EXERCISES N° 2, DUALITY, WITH SOLUTIONS

Exercise 1. Let C' C F be a code. Let Z C {1,...,n}. We define the following codes
constructed from C:

e The punctured code on Z is defined as:
Pr(C) = {(ci)iez | c€C,} C F‘qﬂ.
Roughly speaking, it is the set of codewords of C' where the positions out of Z are

removed.
e The shortened code on Z is defined as:

Sz(C) :={(ci)iez | c€ CVi ¢ I,c; =0} CFI.
It is the set of codewords supported by Z which is punctured at Z
Prove that (Pr(C))" = Sz(C*) and (S7(C))*" = Pr(Ch)

Exercise 2. Let F,m /F, be an extension of finite fields. Recall that the trace of Fym /F, is
defined as:
T . qu - Fq
IFgm /Fq - T —_ :E—i—:L‘q—}-:qu—f—--'—i-:L“q
(1) Prove that this map is an F,-linear form over F,m.
(2) Prove that this map is surjective.
Indication: use the fact that the polynomial X + X9+ --- 4+ X" cannot have ¢™
roots.
(3) Prove that the map

m—1

{ Fom x Fgm —> F,
(ry)  — Trpm,(ey)
is F,-bilinear, symmetric and non degenerated.

(4) Deduce from the previous question that for all linear form ¢ : Fm — F,, there exists
a unique a, € Fym such that

Vo € Fgm, o(z) = Trg m/r, (a,7).
(5) Let C' C Fp.., we recall the definitions of subfield subcodes and trace codes:
Cr, = CNTFy
Tr(C) = {(Trqu/Fq(cl), . ,Trqu/Fq(cn)) | ce C} )

Prove that we always have Cjg, C Tr(C').
Indication: Because of the surjectivity of Trg . /r,, there exists v € Fym such that

TT’]qu /Fq (’y) = ]_

Exercise 3. %
Prove additive Hilbert’s 90 Theorem for finite fields:

Vo € Fym, Trg m/r,(7) =0 <= Ja € Fgm, z=a’ —a.
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Exercise 4. %
The goal of this exercise is to prove Delsarte’s Theorem: For all code C' C Fyin,

()" = T ().

(1) Prove inclusion “2".
(2) To prove the converse inclusion, we will prove the equivalent one:

(Te(CH))™ € Cl,.

For that we assume this inclusion to be wrong and take y € (Tr((/“))l \ Cip, -
(a) Regarding y as an element of F7,, (instead of F7'), prove the existence of z € C*-
such that (z,y)p # 0.
qm

(b) Prove the existence of v € Fym, such that

Trqum/IFq (7<x>y>lﬁgm> # 0.

(c) Prove that <Trqu/Fq (7x),y>]Fn £ 0.
(d) Conclude.
(3) Prove that if C'is [n, k,d]gn then Cjg, is [n, > n —m(n — k), > d,.

Exercise 5. Let C' be the binary Hamming code with parity-check matrix

1010101

01 100171

00011171

(1) Prove that C'is [7,4, 3]».

(2) Prove that (111111 11) e C and deduce that the weight enumerator P%(z,y) is
symmetric: Pg(a:, y) = Pg(y,x).

(3) Using McWilliams’ identity, compute the polynomials Pé and P!

. without enumer-
ating the codes.



Solution to Exercise [
From now on, we denote by

n 1]
by { Fr — Ty
(ci)izy V> (Giiez
the puncturing map pat Z. Let ¢y € St (C’l). By definition of the shortening, there exists

a codeword ¢ € C* such that

(i) pz(c) = co;
(ii) forall i ¢ Z, ¢; = 0.

Then, for all ¢ € C, and thanks to (i) and
(1) (pz(c'), co)gm = (¢, )y = 0.
where the last equality comes from the fact that ¢ € C and ¢ € C*. Since, by definition,
P (C) = {pr(z) | 2 € O},
then, from (1)), we see that ¢y is orthogonal to every word of Pz (C) and hence
Sz (CH) C (P (C)".

