
EXERCISES N◦ 3, MDS AND REED–SOLOMON CODES

Exercise 1 (Singleton bound for nonlinear codes). Let C ⊂ Fn
q be a nonlinear code of

minimum distance d. Prove that
|C| 6 qn−d+1.

Indication: use the restriction to C of the map
{

Fn
q −→ Fn−d+1

q

x 7−→ (xd, . . . , xn)
.

Exercise 2 (Extended Reed–Solomon Codes). Let α def
= (α1, . . . , αq) ∈ Fn

q be such that the
αi’s are pairwise distinct. That is, the set of elements of Fq is {α1, . . . , αq}. Let k 6 q be
an integer and Fq[z]<k be the space of polynomials of degree strictly less than k. For all f ∈
Fq[z]<k, we define ev∞,k−1(f), the evaluation at infinity of f as ev∞,k−1(f) := (zk−1f(1/z))z=0

Let ERSk(α) be the Extended Reed Solomon (ERS) code defined as the image of the linear
map {

Fq[z]<k −→ Fq+1
q

f 7−→ (f(α1), . . . , f(αq), ev∞,k−1(f))
.

(1) Prove that for all f ∈ Fq[z]<k, ev∞,k−1(f) is the coefficient fk−1 of xk−1 in f . In
particular, it is 0 if and only if f has degree < k − 1.

(2) Prove that ERSk(α) is MDS.
(3) Prove that the dual of an ERS code is an ERS code.

Exercise 3 (Higher weights). Let C ⊆ Fn
q be an [n, k, d]q code. Let I = {i1, . . . , ir} ⊆

{1, . . . , n}. Recall that the shortening of C at I is defined as

SI (C)
def
= {(ci1 , . . . , cir) | c ∈ C, such that ∀i /∈ I, ci = 0} .

Let 1 6 r 6 k, we denote the r–th generalised Hamming weight dr of C as the minimal size
of a subset I ⊆ {1, . . . , n} such that the subcode of words whose support is contained in I
has dimension r. That is,

dr
def
= min

{
|I|

∣∣ dimSI (C) = r
}
.

(1) Prove that d1 is nothing but the minimum distance d of C.
(2) Prove that the sequence d1, d2, . . . , dk is strictly increasing.
(3) Prove that if C is an [n, k, d] Reed-Solomon code, then for all i 6 k,

di = n− k + i.

(4) Prove that the previous result actually holds for every MDS code.
Indication : First prove that every shortening of an MDS code is MDS.

Exercise 4 (Hamming isometries). The goal of this exercise is to classify the set of Hamming
isometries of Fn

q , that is the set of maps ϕ : Fn
q → Fn

q such that

∀x, y ∈ Fn
q , dH(ϕ(x), ϕ(y)) = dH(x, y),

where dH denotes the Hamming distance.
1



(1) Prove that isometries are bijective and that the set Isom(Fn
q ) of isometries of Fn

q is
a group for the composition law.

(2) We first focus on linear isometries of Fn
q . Let Aut(Fn

q ) be the subgroup of Isom(Fn
q )

of linear isometries of Fn
q . These isometries are represented by n × n matrices. Let

Dn be the group of invertible diagonal matrices and Sn be the group of permutation
matrices.
(a) Prove that Dn and Sn are subgroups of Aut(Fn

q ).
(b) Prove that Aut(Fn

q ) is spanned by Dn and Sn.
More precisely (stop the question here if you don’t know anything about the
semi-direct product), prove that

Aut(Fn
q ) = Dn oSn

where the action of Sn on Dn is the action by permutation on the diagonal
coefficients.

(3) Let u ∈ Fn
q , prove that the translation by u :

tu :

{
Fn
q −→ Fn

q

x 7−→ x+ u

is an isometry.
(4) Let Isom0(Fn

q ) be the subgroup of Isom(Fn
q ) of isometries sending 0 to 0. Prove that

every isometry of Fn
q is the composition of a translation and an element of Isom0(Fn

q ).
(5) Let Pn be the group of maps of the form

φ :

{
Fn
q −→ Fn

q

(x1, . . . , xn) 7−→ (φ1(x1), . . . , φn(xn))
,

where, for all i ∈ {1, . . . , n}, the map φi is a permutation of Fq which fixes 0.
(a) Prove that Pn is a subgroup of Isom0(Fn

q ).
(b) Prove that Isom0(Fn

q ) is generated by Pn and Sn.
Indication: Prove that a weight 1 codeword is sent on a weight 1 one and then
reason by induction on higher weights.

More precisely (same remark about the semi-direct product) that
Isom0(Fn

q ) = Pn oSn,

and describe the corresponding action of Sn on Pn.
(6) Give the description of a general Hamming isometry.


