EXERCISES $\mathrm{N}^{\circ} 3$, MDS AND REED-SOLOMON CODES

Exercise 1 (Singleton bound for nonlinear codes). Let $C \subset \mathbb{F}_{q}^{n}$ be a nonlinear code of minimum distance d. Prove that

$$
|C| \leqslant q^{n-d+1}
$$

Indication: use the restriction to C of the $\operatorname{map}\left\{\begin{array}{ccc}\mathbb{F}_{q}^{n} & \longrightarrow & \mathbb{F}_{q}^{n-d+1} \\ x & \longmapsto & \left(x_{d}, \ldots, x_{n}\right)\end{array}\right.$.
Exercise 2 (Extended Reed-Solomon Codes). Let $\alpha \stackrel{\text { def }}{=}\left(\alpha_{1}, \ldots, \alpha_{q}\right) \in \mathbb{F}_{q}^{n}$ be such that the α_{i} 's are pairwise distinct. That is, the set of elements of \mathbb{F}_{q} is $\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$. Let $k \leqslant q$ be an integer and $\mathbb{F}_{q}[z]_{<k}$ be the space of polynomials of degree strictly less than k. For all $f \in$ $\mathbb{F}_{q}[z]_{<k}$, we define $\mathrm{ev}_{\infty, k-1}(f)$, the evaluation at infinity of f as $\mathrm{ev}_{\infty, k-1}(f):=\left(z^{k-1} f(1 / z)\right)_{z=0}$ Let $\mathbf{E R S}_{k}(\alpha)$ be the Extended Reed Solomon (ERS) code defined as the image of the linear map

$$
\left\{\begin{aligned}
& \mathbb{F}_{q}[z]_{<k} \longrightarrow \\
& \mathbb{F}_{q}^{q+1} \\
& f \longmapsto\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{q}\right), \mathrm{ev}_{\infty, k-1}(f)\right) .
\end{aligned}\right.
$$

(1) Prove that for all $f \in \mathbb{F}_{q}[z]_{<k}, \mathrm{ev}_{\infty, k-1}(f)$ is the coefficient f_{k-1} of x^{k-1} in f. In particular, it is 0 if and only if f has degree $<k-1$.
(2) Prove that $\mathbf{E R S}_{k}(\alpha)$ is MDS.
(3) Prove that the dual of an ERS code is an ERS code.

Exercise 3 (Higher weights). Let $C \subseteq \mathbb{F}_{q}^{n}$ be an $[n, k, d]_{q}$ code. Let $\mathcal{I}=\left\{i_{1}, \ldots, i_{r}\right\} \subseteq$ $\{1, \ldots, n\}$. Recall that the shortening of C at \mathcal{I} is defined as

$$
\mathcal{S}_{\mathcal{I}}(C) \stackrel{\text { def }}{=}\left\{\left(c_{i_{1}}, \ldots, c_{i_{r}}\right) \mid c \in C, \text { such that } \forall i \notin \mathcal{I}, c_{i}=0\right\}
$$

Let $1 \leqslant r \leqslant k$, we denote the r-th generalised Hamming weight d_{r} of C as the minimal size of a subset $\mathcal{I} \subseteq\{1, \ldots, n\}$ such that the subcode of words whose support is contained in \mathcal{I} has dimension r. That is,

$$
d_{r} \stackrel{\text { def }}{=} \min \left\{|\mathcal{I}| \mid \operatorname{dim} \mathcal{S}_{\mathcal{I}}(C)=r\right\} .
$$

(1) Prove that d_{1} is nothing but the minimum distance d of C.
(2) Prove that the sequence $d_{1}, d_{2}, \ldots, d_{k}$ is strictly increasing.
(3) Prove that if C is an $[n, k, d]$ Reed-Solomon code, then for all $i \leqslant k$,

$$
d_{i}=n-k+i .
$$

(4) Prove that the previous result actually holds for every MDS code.