Conversely, let d € Pt (C’)L. Now, let d’ € F} be the codeword obtained from d by extending
by zeros. Namely,

. , [0 if i¢T
Vie{l,...n}, di—{ d if iel
Now, by definition of d’, for all ¢ € C', we have
<C7 d/> = <pI(C)7d> =0,

where the last equality comes from pz(c) € Pz (C) and d € Pz (C)". This proves that
d' € C* and is supported by Z and hence that d € Sz (C’L). Therefore, we get the converse
inclusion and prove

Sz (CH) = (P (O)".

Now, replacing C' by C* and using the bidual identity (C’L)L =C, we get
87(C) = (P (CH))"

which, by dualizing yields the other expected identity, namely
(S2(C))" =Pr(CH).

Solution to Exercise 2|

(1) The Frobenius map

{ Fon — T,
r —> a¢
is known to be F,-linear: it is additive
Vo,y € Fgm, (x+y)! =27+ y%
Moreover, since for all a € Fy, a? = a, this yields

Va € F,,Vo € Fym, (az)? = a%2? = ax?.



The trace map is a sum of iterates of the Frobenius: it is a sum of compositions of
linear maps, thus it is linear. The well-definition, i.e. the fact that it maps [Fym into
F, comes from the fact that

Vo € Fgm, " =1

and hence,

m— q m— m
Vo € Fym, (m+x‘1+---+xq 1) =l 4z T g

:l‘—'—xq—i—---—'—xqm_l
It is an F,-linear form F,m — FF,. In particular its image is contained in a space of
dimension 1. For this reason, it is either zero or surjective. We prove it is nonzero:
Assume the trace map is zero, then, the polynomial

X+ X944 X1

m—1

which is nonzero and has degree ¢™ ! would vanish on the whole space F = and hence
would have ¢™ roots which cannot happen since the number of roots of a nonzero
polynomial is upper bounded by its degree.

The symmetry comes from the commutativity of the product in Fym. The F -
bilnearity comes from the linearity of the trace map together with the the billinearity
if the map (z,y) — zy. Let us prove that it is non degenerated. Let z € Fym \ {0}
be such that

Vy € Fgm, Trg . r,(zy) =0
Since x is assumed to be nonzero, then,
Vy € Fym, Trqu/Fq(y) = Trqu/Fq(xx_ly) =0,

where the last equality is a consequence of . This contradicts the fact that the
trace is a nonzero map.

It is a classical result of duality. In a finite dimensional vector space V over a field
k, every non degenerated symmetric billinear map ¢, induces an isomorphism

V. — Homy(V, k)
a —  ypla,)
By the surjectivity of the trace map, there exists v € Fym such that Try, ., r,(7) = 1.
Now, let ¢ € Cjp,, then, one proves easily that
Tr(ye) = (Trpm/r, (vC1)s - - - ToRm m, (VCR))
= (Tr<7)cl7 s ,TI'(’)/)CH)
=(c1,...,Cpn)-
Indeed, by definition of Cjg,, the ¢;’s are in Fy and hence Vi, Tr(yc¢;) = Tr(y)c; by the

[F,~linearity of the trace map. Therefore, since ¢ = Tr(yc) and since y¢ € C, we get

c € Tr(C') and hence Cjr, C Tr(C).



Solution to Exercise [3]
First, let us prove (<=). Let ¢ be the map

é: Fon —  Fgm
' a +—— a?—a

The maps ¢ and Tr]qu JF, are F,~linear (the linearity of the trace is proved in Exercise [2| and

that of ¢ can be proved by the very same manner). To prove the result, we need to prove
that Im¢ = ker Tryp ., /r, -

Let x € Img, by definition, there exists a € Fy» such that © = a? — a. Notice first that,
2 m—1 m
Tre . r,(a?) = a’ +a® +---+a?  + a?

=a

= TI']qu /Fq ((Z)
Thus, Trr,. /v, (2) = Trr,mr, (a? — a) = Trg, . 5, (a?) — Trp, .5, (@) = 0. This proves that
(3) Im(¢) C ker Try, . /r,

We will prove the converse inclusion by proving that both spaces have the same dimension.
The kernel of ¢ is the space of elements a € F,m such that a? = a which is nothing but F,.
Therefore, the F,~dimension of the kernel of ¢ is 1. Since ¢ is defined on F,» which has
[F,~dimension m, then, from the rank-nullity theorem théoréme du rang),

(4) dimp, Im¢ = m — 1.

