EXERCISES N° 2, DUALITY

Exercise 1. Let $C \subset \mathbb{F}_{q}^{n}$ be a code. Let $\mathcal{I} \subseteq\{1, \ldots, n\}$. We define the following codes constructed from C :

- The punctured code on \mathcal{I} is defined as:

$$
\mathcal{P}_{\mathcal{I}}(C):=\left\{\left(c_{i}\right)_{i \in \mathcal{I}} \mid c \in C,\right\} \subseteq \mathbb{F}_{q}^{|\mathcal{I}|} .
$$

Roughly speaking, it is the set of codewords of C where the positions out of \mathcal{I} are removed.

- The shortened code on \mathcal{I} is defined as:

$$
\mathcal{S}_{\mathcal{I}}(C):=\left\{\left(c_{i}\right)_{i \in \mathcal{I}} \mid c \in C, \forall i \notin \mathcal{I}, c_{i}=0\right\} \subseteq \mathbb{F}_{q}^{|\mathcal{I}|}
$$

It is the set of codewords supported by \mathcal{I} which is punctured at \mathcal{I}
Prove that $\left(\mathcal{P}_{\mathcal{I}}(C)\right)^{\perp}=\mathcal{S}_{\mathcal{I}}\left(C^{\perp}\right)$ and $\left(\mathcal{S}_{\mathcal{I}}(C)\right)^{\perp}=\mathcal{P}_{\mathcal{I}}\left(C^{\perp}\right)$
Exercise 2. Let $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ be an extension of finite fields. Recall that the trace of $\mathbb{F}_{q^{m}} / \mathbb{F}_{q}$ is defined as:

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}:\left\{\begin{array}{ccc}
\mathbb{F}_{q^{m}} & \longrightarrow & \mathbb{F}_{q} \\
x & \longmapsto x+x^{q}+x^{q^{2}}+\cdots+x^{q^{m-1}} .
\end{array}\right.
$$

(1) Prove that this map is an $\mathbb{F}_{q}-$ linear form over $\mathbb{F}_{q^{m}}$.
(2) Prove that this map is surjective.

Indication: use the fact that the polynomial $X+X^{q}+\cdots+X^{q^{m-1}}$ cannot have q^{m} roots.
(3) Prove that the map

$$
\left\{\begin{array}{ccc}
\mathbb{F}_{q^{m}} \times \mathbb{F}_{q^{m}} & \longrightarrow & \mathbb{F}_{q} \\
(x, y) & \longmapsto \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}(x y)
\end{array}\right.
$$

is \mathbb{F}_{q}-bilinear, symmetric and non degenerated.
(4) Deduce from the previous question that for all linear form $\varphi: \mathbb{F}_{q^{m}} \rightarrow \mathbb{F}_{q}$, there exists a unique $a_{\varphi} \in \mathbb{F}_{q^{m}}$ such that

$$
\forall x \in \mathbb{F}_{q^{m}}, \varphi(x)=\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(a_{\varphi} x\right)
$$

(5) Let $C \subseteq \mathbb{F}_{q^{m}}^{n}$, we recall the definitions of subfield subcodes and trace codes:

$$
\begin{aligned}
C_{\mid \mathbb{F}_{q}} & :=C \cap \mathbb{F}_{q}^{n} \\
\operatorname{Tr}(C) & :=\left\{\left(\operatorname{Tr}_{\mathbb{F}_{q^{m} / \mathbb{F}_{q}}}\left(c_{1}\right), \ldots, \operatorname{Tr}_{\mathbb{F}_{q^{m} / \mathbb{F}}}\left(c_{n}\right)\right) \mid c \in C\right\} .
\end{aligned}
$$

Prove that we always have $C_{\mid \mathbb{F}_{q}} \subseteq \operatorname{Tr}(C)$.
Indication: Because of the surjectivity of ${T r_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}}$, there exists $\gamma \in \mathbb{F}_{q^{m}}$ such that $\operatorname{Tr}_{\mathbb{F}_{q^{m} / \mathbb{F}_{q}}}(\gamma)=1$.

Exercise 3. 夫

Prove additive Hilbert's 90 Theorem for finite fields:

$$
\forall x \in \mathbb{F}_{q^{m}}, \operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}(x)=0 \Longleftrightarrow \exists a \in \mathbb{F}_{q^{m}}, x=a^{q}-a .
$$

Exercise 4. 夫

The goal of this exercise is to prove Delsarte's Theorem: For all code $C \subseteq \mathbb{F}_{q^{m}}^{n}$,

$$
\left(C_{\mid \mathbb{F}_{q} q}\right)^{\perp}=\operatorname{Tr}\left(C^{\perp}\right) .
$$

(1) Prove inclusion "?".
(2) To prove the converse inclusion, we will prove the equivalent one:

$$
\left(\operatorname{Tr}\left(C^{\perp}\right)\right)^{\perp} \subseteq C_{\mid \mathbb{F}_{q}} .
$$

For that we assume this inclusion to be wrong and take $y \in\left(\operatorname{Tr}\left(C^{\perp}\right)\right)^{\perp} \backslash C_{\mid \mathbb{F}_{q}}$.
(a) Regarding y as an element of $\mathbb{F}_{q^{m}}^{n}$ (instead of \mathbb{F}_{q}^{n}), prove the existence of $x \in C^{\perp}$ such that $\langle x, y\rangle_{\mathbb{F}_{q^{m}}^{n}} \neq 0$.
(b) Prove the existence of $\gamma \in \mathbb{F}_{q^{m}}$, such that

$$
\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}\left(\gamma\langle x, y\rangle_{\mathbb{F}_{q^{m}}^{m}}\right) \neq 0
$$

(c) Prove that $\left\langle\operatorname{Tr}_{\mathbb{F}_{q^{m}} / \mathbb{F}_{q}}(\gamma x), y\right\rangle_{\mathbb{F}_{q}^{n}} \neq 0$.
(d) Conclude.
(3) Prove that if C is $[n, k, d]_{q^{m}}$ then $C_{\mid \mathbb{F}_{q}}$ is $[n, \geqslant n-m(n-k), \geqslant d]_{q}$.

Exercise 5. Let C be the binary Hamming code with parity-check matrix

$$
\left(\begin{array}{lllllll}
1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

(1) Prove that C is $[7,4,3]_{2}$.
(2) Prove that $(11111111) \in C$ and deduce that the weight enumerator $P_{C}^{\sharp}(x, y)$ is symmetric: $P_{C}^{\sharp}(x, y)=P_{C}^{\sharp}(y, x)$.
(3) Using McWilliams' identity, compute the polynomials P_{C}^{\sharp} and $P_{C^{\perp}}^{\sharp}$ without enumerating the codes.

