
EXERCISES N◦ 2, DUALITY, WITH SOLUTIONS

Exercise 1. Let C ⊂ Fn
q be a code. Let I ⊆ {1, . . . , n}. We define the following codes

constructed from C:
• The punctured code on I is defined as:

PI(C) := {(ci)i∈I | c ∈ C, } ⊆ F|I|q .

Roughly speaking, it is the set of codewords of C where the positions out of I are
removed.
• The shortened code on I is defined as:

SI(C) := {(ci)i∈I | c ∈ C, ∀i /∈ I, ci = 0} ⊆ F|I|q .

It is the set of codewords supported by I which is punctured at I
Prove that (PI(C))⊥ = SI(C⊥) and (SI(C))⊥ = PI(C⊥)

Exercise 2. Let Fqm/Fq be an extension of finite fields. Recall that the trace of Fqm/Fq is
defined as:

TrFqm/Fq :

{
Fqm −→ Fq

x 7−→ x+ xq + xq
2
+ · · ·+ xq

m−1 .

(1) Prove that this map is an Fq–linear form over Fqm .
(2) Prove that this map is surjective.

Indication: use the fact that the polynomial X + Xq + · · · + Xqm−1 cannot have qm
roots.

(3) Prove that the map {
Fqm × Fqm −→ Fq

(x, y) 7−→ TrFqm/Fq(xy)

is Fq–bilinear, symmetric and non degenerated.
(4) Deduce from the previous question that for all linear form ϕ : Fqm → Fq, there exists

a unique aϕ ∈ Fqm such that
∀x ∈ Fqm , ϕ(x) = TrFqm/Fq(aϕx).

(5) Let C ⊆ Fn
qm , we recall the definitions of subfield subcodes and trace codes:

C|Fq := C ∩ Fn
q

Tr(C) :=
{(

TrFqm/Fq(c1), . . . ,TrFqm/Fq(cn)
)
| c ∈ C

}
.

Prove that we always have C|Fq ⊆ Tr(C).
Indication: Because of the surjectivity of TrFqm/Fq , there exists γ ∈ Fqm such that
TrFqm/Fq(γ) = 1.

Exercise 3. ?
Prove additive Hilbert’s 90 Theorem for finite fields:

∀x ∈ Fqm , TrFqm/Fq(x) = 0 ⇐⇒ ∃a ∈ Fqm , x = aq − a.
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Exercise 4. ?
The goal of this exercise is to prove Delsarte’s Theorem: For all code C ⊆ Fn

qm ,(
C|Fq

)⊥
= Tr

(
C⊥
)
.

(1) Prove inclusion “⊇”.
(2) To prove the converse inclusion, we will prove the equivalent one:(

Tr(C⊥)
)⊥ ⊆ C|Fq .

For that we assume this inclusion to be wrong and take y ∈
(
Tr(C⊥)

)⊥ \ C|Fq .
(a) Regarding y as an element of Fn

qm (instead of Fn
q ), prove the existence of x ∈ C⊥

such that 〈x, y〉Fn
qm
6= 0.

(b) Prove the existence of γ ∈ Fqm , such that

TrFqm/Fq

(
γ〈x, y〉Fn

qm

)
6= 0.

(c) Prove that 〈TrFqm/Fq(γx), y〉Fn
q
6= 0.

(d) Conclude.
(3) Prove that if C is [n, k, d]qm then C|Fq is [n,> n−m(n− k),> d]q.

Exercise 5. Let C be the binary Hamming code with parity-check matrix 1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


(1) Prove that C is [7, 4, 3]2.
(2) Prove that (1 1 1 1 1 1 1 1) ∈ C and deduce that the weight enumerator P ]

C(x, y) is
symmetric: P ]

C(x, y) = P ]
C(y, x).

(3) Using McWilliams’ identity, compute the polynomials P ]
C and P ]

C⊥
without enumer-

ating the codes.



Solution to Exercise 1
From now on, we denote by

pI :

{
Fn
q −→ F|I|q

(ci)
n
i=1 7−→ (ci)i∈I

the puncturing map pat I. Let c0 ∈ SI
(
C⊥
)
. By definition of the shortening, there exists

a codeword c ∈ C⊥ such that
(i) pI(c) = c0;
(ii) for all i /∈ I, ci = 0.

Then, for all c′ ∈ C, and thanks to (i) and (ii)

(1) 〈pI(c′), c0〉F|I|q
= 〈c′, c〉Fn

q
= 0.

where the last equality comes from the fact that c′ ∈ C and c ∈ C⊥. Since, by definition,

PI (C) = {pI(x) | x ∈ C} ,
then, from (1), we see that c0 is orthogonal to every word of PI (C) and hence

SI
(
C⊥
)
⊆ (PI (C))⊥ .

