Exercises n° 4, Cyclic and BCH codes

November 24, 2014

Exercise 1. In this exercise, we give an alternative proof of the BCH bound using the discrete Fourier Transform.

Let n be an integer and \mathbb{F}_q a finite field with q prime to n. Let $\mathbb{F}_q(\zeta_n)$ be a finite extension of \mathbb{F}_q containing all the *n*-th roots of 1, ζ_n denotes a primitive *n*-th root of 1. The discrete Fourier transform is defined as

$$\mathcal{F}: \left\{ \begin{array}{ccc} \mathbb{F}_q(\zeta_n)[X]/(X^n-1) & \longrightarrow & \mathbb{F}_q(\zeta_n)[X]/(X^n-1) \\ f & \longmapsto & \sum_{i=0}^{n-1} f(\zeta_n^{-i})X^i \end{array} \right.$$

- 1. Prove that \mathcal{F} is an \mathbb{F}_q -linear map.
- 2. Prove that

$$\sum_{i=0}^{n-1} \zeta_n^{ij} = \left\{ \begin{array}{cc} n & \text{if} & n | j \\ 0 & \text{else} \end{array} \right. .$$

3. Prove that \mathcal{F} is an isomorphism with inverse:

$$\mathcal{F}^{-1}: \left\{ \begin{array}{ccc} \mathbb{F}_q(\zeta_n)[X]/(X^n-1) & \longrightarrow & \mathbb{F}_q(\zeta_n)[X]/(X^n-1) \\ f & \longmapsto & \frac{1}{n}\sum_{i=0}^{n-1} f(\zeta_n^i)X^i \end{array} \right.$$

Indication: it suffices to prove that $\mathcal{F}^{-1}(\mathcal{F}(X^i)) = X^i$ for all $i = 0, \ldots, n-1$.

4. For all $f, g \in \mathbb{F}_q(\zeta_n)[X]/(X^n-1)$, denote by $f \star g$ the coefficientwise product:

if
$$f = \sum_{i=0}^{n-1} f_i X^i$$
 and $g = \sum_{i=0}^{n-1} g_i X^i$, then $f \star g = \sum_{i=0}^{n-1} f_i g_i X^i$.

Prove that for all $f, g \in \mathbb{F}_q(\zeta_n)[X]/(X^n - 1)$, then

(i) $\mathcal{F}(fg) = \mathcal{F}(f) \star \mathcal{F}(g);$ (ii) $\mathcal{F}(f \star g) = \frac{1}{n} \mathcal{F}(f) \mathcal{F}(g);$ (iii) $\mathcal{F}^{-1}(fg) = n(\mathcal{F}^{-1}(f) \star \mathcal{F}^{-1}(g));$ (iv) $\mathcal{F}^{-1}(f \star g) = \mathcal{F}^{-1}(f) \mathcal{F}^{-1}(g);$ 5. Let $g \in \mathbb{F}_q[X]/(X^n - 1)$ be a nonzero polynomial vanishing at $1, \zeta_n, \ldots, \zeta_n^{\delta-2}$ (in particular, it vanishes at $\delta - 1$ roots of $X^n - 1$ with consecutive exponents). Prove that

$$\mathcal{F}^{-1}(g) \equiv X^{\delta-1}h(X) \mod (X^n - 1)$$

for some $h \in \mathbb{F}_q(\zeta_n)[X]$ where h is nonzero and has degree $\leq n - \delta$.

- 6. Using $\mathcal{F}(\mathcal{F}^{-1}(g))$ prove that g has at least δ nonzero coefficients.
- 7. Prove that of $g \in \mathbb{F}_q[X]/(X^n 1)$ vanishes at $\zeta_n^a, \zeta_n^{a+1}, \ldots, \zeta_n^{a+\delta-2}$, then g also has at least δ nonzero coefficients.
- 8. Conclude.

Exercise 2 (A decoding algorithm for BCH codes). Let \mathbb{F}_q be a finite field and n be an integer prime to q. Let $\mathbb{F}_q(\zeta_n)$ be the smallest extension of \mathbb{F}_q containing all the n-th roots of 1. Let $g \in \mathbb{F}_q[x]$ be a polynomial of degree < n vanishing at $\zeta_n, \ldots, \zeta_n^{\delta-1}$ for some positive integer δ . Let C be the BCH code with generating polynomial g. The BCH bound asserts that C has minimum distance at least equal to δ . We will prove that the code is t-correcting, where $2t + 1 = \delta$ if δ is odd and $2t + 1 = \delta - 1$ if δ is even.