Indication : First prove that every shortening of an MDS code is MDS.
Exercise 4 (Hamming isometries). The goal of this exercise is to classify the set of Hamming isometries of \mathbb{F}_{q}^{n}, that is the set of maps $\varphi: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ such that

$$
\forall x, y \in \mathbb{F}_{q}^{n}, d_{H}(\varphi(x), \varphi(y))=d_{H}(x, y)
$$

where d_{H} denotes the Hamming distance.
(1) Prove that isometries are bijective and that the set $\operatorname{Isom}\left(\mathbb{F}_{q}^{n}\right)$ of isometries of \mathbb{F}_{q}^{n} is a group for the composition law.
(2) We first focus on linear isometries of \mathbb{F}_{q}^{n}. Let $\operatorname{Aut}\left(\mathbb{F}_{q}^{n}\right)$ be the subgroup of $\operatorname{Isom}\left(\mathbb{F}_{q}^{n}\right)$ of linear isometries of \mathbb{F}_{q}^{n}. These isometries are represented by $n \times n$ matrices. Let \mathbf{D}_{n} be the group of invertible diagonal matrices and \mathfrak{S}_{n} be the group of permutation matrices.
(a) Prove that \mathbf{D}_{n} and \mathfrak{S}_{n} are subgroups of $\operatorname{Aut}\left(\mathbb{F}_{q}^{n}\right)$.
(b) Prove that $\operatorname{Aut}\left(\mathbb{F}_{q}^{n}\right)$ is spanned by \mathbf{D}_{n} and \mathfrak{S}_{n}.

More precisely (stop the question here if you don't know anything about the semi-direct product), prove that

$$
\operatorname{Aut}\left(\mathbb{F}_{q}^{n}\right)=\mathbf{D}_{n} \rtimes \mathfrak{S}_{n}
$$

where the action of \mathfrak{S}_{n} on \mathbf{D}_{n} is the action by permutation on the diagonal coefficients.
(3) Let $u \in \mathbb{F}_{q}^{n}$, prove that the translation by u :

$$
t_{u}:\left\{\begin{array}{ccc}
\mathbb{F}_{q}^{n} & \longrightarrow & \mathbb{F}_{q}^{n} \\
x & \longmapsto & x+u
\end{array}\right.
$$

is an isometry.
(4) Let $\operatorname{Isom}_{0}\left(\mathbb{F}_{q}^{n}\right)$ be the subgroup of $\operatorname{Isom}\left(\mathbb{F}_{q}^{n}\right)$ of isometries sending 0 to 0 . Prove that every isometry of \mathbb{F}_{q}^{n} is the composition of a translation and an element of $\operatorname{Isom}_{0}\left(\mathbb{F}_{q}^{n}\right)$.
(5) Let \mathbf{P}_{n} be the group of maps of the form

$$
\phi:\left\{\begin{array}{ccc}
\mathbb{F}_{q}^{n} & \longrightarrow & \mathbb{F}_{q}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \longmapsto & \left(\phi_{1}\left(x_{1}\right), \ldots, \phi_{n}\left(x_{n}\right)\right)
\end{array}\right.
$$

where, for all $i \in\{1, \ldots, n\}$, the map ϕ_{i} is a permutation of \mathbb{F}_{q} which fixes 0 .
(a) Prove that \mathbf{P}_{n} is a subgroup of $\operatorname{Isom}_{0}\left(\mathbb{F}_{q}^{n}\right)$.
(b) Prove that $\mathbf{I s o m}_{0}\left(\mathbb{F}_{q}^{n}\right)$ is generated by \mathbf{P}_{n} and \mathfrak{S}_{n}.

Indication: Prove that a weight 1 codeword is sent on a weight 1 one and then reason by induction on higher weights.
More precisely (same remark about the semi-direct product) that

$$
\operatorname{Isom}_{0}\left(\mathbb{F}_{q}^{n}\right)=\mathbf{P}_{n} \rtimes \mathfrak{S}_{n},
$$

and describe the corresponding action of \mathfrak{S}_{n} on \mathbf{P}_{n}.
(6) Give the description of a general Hamming isometry.

