EXERCISES N° 2, DUALITY

Exercise 1. Let $C \subset \mathbb{F}_q^n$ be a code. Let $\mathcal{I} \subseteq \{1, \ldots, n\}$. We define the following codes constructed from C:

• The punctured code on \mathcal{I} is defined as:

$$\mathcal{P}_{\mathcal{I}}(C) := \{ (c_i)_{i \in \mathcal{I}} \mid c \in C, \} \subseteq \mathbb{F}_q^{|\mathcal{I}|}.$$

Roughly speaking, it is the set of codewords of C where the positions out of \mathcal{I} are removed.

• The shortened code on \mathcal{I} is defined as:

$$\mathcal{S}_{\mathcal{I}}(C) := \{ (c_i)_{i \in \mathcal{I}} \mid c \in C, \forall i \notin \mathcal{I}, c_i = 0 \} \subseteq \mathbb{F}_q^{|\mathcal{I}|}.$$

It is the set of codewords supported by \mathcal{I} which is punctured at \mathcal{I}

Prove that $(\mathcal{P}_{\mathcal{I}}(C))^{\perp} = \mathcal{S}_{\mathcal{I}}(C^{\perp})$ and $(\mathcal{S}_{\mathcal{I}}(C))^{\perp} = \mathcal{P}_{\mathcal{I}}(C^{\perp})$

Exercise 2. Let $\mathbb{F}_{q^m}/\mathbb{F}_q$ be an extension of finite fields. Recall that the *trace* of $\mathbb{F}_{q^m}/\mathbb{F}_q$ is defined as:

$$\operatorname{Tr}_{\mathbb{F}_{q^m}/\mathbb{F}_q} : \left\{ \begin{array}{ccc} \mathbb{F}_{q^m} & \longrightarrow & \mathbb{F}_q \\ x & \longmapsto & x + x^q + x^{q^2} + \dots + x^{q^{m-1}} \end{array} \right.$$

- (1) Prove that this map is an \mathbb{F}_q -linear form over \mathbb{F}_{q^m} .
- (2) Prove that this map is surjective. Indication: use the fact that the polynomial $X + X^q + \cdots + X^{q^{m-1}}$ cannot have q^m roots.
- (3) Prove that the map

$$\begin{cases} \mathbb{F}_{q^m} \times \mathbb{F}_{q^m} \longrightarrow \mathbb{F}_q \\ (x, y) \longmapsto \operatorname{Tr}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(xy) \end{cases}$$

is \mathbb{F}_q -bilinear, symmetric and non degenerated.

(4) Deduce from the previous question that for all linear form $\varphi : \mathbb{F}_{q^m} \to \mathbb{F}_q$, there exists a unique $a_{\varphi} \in \mathbb{F}_{q^m}$ such that

$$\forall x \in \mathbb{F}_{q^m}, \ \varphi(x) = \operatorname{Tr}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(a_{\varphi}x).$$

(5) Let $C \subseteq \mathbb{F}_{q^m}^n$, we recall the definitions of subfield subcodes and trace codes:

$$C_{|\mathbb{F}_q} := C \cap \mathbb{F}_q^n$$

Tr(C) := { (Tr_{\mathbb{F}_qm/\mathbb{F}_q(c_1), \ldots, Tr_{\mathbb{F}_qm/\mathbb{F}_q}(c_n)) | c \in C }.}

Prove that we always have $C_{|\mathbb{F}_q} \subseteq \operatorname{Tr}(C)$.

Indication: Because of the surjectivity of $Tr_{\mathbb{F}_{q^m}/\mathbb{F}_q}$, there exists $\gamma \in \mathbb{F}_{q^m}$ such that $Tr_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\gamma) = 1$.

Exercise 3. \star

Prove additive Hilbert's 90 Theorem for finite fields:

$$\forall x \in \mathbb{F}_{q^m}, \ \operatorname{Tr}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(x) = 0 \iff \exists a \in \mathbb{F}_{q^m}, \ x = a^q - a.$$

Exercise 4. \star

The goal of this exercise is to prove Delsarte's Theorem: For all code $C \subseteq \mathbb{F}_{q^m}^n$,

$$(C_{|\mathbb{F}_q})^{\perp} = \operatorname{Tr}(C^{\perp}).$$

- (1) Prove inclusion " \supset ".
- (2) To prove the converse inclusion, we will prove the equivalent one:

$$\left(\operatorname{Tr}(C^{\perp})\right)^{\perp} \subseteq C_{|\mathbb{F}_q}.$$

- For that we assume this inclusion to be wrong and take $y \in (\operatorname{Tr}(C^{\perp}))^{\perp} \setminus C_{|\mathbb{F}_q}$. (a) Regarding y as an element of $\mathbb{F}_{q^m}^n$ (instead of \mathbb{F}_q^n), prove the existence of $x \in C^{\perp}$ such that $\langle x, y \rangle_{\mathbb{F}_{q^m}^n} \neq 0$.
- (b) Prove the existence of $\gamma \in \mathbb{F}_{q^m}$, such that

$$\operatorname{Ir}_{\mathbb{F}_{q^m}/\mathbb{F}_q}\left(\gamma\langle x, y\rangle_{\mathbb{F}_{q^m}^n}\right) \neq 0.$$

- (c) Prove that $\langle \operatorname{Tr}_{\mathbb{F}_{q^m}/\mathbb{F}_q}(\gamma x), y \rangle_{\mathbb{F}_q^n} \neq 0.$
- (d) Conclude.
- (3) Prove that if C is $[n, k, d]_{q^m}$ then $C_{|\mathbb{F}_q}$ is $[n, \ge n m(n-k), \ge d]_q$.

Exercise 5. Let C be the binary Hamming code with parity-check matrix

- (1) Prove that C is $[7, 4, 3]_2$.
- (2) Prove that $(1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1) \in C$ and deduce that the weight enumerator $P_C^{\sharp}(x, y)$ is symmetric: $P_C^{\sharp}(x, y) = P_C^{\sharp}(y, x).$
- (3) Using McWilliams' identity, compute the polynomials P_C^{\sharp} and $P_{C^{\perp}}^{\sharp}$ without enumerating the codes.