \times n$ matrices and for this point of view:

$$
C \otimes C^{\prime}=\operatorname{span}_{\mathbb{F}_{q}}\left\{c^{T} \cdot c^{\prime} \mid c \in C, c^{\prime} \in C^{\prime}\right\}
$$

where the ${ }^{T}$ stands for the matrix transposition.
(1) Prove that $C \otimes C^{\prime}$ equals the space of matrices whose rows are in C^{\prime} and columns are in C.
(2) Prove that $C \otimes C^{\prime}$ is $\left[n^{2}, k k^{\prime}, d d^{\prime}\right]$ and that its miniumum weight codewords are of the form $c^{T} \cdot c^{\prime}$ where c has weight d and c^{\prime} has weight d^{\prime}.

Exercise 4 (The linear Gilbert Varshamov bound). \star
(1) Let $0<k<n$. Compute the number rank k matrices $\mathfrak{M}_{k \times n}\left(\mathbb{F}_{q}\right)$.

Indication: The first row of such a matrix can be any nonzero vector of \mathbb{F}_{q}^{n}, the second one can be any arbitrary vector non collinear to the first one... the i-th one can be any arbitrary vector out of the spam of the $(i-1)$ previous ones...
(2) Given a code C of parity-check matrix H, prove that the minimum distance d is the smallest integer ℓ such that there exist ℓ distinct columns of H which are non collinear.
(3) Prove that if

$$
q^{n} \geqslant q^{k} \sum_{i=0}^{d-2}\binom{n-1}{i}(q-1)^{i}
$$

Then, there exists a k-dimensional code C of length n and distance $\geqslant d$.
Indication : We will construct iteratively a parity-check matrix of C, first construct an invertible $(n-k) \times(n-k)$ matrix. Then, add columns which forms a linearly independent family with any $d-2$ other column vectors among those previoulsy constructed. The above bound is there to assert the existence of such an additional column.

