Exercises $n^{\circ} 4$, Cyclic and BCH codes

Exercise 1. In this exercise, we give an alternative proof of the BCH bound using the discrete Fourier Transform.

Let n be an integer and \mathbb{F}_{q} a finite field with q prime to n. Let $\mathbb{F}_{q}\left(\zeta_{n}\right)$ be a finite extension of \mathbb{F}_{q} containing all the n-th roots of $1, \zeta_{n}$ denotes a primitive n-th root of 1 . The discrete Fourier transform is defined as

$$
\mathcal{F}:\left\{\begin{array}{clc}
\mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right) & \longrightarrow & \mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right) \\
f & \longmapsto & \sum_{i=0}^{n-1} f\left(\zeta_{n}^{-i}\right) X^{i}
\end{array} .\right.
$$

1. Prove that \mathcal{F} is an \mathbb{F}_{q}-linear map.
2. Prove that

$$
\sum_{i=0}^{n-1} \zeta_{n}^{i j}=\left\{\begin{array}{lll}
n & \text { if } \\
0 & \text { else }
\end{array}\right.
$$

3. Prove that \mathcal{F} is an isomorphism with inverse:

$$
\mathcal{F}^{-1}:\left\{\begin{array}{ccc}
\mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right) & \longrightarrow & \mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right) \\
f & \longmapsto & \frac{1}{n} \sum_{i=0}^{n-1} f\left(\zeta_{n}^{i}\right) X^{i}
\end{array} .\right.
$$

Indication: it suffices to prove that $\mathcal{F}^{-1}\left(\mathcal{F}\left(X^{i}\right)\right)=X^{i}$ for all $i=0, \ldots, n-1$.
4. For all $f, g \in \mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right)$, denote by $f \star g$ the coefficientwise product:

$$
\text { if } f=\sum_{i=0}^{n-1} f_{i} X^{i} \text { and } g=\sum_{i=0}^{n-1} g_{i} X^{i} \text {, then } f \star g=\sum_{i=0}^{n-1} f_{i} g_{i} X^{i} \text {. }
$$

Prove that for all $f, g \in \mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right)$, then
(i) $\mathcal{F}(f g)=\mathcal{F}(f) \star \mathcal{F}(g)$;
(ii) $\mathcal{F}(f \star g)=\frac{1}{n} \mathcal{F}(f) \mathcal{F}(g)$;
(iii) $\mathcal{F}^{-1}(f g)=n\left(\mathcal{F}^{-1}(f) \star \mathcal{F}^{-1}(g)\right)$;
(iv) $\mathcal{F}^{-1}(f \star g)=\mathcal{F}^{-1}(f) \mathcal{F}^{-1}(g)$;
5. Let $g \in \mathbb{F}_{q}[X] /\left(X^{n}-1\right)$ be a nonzero polynomial vanishing at $1, \zeta_{n}, \ldots, \zeta_{n}^{\delta-2}$ (in particular, it vanishes at $\delta-1$ roots of $X^{n}-1$ with consecutive exponents). Prove that

$$
\mathcal{F}^{-1}(g) \equiv X^{\delta-1} h(X) \quad \bmod \left(X^{n}-1\right)
$$

for some $h \in \mathbb{F}_{q}\left(\zeta_{n}\right)[X]$ where h is nonzero and has degree $\leqslant n-\delta$.
6. Using $\mathcal{F}\left(\mathcal{F}^{-1}(g)\right)$ prove that g has at least δ nonzero coefficients.
7. Prove that of $g \in \mathbb{F}_{q}[X] /\left(X^{n}-1\right)$ vanishes at $\zeta_{n}^{a}, \zeta_{n}^{a+1}, \ldots, \zeta_{n}^{a+\delta-2}$, then g also has at least δ nonzero coefficients.
8. Conclude.

Exercise 2 (A decoding algorithm for BCH codes). Let \mathbb{F}_{q} be a finite field and n be an integer prime to q. Let $\mathbb{F}_{q}\left(\zeta_{n}\right)$ be the smallest extension of \mathbb{F}_{q} containing all the n-th roots of 1 . Let $g \in \mathbb{F}_{q}[x]$ be a polynomial of degree $<n$ vanishing at $\zeta_{n}, \ldots, \zeta_{n}^{\delta-1}$ for some positive integer δ. Let C be the BCH code with generating polynomial g. The BCH bound asserts that C has minimum distance at least equal to δ. We will prove that the code is t-correcting, where $2 t+1=\delta$ if δ is odd and $2 t+1=\delta-1$ if δ is even.

Let $y \in \mathbb{F}_{q}^{n}$ be a word such that

$$
y=c+e
$$

where $c \in C$ and e is a word of weight f with $f \leqslant t$. In what follows, all the words of \mathbb{F}_{q}^{n} are canonically associated to polynomials in $\mathbb{F}_{q}[z] /\left(z^{n}-1\right)$. For instance

$$
e(z)=e_{i_{1}} z^{i_{1}}+\cdots+e_{i_{f}} z^{i_{f}}
$$

where the $e_{i_{j}}$'s are nonzero elements of \mathbb{F}_{q}.
We introduce some notation and terminology.