Conversely, let d ∈ PI (C)⊥. Now, let d′ ∈ Fn
q be the codeword obtained from d by extending

by zeros. Namely,

∀i ∈ {1, . . . n}, d′i =
{

0 if i /∈ I
di if i ∈ I .

Now, by definition of d′, for all c ∈ C, we have

〈c, d′〉 = 〈pI(c), d〉 = 0,

where the last equality comes from pI(c) ∈ PI (C) and d ∈ PI (C)⊥. This proves that
d′ ∈ C⊥ and is supported by I and hence that d ∈ SI

(
C⊥
)
. Therefore, we get the converse

inclusion and prove
SI
(
C⊥
)
= (PI (C))⊥ .

Now, replacing C by C⊥ and using the bidual identity (C⊥)
⊥
= C, we get

SI (C) =
(
PI
(
C⊥
))⊥

,

which, by dualizing yields the other expected identity, namely

(SI (C))⊥ = PI
(
C⊥
)
.

Solution to Exercise 2

(1) The Frobenius map {
Fqm −→ Fq

x 7−→ xq

is known to be Fq–linear: it is additive

∀x, y ∈ Fqm , (x+ y)q = xq + yq.

Moreover, since for all a ∈ Fq, aq = a, this yields

∀a ∈ Fq,∀x ∈ Fqm , (ax)
q = aqxq = axq.



The trace map is a sum of iterates of the Frobenius: it is a sum of compositions of
linear maps, thus it is linear. The well-definition, i.e. the fact that it maps Fqm into
Fq comes from the fact that

∀x ∈ Fqm , x
qm = x

and hence,

∀x ∈ Fqm ,
(
x+ xq + · · ·+ xq

m−1
)q

= xq + xq
2

+ · · ·+ xq
m−1

+ xq
m︸︷︷︸

=x

= x+ xq + · · ·+ xq
m−1

.

(2) It is an Fq–linear form Fqm −→ Fq. In particular its image is contained in a space of
dimension 1. For this reason, it is either zero or surjective. We prove it is nonzero:
Assume the trace map is zero, then, the polynomial

X +Xq + · · ·+Xqm−1

which is nonzero and has degree qm−1 would vanish on the whole space Fqm and hence
would have qm roots which cannot happen since the number of roots of a nonzero
polynomial is upper bounded by its degree.

(3) The symmetry comes from the commutativity of the product in Fqm . The Fq–
bilnearity comes from the linearity of the trace map together with the the billinearity
if the map (x, y) → xy. Let us prove that it is non degenerated. Let x ∈ Fqm \ {0}
be such that

(2) ∀y ∈ Fqm , TrFqm/Fq(xy) = 0

Since x is assumed to be nonzero, then,

∀y ∈ Fqm , TrFqm/Fq(y) = TrFqm/Fq(xx
−1y) = 0,

where the last equality is a consequence of (2). This contradicts the fact that the
trace is a nonzero map.

(4) It is a classical result of duality. In a finite dimensional vector space V over a field
k, every non degenerated symmetric billinear map ϕ, induces an isomorphism{

V −→ Homk(V, k)
a 7−→ ϕ(a, ·) .

(5) By the surjectivity of the trace map, there exists γ ∈ Fqm such that TrFqm/Fq(γ) = 1.
Now, let c ∈ C|Fq , then, one proves easily that

Tr(γc) = (TrFqm/Fq(γc1), . . . ,TrFqm/Fq(γcn))

= (Tr(γ)c1, . . . ,Tr(γ)cn)
= (c1, . . . , cn).

Indeed, by definition of C|Fq , the ci’s are in Fq and hence ∀i,Tr(γci) = Tr(γ)ci by the
Fq–linearity of the trace map. Therefore, since c = Tr(γc) and since γc ∈ C, we get
c ∈ Tr(C) and hence C|Fq ⊆ Tr(C).



Solution to Exercise 3
First, let us prove (⇐=). Let φ be the map

φ :

{
Fqm −→ Fqm

a 7−→ aq − a
The maps φ and TrFqm/Fq are Fq–linear (the linearity of the trace is proved in Exercise 2 and
that of φ can be proved by the very same manner). To prove the result, we need to prove
that Imφ = kerTrFqm/Fq .

Let x ∈ Imφ, by definition, there exists a ∈ Fqm such that x = aq − a. Notice first that,

TrFqm/Fq(a
q) = aq + aq

2

+ · · ·+ aq
m−1

+ aq
m︸︷︷︸

=a

= TrFqm/Fq(a).

