Exercises n° 4, Cyclic and BCH codes

Exercise 1. In this exercise, we give an alternative proof of the BCH bound using the discrete Fourier Transform.

Let n be an integer and \mathbb{F}_q a finite field with q prime to n. Let $\mathbb{F}_q(\zeta_n)$ be a finite extension of \mathbb{F}_q containing all the n-th roots of 1, ζ_n denotes a primitive n-th root of 1. The discrete Fourier transform is defined as

$$\mathcal{F}: \left\{ \begin{array}{ccc} \mathbb{F}_q(\zeta_n)[X]/(X^n-1) & \longrightarrow & \mathbb{F}_q(\zeta_n)[X]/(X^n-1) \\ f & \longmapsto & \sum_{i=0}^{n-1} f(\zeta_n^{-i})X^i \end{array} \right.$$

- 1. Prove that \mathcal{F} is an \mathbb{F}_q -linear map.
- 2. Prove that

$$\sum_{i=0}^{n-1} \zeta_n^{ij} = \begin{cases} n & \text{if } n | j \\ 0 & \text{else} \end{cases}$$

3. Prove that \mathcal{F} is an isomorphism with inverse:

$$\mathcal{F}^{-1}: \left\{ \begin{array}{ccc} \mathbb{F}_q(\zeta_n)[X]/(X^n-1) & \longrightarrow & \mathbb{F}_q(\zeta_n)[X]/(X^n-1) \\ f & \longmapsto & \frac{1}{n}\sum_{i=0}^{n-1}f(\zeta_n^i)X^i \end{array} \right.$$

Indication: it suffices to prove that $\mathcal{F}^{-1}(\mathcal{F}(X^i)) = X^i$ for all $i = 0, \ldots, n-1$.

4. For all $f, g \in \mathbb{F}_q(\zeta_n)[X]/(X^n-1)$, denote by $f \star g$ the coefficientwise product:

if
$$f = \sum_{i=0}^{n-1} f_i X^i$$
 and $g = \sum_{i=0}^{n-1} g_i X^i$, then $f \star g = \sum_{i=0}^{n-1} f_i g_i X^i$.

Prove that for all $f, g \in \mathbb{F}_q(\zeta_n)[X]/(X^n - 1)$, then

- (i) $\mathcal{F}(fg) = \mathcal{F}(f) \star \mathcal{F}(g);$ (ii) $\mathcal{F}(f \star g) = \frac{1}{n} \mathcal{F}(f) \mathcal{F}(g);$ (iii) $\mathcal{F}^{-1}(fg) = n(\mathcal{F}^{-1}(f) \star \mathcal{F}^{-1}(g));$
- $(III) \mathcal{F} (Jg) \equiv n(\mathcal{F} (J) \star \mathcal{F} (g))$
- (iv) $\mathcal{F}^{-1}(f \star g) = \mathcal{F}^{-1}(f)\mathcal{F}^{-1}(g);$

5. Let $g \in \mathbb{F}_q[X]/(X^n - 1)$ be a nonzero polynomial vanishing at $1, \zeta_n, \ldots, \zeta_n^{\delta-2}$ (in particular, it vanishes at $\delta - 1$ roots of $X^n - 1$ with consecutive exponents). Prove that

$$\mathcal{F}^{-1}(g) \equiv X^{\delta-1}h(X) \mod (X^n - 1)$$

for some $h \in \mathbb{F}_q(\zeta_n)[X]$ where h is nonzero and has degree $\leq n - \delta$.

- 6. Using $\mathcal{F}(\mathcal{F}^{-1}(g))$ prove that g has at least δ nonzero coefficients.
- 7. Prove that of $g \in \mathbb{F}_q[X]/(X^n 1)$ vanishes at $\zeta_n^a, \zeta_n^{a+1}, \ldots, \zeta_n^{a+\delta-2}$, then g also has at least δ nonzero coefficients.
- 8. Conclude.

Exercise 2 (A decoding algorithm for BCH codes). Let \mathbb{F}_q be a finite field and n be an integer prime to q. Let $\mathbb{F}_q(\zeta_n)$ be the smallest extension of \mathbb{F}_q containing all the n-th roots of 1. Let $g \in \mathbb{F}_q[x]$ be a polynomial of degree < n vanishing at $\zeta_n, \ldots, \zeta_n^{\delta-1}$ for some positive integer δ . Let C be the BCH code with generating polynomial g. The BCH bound asserts that C has minimum distance at least equal to δ . We will prove that the code is t-correcting, where $2t + 1 = \delta$ if δ is odd and $2t + 1 = \delta - 1$ if δ is even.

Let $y \in \mathbb{F}_q^n$ be a word such that

$$y = c + e$$

where $c \in C$ and e is a word of weight f with $f \leq t$. In what follows, all the words of \mathbb{F}_q^n are canonically associated to polynomials in $\mathbb{F}_q[z]/(z^n-1)$. For instance

$$e(z) = e_{i_1} z^{i_1} + \dots + e_{i_f} z^{i_f}$$

where the e_{i_i} 's are nonzero elements of \mathbb{F}_q .