- The syndrome polynomial $S \in \mathbb{F}_{q}\left(\zeta_{n}\right)[z]$:

$$
S(z) \stackrel{\text { def }}{=} \sum_{i=1}^{2 t} y\left(\zeta_{n}^{i}\right) z^{i-1}
$$

- The error locator polynomial $\sigma \in \mathbb{F}_{q}\left(\zeta_{n}\right)[z]$

$$
\sigma(z) \stackrel{\text { def }}{=} \prod_{j=1}^{f}\left(1-\zeta_{n}^{i_{j}} z\right)
$$

1. Among the polynomials S and σ, which one is known and which one is unknown from the point of view of the decoder?
2. Prove that

$$
S(z)=\sum_{i=1}^{2 t} e\left(\zeta_{n}^{i}\right) z^{i-1}
$$

and hence depends only on the error vector e.
3. Let ω be the polynomial defined as

$$
\omega(z) \stackrel{\text { def }}{=} \sum_{j=1}^{f} e_{i_{j}} \zeta_{n}^{i_{j}} \prod_{k \neq j}\left(1-\zeta_{n}^{i_{k}} z\right)
$$

Prove that
(i) $\operatorname{deg} \omega<t$;
(ii) $S(z) \sigma(z) \equiv \omega(z) \bmod \left(z^{2 t}\right)$;
(iii) σ and ω are prime to each other.

Indication: to prove that two polynomials are prime to each other, it is sufficient to prove that no root of one is a root of the other.
4. Prove that if another pair ($\sigma^{\prime}, \omega^{\prime}$) of polynomials satisfying $\operatorname{deg} \sigma^{\prime} \leqslant t, \operatorname{deg} \omega^{\prime}<t$ and $S(z) \sigma^{\prime}(z) \equiv \omega^{\prime}(z) \bmod \left(z^{2 t}\right)$ then, there exists a polynomial $C \in \mathbb{F}_{q}\left(\zeta_{n}\right)[z]$ such that $\sigma^{\prime}=C \sigma$ and $\omega^{\prime}=C \omega$.
5. Let h be the largest integer such that $z^{h} \mid S(z)$. Prove that $h<t$. Deduce that the greatest common divisor of S and $z^{2 t}$ has degree $<t$.
6. By proceeding to the extended Euclidian algorithm to the pair $\left(S, z^{2 t}\right)$, there exist sequences of polynomials $P_{0}=z^{2 t}, P_{1}=S, P_{2}, \ldots, P_{r}$ with $\operatorname{deg} P_{0}>\operatorname{deg} P_{1}>\operatorname{deg} P_{2}>$ \cdots where P_{r} is the GCD of $\left(S, z^{2 t}\right)$ and $A_{0}, A_{1}, \ldots B_{0}, B_{1}, \ldots$ such that for all i,

$$
P_{i}=A_{i} S+B_{i} z^{2 t} .
$$

Prove the existence of a polynomial C and an index i such that $P_{i}=C \omega$ and $A_{i}=C \sigma$. Remark : Actually a deeper analysis of extends Euclid algorithm makes possible to prove that C has degree 0 and Equals $B_{i}(0)$.
7. Describe a decoding algorithm for decoding BCH codes. What is its complexity?

Exercise 3. The goal of the exercise is to observe the strong relations between BCH and Reed-Solomon codes. Let \mathbb{F}_{q} be a finite field and n be an integer prime to q.

1. We first consider the case $n=q-1$.
(a) Prove that if $n=q-1$ then \mathbb{F}_{q} contains all the n-th roots of 1 .

Let ζ_{n} be such an n-th root, from now on the elements of $\mathbb{F}_{q} \backslash\{0\}$ are denoted by $1, \zeta_{n}, \zeta_{n}^{2}, \ldots, \zeta_{n}^{n-1}$.
(b) Then, in this situation, describe the minimal cyclotomic classes and the cyclotomic classes in general.
(c) Still in case where $n \mid(q-1)$, let C be a BCH whose set of roots contains $\zeta_{n}, \ldots, \zeta_{n}^{\delta-1}$. Prove that C has dimension $n-\delta+1$. Then prove that C is MDS.
(d) Let C^{\prime} be the generalised Reed-Solomon code $C^{\prime} \stackrel{\text { def }}{=} \mathbf{G R S}_{\delta-1}(\mathbf{x}, \mathbf{x})$ where $\mathbf{x} \stackrel{\text { def }}{=}$ $\left(1, \zeta_{n}, \zeta_{n}^{2}, \ldots, \zeta_{n}^{n-1}\right)$. Recall that this code is defined as the image of the map

$$
\left\{\begin{array}{ccc}
\mathbb{F}_{q}[z]_{<\delta-1} & \longrightarrow & \mathbb{F}_{q}^{n} \\
f & \longmapsto\left(f(1), \zeta_{n} f\left(\zeta_{n}\right), \zeta_{n}^{2} f\left(\zeta_{n}^{2}\right), \ldots, \zeta_{n}^{n-1} f\left(\zeta_{n}^{n-1}\right)\right)
\end{array}\right.
$$

Prove that $C^{\prime}=C^{\perp}$.
Indication : a nice basis for C^{\prime} can be obtained from the images by the above map of the monomials $1, z, z^{2}, \ldots, z^{\delta-2}$.
(e) Conclude that C is a generalised Reed Solomon (GRS in short) code.
2. Now, consider the general case : n is prime to q and C denotes the BCH code whose set of roots contains $\zeta_{n}, \ldots, \zeta_{n}^{\delta-1}$. Prove that C is contained in the subfield subcode of a GRS code with minimum distance δ.
3. Deduce from that a decoding algorithm based on the decoding of the GRS code. Compare its complexity with that of the algorithm presented in Exercise 2.