Let $y \in \mathbb{F}_q^n$ be a word such that

$$y = c + e$$

where $c \in C$ and e is a word of weight f with $f \leq t$. In what follows, all the words of \mathbb{F}_q^n are canonically associated to polynomials in $\mathbb{F}_q[z]/(z^n-1)$. For instance

$$e(z) = e_{i_1} z^{i_1} + \dots + e_{i_f} z^{i_f}$$

where the e_{i_i} 's are nonzero elements of \mathbb{F}_q .

We introduce some notation and terminology.

• The syndrome polynomial $S \in \mathbb{F}_q(\zeta_n)[z]$:

$$S(z) \stackrel{\text{def}}{=} \sum_{i=1}^{2t} y(\zeta_n^i) z^{i-1}$$

• The error locator polynomial $\sigma \in \mathbb{F}_q(\zeta_n)[z]$

$$\sigma(z) \stackrel{\text{def}}{=} \prod_{j=1}^{f} (1 - \zeta_n^{i_j} z).$$

1. Among the polynomials S and σ , which one is known and which one is unknown from the point of view of the decoder?

2. Prove that

$$S(z) = \sum_{i=1}^{2t} e(\zeta_n^i) z^{i-1}$$

and hence depends only on the error vector e.

3. Let ω be the polynomial defined as

$$\omega(z) \stackrel{\text{def}}{=} \sum_{j=1}^{f} e_{i_j} \zeta_n^{i_j} \prod_{k \neq j} (1 - \zeta_n^{i_k} z)$$

Prove that

- (i) $\deg \omega < t;$
- (ii) $S(z)\sigma(z) \equiv \omega(z) \mod (z^{2t});$
- (iii) σ and ω are prime to each other.

Indication: to prove that two polynomials are prime to each other, it is sufficient to prove that no root of one is a root of the other.

- 4. Prove that if another pair (σ', ω') of polynomials satisfying deg $\sigma' \leq t$, deg $\omega' < t$ and $S(z)\sigma'(z) \equiv \omega'(z) \mod (z^{2t})$ then, there exists a polynomial $H \in \mathbb{F}_q(\zeta_n)[z]$ such that $\sigma' = H\sigma$ and $\omega' = H\omega$.
- 5. Let h be the largest integer such that $z^h | S(z)$. Prove that h < t. Deduce that the greatest common divisor of S and z^{2t} has degree < t.
- 6. By proceeding to the extended Euclidian algorithm to the pair (S, z^{2t}) , there exist sequences of polynomials $P_0 = z^{2t}$, $P_1 = S, P_2, \ldots, P_r$ with deg $P_0 > \deg P_1 > \deg P_2 > \cdots$ where P_r is the GCD of (S, z^{2t}) and $A_0, A_1, \ldots, B_0, B_1, \ldots$ such that for all i,

$$P_i = A_i z^{2t} + B_i S.$$

In particular, we have $A_0 = B_1 = 1$ and $B_0 = A_1 = 0$. Prove the existence of a polynomial H and an index i such that $P_i = H\omega$ and $A_i = H\sigma$.

Indication : You need to analyze Euclid algorithm, and in particular to prove that for all $i \ge 2$, deg $B_i = \deg P_0 - \deg P_{i-1}$.

Remark : Actually a deeper analysis of extends Euclid algorithm makes possible to prove that H has degree 0 and equals $B_i(0)$.

7. Describe a decoding algorithm for decoding BCH codes. What is its complexity?

Exercise 3. The goal of the exercise is to observe the strong relations between BCH and Reed-Solomon codes. Let \mathbb{F}_q be a finite field and n be an integer prime to q.

- 1. We first consider the case n = q 1.
 - (a) Prove that if n = q 1 then \mathbb{F}_q contains all the *n*-th roots of 1.

Let ζ_n be such an *n*-th root, from now on the elements of $\mathbb{F}_q \setminus \{0\}$ are denoted by $1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1}$.

- (b) Then, in this situation, describe the minimal cyclotomic classes and the cyclotomic classes in general.
- (c) Still in case where n = (q 1), let C be a BCH whose set of roots contains $\zeta_n, \ldots, \zeta_n^{\delta-1}$. Prove that C has dimension $n \delta + 1$. Then prove that C is MDS.
- (d) Let C' be the generalised Reed–Solomon code $C' \stackrel{\text{def}}{=} \mathbf{GRS}_{\delta-1}(\mathbf{x}, \mathbf{x})$ where $\mathbf{x} \stackrel{\text{def}}{=} (1, \zeta_n, \zeta_n^2, \ldots, \zeta_n^{n-1})$. Recall that this code is defined as the image of the map

$$\begin{cases} \mathbb{F}_q[z]_{<\delta-1} &\longrightarrow & \mathbb{F}_q^n \\ f &\longmapsto & (f(1), \ \zeta_n f(\zeta_n), \ \zeta_n^2 f(\zeta_n^2), \dots, \ \zeta_n^{n-1} f(\zeta_n^{n-1})) \end{cases}$$

Prove that $C' = C^{\perp}$.