We introduce some notation and terminology.

• The syndrome polynomial $S \in \mathbb{F}_q(\zeta_n)[z]$:

$$S(z) \stackrel{\text{def}}{=} \sum_{i=1}^{2t} y(\zeta_n^i) z^{i-1}$$

• The error locator polynomial $\sigma \in \mathbb{F}_q(\zeta_n)[z]$

$$\sigma(z) \stackrel{\text{def}}{=} \prod_{j=1}^{f} (1 - \zeta_n^{i_j} z).$$

1. Among the polynomials S and σ , which one is known and which one is unknown from the point of view of the decoder?

2. Prove that

$$S(z) = \sum_{i=1}^{2t} e(\zeta_n^i) z^{i-1}$$

and hence depends only on the error vector e.

3. Let ω be the polynomial defined as

$$\omega(z) \stackrel{\text{def}}{=} \sum_{j=1}^{f} e_{i_j} \zeta_n^{i_j} \prod_{k \neq j} (1 - \zeta_n^{i_k} z)$$

Prove that

- (i) $\deg \omega < t$;
- (ii) $S(z)\sigma(z) \equiv \omega(z) \mod (z^{2t});$
- (iii) σ and ω are prime to each other.

Indication: to prove that two polynomials are prime to each other, it is sufficient to prove that no root of one is a root of the other.

- 4. Prove that if another pair (σ', ω') of polynomials satisfying deg $\sigma' \leq t$, deg $\omega' < t$ and $S(z)\sigma'(z) \equiv \omega'(z) \mod (z^{2t})$ then, there exists a polynomial $C \in \mathbb{F}_q(\zeta_n)[z]$ such that $\sigma' = C\sigma$ and $\omega' = C\omega$.
- 5. Let h be the largest integer such that $z^h | S(z)$. Prove that h < t. Deduce that the greatest common divisor of S and z^{2t} has degree < t.
- 6. By proceeding to the extended Euclidian algorithm to the pair (S, z^{2t}) , there exist sequences of polynomials $P_0 = z^{2t}$, $P_1 = S, P_2, \ldots, P_r$ with deg $P_0 > \deg P_1 > \deg P_2 > \cdots$ where P_r is the GCD of (S, z^{2t}) and $A_0, A_1, \ldots, B_0, B_1, \ldots$ such that for all i,

$$P_i = A_i S + B_i z^{2t}.$$

Prove the existence of a polynomial C and an index i such that $P_i = C\omega$ and $A_i = C\sigma$.

Remark : Actually a deeper analysis of extends Euclid algorithm makes possible to prove that C has degree 0 and Equals $B_i(0)$.

7. Describe a decoding algorithm for decoding BCH codes. What is its complexity?

Exercise 3. The goal of the exercise is to observe the strong relations between BCH and Reed-Solomon codes. Let \mathbb{F}_q be a finite field and n be an integer prime to q.

- 1. We first consider the case n = q 1.
 - (a) Prove that if n = q 1 then \mathbb{F}_q contains all the *n*-th roots of 1.

Let ζ_n be such an *n*-th root, from now on the elements of $\mathbb{F}_q \setminus \{0\}$ are denoted by $1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1}$.

- (b) Then, in this situation, describe the minimal cyclotomic classes and the cyclotomic classes in general.
- (c) Still in case where n|(q-1), let C be a BCH whose set of roots contains $\zeta_n, \ldots, \zeta_n^{\delta-1}$. Prove that C has dimension $n - \delta + 1$. Then prove that C is MDS.
- (d) Let C' be the generalised Reed–Solomon code $C' \stackrel{\text{def}}{=} \mathbf{GRS}_{\delta-1}(\mathbf{x}, \mathbf{x})$ where $\mathbf{x} \stackrel{\text{def}}{=} (1, \zeta_n, \zeta_n^2, \dots, \zeta_n^{n-1})$. Recall that this code is defined as the image of the map

$$\begin{cases} \mathbb{F}_q[z]_{<\delta-1} &\longrightarrow & \mathbb{F}_q^n \\ f &\longmapsto & (f(1), \ \zeta_n f(\zeta_n), \ \zeta_n^2 f(\zeta_n^2), \dots, \ \zeta_n^{n-1} f(\zeta_n^{n-1})) \end{cases}$$

Prove that $C' = C^{\perp}$.

Indication : a nice basis for C' can be obtained from the images by the above map of the monomials $1, z, z^2, \ldots, z^{\delta-2}$.

- (e) Conclude that C is a generalised Reed Solomon (GRS in short) code.
- 2. Now, consider the general case : n is prime to q and C denotes the BCH code whose set of roots contains $\zeta_n, \ldots, \zeta_n^{\delta-1}$. Prove that C is contained in the subfield subcode of a GRS code with minimum distance δ .
- 3. Deduce from that a decoding algorithm based on the decoding of the GRS code. Compare its complexity with that of the algorithm presented in Exercise 2.