EXERCISES N° 3, MDS AND REED–SOLOMON CODES

Exercise 1 (Singleton bound for nonlinear codes). Let $C \subset \mathbb{F}_q^n$ be a nonlinear code of minimum distance d. Prove that

 $|C| \leqslant q^{n-d+1}.$ Indication: use the restriction to C of the map $\begin{cases} \mathbb{F}_q^n & \longrightarrow & \mathbb{F}_q^{n-d+1} \\ x & \longmapsto & (x_d, \dots, x_n) \end{cases}.$

Exercise 2 (Extended Reed–Solomon Codes). Let $\alpha \stackrel{\text{def}}{=} (\alpha_1, \ldots, \alpha_q) \in \mathbb{F}_q^n$ be such that the α_i 's are pairwise distinct. That is, the set of elements of \mathbb{F}_q is $\{\alpha_1, \ldots, \alpha_q\}$. Let $k \leq q$ be an integer and $\mathbb{F}_q[z]_{\leq k}$ be the space of polynomials of degree strictly less than k. For all $f \in \mathbb{F}_q[z]_{\leq k}$, we define $\operatorname{ev}_{\infty,k-1}(f)$, the evaluation at infinity of f as $\operatorname{ev}_{\infty,k-1}(f) := (z^{k-1}f(1/z))_{z=0}$ Let $\operatorname{ERS}_k(\alpha)$ be the Extended Reed Solomon (ERS) code defined as the image of the linear map

$$\begin{cases} \mathbb{F}_q[z]_{$$

- (1) Prove that for all $f \in \mathbb{F}_q[z]_{\leq k}$, $ev_{\infty,k-1}(f)$ is the coefficient f_{k-1} of x^{k-1} in f. In particular, it is 0 if and only if f has degree < k 1.
- (2) Prove that $\mathbf{ERS}_k(\alpha)$ is MDS.
- (3) Prove that the dual of an ERS code is an ERS code.

Exercise 3 (Higher weights). Let $C \subseteq \mathbb{F}_q^n$ be an $[n, k, d]_q$ code. Let $\mathcal{I} = \{i_1, \ldots, i_r\} \subseteq \{1, \ldots, n\}$. Recall that the shortening of C at \mathcal{I} is defined as

 $\mathcal{S}_{\mathcal{I}}(C) \stackrel{\text{def}}{=} \{ (c_{i_1}, \dots, c_{i_r}) \mid c \in C, \text{ such that } \forall i \notin \mathcal{I}, c_i = 0 \}.$

Let $1 \leq r \leq k$, we denote the *r*-th generalised Hamming weight d_r of *C* as the minimal size of a subset $\mathcal{I} \subseteq \{1, \ldots, n\}$ such that the subcode of words whose support is contained in \mathcal{I} has dimension *r*. That is,

$$d_r \stackrel{\text{def}}{=} \min\left\{ |\mathcal{I}| \mid \dim \mathcal{S}_{\mathcal{I}}(C) = r \right\}.$$

- (1) Prove that d_1 is nothing but the minimum distance d of C.
- (2) Prove that the sequence d_1, d_2, \ldots, d_k is strictly increasing.
- (3) Prove that if C is an [n, k, d] Reed-Solomon code, then for all $i \leq k$,

$$d_i = n - k + i.$$

(4) Prove that the previous result actually holds for every MDS code. Indication : First prove that every shortening of an MDS code is MDS.

Exercise 4 (Hamming isometries). The goal of this exercise is to classify the set of Hamming isometries of \mathbb{F}_q^n , that is the set of maps $\varphi : \mathbb{F}_q^n \to \mathbb{F}_q^n$ such that

$$\forall x, y \in \mathbb{F}_q^n, \ d_H(\varphi(x), \varphi(y)) = d_H(x, y),$$

where d_H denotes the Hamming distance.

- (1) Prove that isometries are bijective and that the set $\mathbf{Isom}(\mathbb{F}_q^n)$ of isometries of \mathbb{F}_q^n is a group for the composition law.
- (2) We first focus on **linear** isometries of \mathbb{F}_q^n . Let $\operatorname{Aut}(\mathbb{F}_q^n)$ be the subgroup of $\operatorname{Isom}(\mathbb{F}_q^n)$ of linear isometries of \mathbb{F}_q^n . These isometries are represented by $n \times n$ matrices. Let \mathbf{D}_n be the group of invertible diagonal matrices and \mathfrak{S}_n be the group of permutation matrices.
 - (a) Prove that \mathbf{D}_n and \mathfrak{S}_n are subgroups of $\operatorname{Aut}(\mathbb{F}_q^n)$.
 - (b) Prove that $\operatorname{Aut}(\mathbb{F}_q^n)$ is spanned by \mathbf{D}_n and \mathfrak{S}_n . More precisely (stop the question here if you don't know anything about the semi-direct product), prove that

$$\operatorname{Aut}(\mathbb{F}_{a}^{n}) = \mathbf{D}_{n} \rtimes \mathfrak{S}_{n}$$

where the action of \mathfrak{S}_n on \mathbf{D}_n is the action by permutation on the diagonal coefficients.

(3) Let $u \in \mathbb{F}_q^n$, prove that the translation by u:

$$t_u: \left\{ \begin{array}{ccc} \mathbb{F}_q^n & \longrightarrow & \mathbb{F}_q^n \\ x & \longmapsto & x+u \end{array} \right.$$

is an isometry.

- (4) Let $\mathbf{Isom}_0(\mathbb{F}_q^n)$ be the subgroup of $\mathbf{Isom}(\mathbb{F}_q^n)$ of isometries sending 0 to 0. Prove that every isometry of \mathbb{F}_q^n is the composition of a translation and an element of $\mathbf{Isom}_0(\mathbb{F}_q^n)$.
- (5) Let \mathbf{P}_n be the group of maps of the form

$$\phi: \left\{ \begin{array}{ccc} \mathbb{F}_q^n & \longrightarrow & \mathbb{F}_q^n \\ (x_1, \dots, x_n) & \longmapsto & (\phi_1(x_1), \dots, \phi_n(x_n)) \end{array} \right.$$

where, for all $i \in \{1, ..., n\}$, the map ϕ_i is a permutation of \mathbb{F}_q which fixes 0.

- (a) Prove that \mathbf{P}_n is a subgroup of $\mathbf{Isom}_0(\mathbb{F}_q^n)$.
- (b) Prove that $\mathbf{Isom}_0(\mathbb{F}_q^n)$ is generated by \mathbf{P}_n and \mathfrak{S}_n . Indication: Prove that a weight 1 codeword is sent on a weight 1 one and then reason by induction on higher weights.

More precisely (same remark about the semi-direct product) that

$$\operatorname{Isom}_0(\mathbb{F}_q^n) = \mathbf{P}_n \rtimes \mathfrak{S}_n,$$

and describe the corresponding action of \mathfrak{S}_n on \mathbf{P}_n .

(6) Give the description of a general Hamming isometry.