Thus, TrFqm/Fq(x) = TrFqm/Fq(a
q − a) = TrFqm/Fq(a

q)− TrFqm/Fq(a) = 0. This proves that

(3) Im(φ) ⊆ kerTrFqm/Fq

We will prove the converse inclusion by proving that both spaces have the same dimension.
The kernel of φ is the space of elements a ∈ Fqm such that aq = a which is nothing but Fq.
Therefore, the Fq–dimension of the kernel of φ is 1. Since φ is defined on Fqm which has
Fq–dimension m, then, from the rank–nullity theorem théorème du rang),

(4) dimFq Imφ = m− 1.

Since, from Exercise 2 the trace map TrFqm/Fq : Fqm → Fq is a nonzero Fq–linear form, its
kernel has Fq–dimension m − 1. Then, putting this last fact together with (3) and (4), we
get the equality

Imφ = kerTrFqm/Fq ,

which yields the result.
Solution to Exercise 4

(1) Let c ∈ C⊥ and d ∈ C|Fq . Then,

〈TrFqm/Fq(c), d〉 =
n∑

i=1

TrFqm/Fq(ci)di =
n∑

i=1

(
m−1∑
j=0

cq
j

i

)
di(5)

=
m−1∑
j=0

n∑
i=1

cq
j

i di(6)

Then, by definition of C|Fq , for all i, we have di ∈ Fq using this fact together with
the additivity of the Frobenius, se get:

〈TrFqm/Fq(c), d〉 =
m−1∑
j=0

n∑
i=1

(cidi)
qj(7)

=
m−1∑
j=0

(
n∑

i=1

(cidi)

)qj

(8)

= TrFqm/Fq (〈c, d〉) = 0.(9)



Indeed, by assumption c ∈ C⊥ and d ∈ C|Fq ⊂ C and hence 〈c, d〉 = 0. This proves

Tr(C⊥) ⊆ (C|Fq)
⊥.

(2) (a) Assume that for all x ∈ C⊥ we have 〈x, y〉 = 0. Then, this entails that y ∈ C
and since by assumption y ∈ Fn

q , then y ∈ C|Fq which yields a contradiction.
This proves the existence of x ∈ C⊥ such that 〈x, y〉 6= 0.

(b) This is a direct consequence of Exercise 2 Question 3: since the bilinear form
(x, y)→ Tr(xy) is non degenerate, such a γ exists.

(c)

〈TrFqm/Fq(γx), y〉 =
n∑

i=1

Tr(γxi)yi

and, since y has its entries in Fq, this yields

〈TrFqm/Fq(γx), y〉 =
n∑

i=1

Tr(γxiyi)

= Tr

(
n∑

i=1

γxiyi

)
= Tr(γ〈x, y〉).

Since Tr(γ〈x, y〉) has been proved to be nonzero, we get the result.
(d) We proved that 〈TrFqm/Fq(γx), y〉 6= 0, thus, y /∈ Tr(C⊥)⊥ which yields a contra-

diction.
(3) Regarded as an Fqm–vector space C⊥ has dimension n − k, while regarded as an

Fq–vector space it has dimension m(n − k). Thus, its image by the Fq–linear trace
map has dimension at least m(n − k) (with equality if and only if the restriction of
the trace to C⊥ is injective). Therefore,

dimFq Tr(C
⊥) 6 m(n− k) =⇒ dimFq Tr(C

⊥)
⊥
> n−m(n− k).

By Delsarte’s Theorem, we get the lower bound on the dimension of C|Fq . For the
minimum distance, we just have to notice that we have the inclusion C|Fq ⊂ C, hence
the minimum distance of CFq is at least equal to that of C.

Solution to Exercise 5
(1) Consider the rows number 1, 2 and 4 of the given parity check matrix. The corre-

sponding 3 × 3 submatrix is the identity matrix and hence the parity check matrix
has rank 3. Thus, the code has dimension 4.

For the minimum distance, we use the fact that the minimum distance is the
smallest number of linearly linked rows. Notice that the parity check matrix has
no zero column and no pair of collinear columns (over F2, two nonzero vectors are
collinear if and only if they are equal!). Thus the minimum distance is larger than
or equal to 3. It is equal to 3 since the 3 first columns are linked.

(2) The matrix × vector product is left to the reader. Since 1 def
= (1, 1, . . . , 1) ∈ C, for all

c ∈ C, we have (1− c) ∈ C and WH(1− c) = 7− wH(c). This gives the symmetry:
the sets of codewords of weight x and 7 − x have equal cardinalities thanks to the



bijection given by c 7→ 1 − c. This yields the symmetry of the homogeneous weight
enumerator polynomial.

(3) The code C has one word of weight 0, namely, the zero codeword and no word of
weight 1 and 2 since its minimum distance is 3. Since it has 16 codewords and since
its homogeneous weight enumerator polynomial is symmetric, we get

P ]
C(x, y) = y7 + 7x3y4 + 7x4y3 + x7.

Then, applying McWilliams’ formula, we get

P ]
C⊥

(x, y) = 7x4y3 + y7.