Since, from Exercise [2] the trace map Trg . /r, : Fgm — F, is a nonzero F -linear form, its
kernel has F,~dimension m — 1. Then, putting this last fact together with and , we
get the equality

Im¢ = ker TrF m /7,
which yields the result.
Solution to Exercise [

(1) Let ¢ € C*+ and d € Cjg,. Then,

n n m—1
(5) <Trqu/Fq(c), dy = Z Tr]qu/]Fq(ci)di = ( c ])
i=1 i=1 \j=0
m—1 n _
(6) => )
7=0 =1

Then, by definition of Cjg,, for all 7, we have d; € F, using this fact together with
the additivity of the Frobenius, se get:

) (s, e, 0),) = 32 3 (eid)”
s) -y (Zw»)
(9) = TI']qu/Fq ((C, d>) = 0



Indeed, by assumption ¢ € C*+ and d € Cjg, C C and hence (¢, d) = 0. This proves
Tr(C*) C (Cr,) ™

(2) (a) Assume that for all x € C* we have (x,y) = 0. Then, this entails that y € C

(3)

and since by assumption y € Fy, then y € Cjr, which yields a contradiction.

This proves the existence of z € C* such that (z,y) # 0.
(b) This is a direct consequence of Exercise [2] Question [3} since the bilinear form
(z,y) — Tr(xy) is non degenerate, such a 7 exists.

(c)
(e 9)1) = Y Te

and, since y has its entries in [y, this ylelds

(Trgm /v, (V2), Z Tr(yziy:)

=Tr (Z 71“1'?/2‘)
= Tr(y(z,y)).

Since Tr(vy(x,y)) has been proved to be nonzero, we get the result.
(d) We proved that (Trg,,. /r,(77),y) # 0, thus, y ¢ Tr(CL)l which yields a contra-
diction.
Regarded as an F,m—vector space C*+ has dimension n — k, while regarded as an
[F,~vector space it has dimension m(n — k). Thus, its image by the F,-linear trace
map has dimension at least m(n — k) (with equality if and only if the restriction of
the trace to C* is injective). Therefore,

dimg, Tr(C*) < m(n — k) = dimy, Tr(C’L)L >n—m(n—k).

By Delsarte’s Theorem, we get the lower bound on the dimension of Cjp,. For the
minimum distance, we just have to notice that we have the inclusion Cjr, C C, hence
the minimum distance of Cf, is at least equal to that of C.

Solution to Exercise [B

(1)

Consider the rows number 1,2 and 4 of the given parity check matrix. The corre-
sponding 3 x 3 submatrix is the identity matrix and hence the parity check matrix
has rank 3. Thus, the code has dimension 4.

For the minimum distance, we use the fact that the minimum distance is the
smallest number of linearly linked rows. Notice that the parity check matrix has
no zero column and no pair of collinear columns (over [y, two nonzero vectors are
collinear if and only if they are equal!). Thus the minimum distance is larger than
or equal to 3. It is equal to 3 since the 3 first columns are linked

The matrix x vector product is left to the reader. Since 1 (1, 1,...,1) € C, for all
c€ C, wehave (1 —¢) € C and Wg(1 —c¢) =7 —wg(c). This gives the symmetry:
the sets of codewords of weight x and 7 — x have equal cardinalities thanks to the



bijection given by ¢ +— 1 — ¢. This yields the symmetry of the homogeneous weight
enumerator polynomial.

(3) The code C has one word of weight 0, namely, the zero codeword and no word of
weight 1 and 2 since its minimum distance is 3. Since it has 16 codewords and since
its homogeneous weight enumerator polynomial is symmetric, we get

Pg(:p, y) =y 4+ TPyt + Tty + 2"
Then, applying McWilliams’ formula, we get
P (x,y) = Ta'y* + 47,