Indication : a nice basis for C' can be obtained from the images by the above map of the monomials $1, z, z^2, \ldots, z^{\delta-2}$.

- (e) Conclude that C is a generalised Reed Solomon (GRS in short) code.
- 2. Now, consider the general case : n is prime to q and C denotes the BCH code whose set of roots contains $\zeta_n, \ldots, \zeta_n^{\delta-1}$. Prove that C is contained in the subfield subcode of a GRS code with minimum distance δ .
- 3. Deduce from that a decoding algorithm based on the decoding of the GRS code. Compare its complexity with that of the algorithm presented in Exercise 2.

Solution to Exercise 1

- 1. For all $f, g \in \mathbb{F}_q(\zeta_n)[X]/(X^n 1)$ and all $\lambda, \mu \in \mathbb{F}_q$, $\mathcal{F}(\lambda f + \mu g) = \sum_{i=0}^{n-1} (\lambda f(\zeta_n^{-1}) + \mu g(\zeta_n^{-i}))X^i = \lambda \mathcal{F}(f) + \mu \mathcal{F}(g).$
- 2. If n|j, then $\zeta_n^{ij} = 1$ for all integer i and hence

$$\sum_{i=0}^{n-1} \zeta_n^{ij} = n$$

Else, then the classical formula on the sum of elements of geometric sequence yields

$$\sum_{i=0}^{n-1} \zeta_n^{ij} = \frac{1-\zeta_n^{nj}}{1-\zeta_n^j} = 0.$$

3. Let $j \in \{0, ..., n-1\}$. Then

$$\mathcal{F}(X^j) = \sum_{i=0}^{n-1} \zeta_n^{-ij} X^i$$

Set

$$\mathcal{G}: \left\{ \begin{array}{cc} \mathbb{F}_q(\zeta_n)[X]/(X^n-1) & \longrightarrow & \mathbb{F}_q(\zeta_n)[X]/(X^n-1) \\ f & \longmapsto & \frac{1}{n}\sum_{h=0}^{n-1}f(\zeta_n^h)X^h \end{array} \right.$$
$$\mathcal{G} \circ \mathcal{F}(X^j) = \frac{1}{n}\sum_{h=0}^{n-1}\sum_{i=0}^{n-1}\zeta_n^{-ij}\zeta_n^{hi}X^h \\ &= \frac{1}{n}\sum_{h=0}^{n-1}\left(\sum_{i=0}^{n-1}\zeta_n^{i(h-j)}\right)X^h.$$

And from Question 2, $\sum_{i=0}^{n-1} \zeta_n^{i(h-j)} = 0$ if $h \neq j$ and *n* else. Thus,

$$\mathcal{G} \circ \mathcal{F}(X^j) = X^j$$

4. (4i) Obvious, since for all i, $fg(\zeta_n^{-i}) = f(\zeta_n^{-i})g(\zeta_n^{-i})$. By the very same manner, one proves (4iii). (4ii) can be obtained from (4i) and (4iii) as follows

$$\begin{aligned} \mathcal{F}(f \star g) &= \mathcal{F}(\mathcal{F}^{-1}(\mathcal{F}(f)) \star \mathcal{F}^{-1}(\mathcal{F}(g))) \\ &= \mathcal{F}\left(\frac{1}{n}\mathcal{F}^{-1}(\mathcal{F}(f)\mathcal{F}(g))\right) \\ &= \frac{1}{n}\mathcal{F}(f)\mathcal{F}(g), \end{aligned}$$

where the second equality is a consequence of (4i). Identity (4iv) can be obtained by the very same manner by exchanging \mathcal{F} and \mathcal{F}^{-1} .

- 5. By the very definition of \mathcal{F}^{-1} , the $\delta 1$ first coefficients of $\mathcal{F}^{-1}(g)$ are zero. This yields the result.
- 6. From (4i) and from the previous question, we get:

$$\mathcal{F}(\mathcal{F}^{-1}(g)) = \mathcal{F}(X^{\delta}h(X))$$
$$= \mathcal{F}(X^{\delta}) \star \mathcal{F}(h(X))$$

Now, observe that $\mathcal{F}(X^{\delta}) = \sum_{i} \zeta_{n}^{-i\delta} X^{i}$ and hence has only nonzero coefficients. Therefore, the *i*-th coefficient of $\mathcal{F}(\mathcal{F}^{-1}(g)) = \mathcal{F}(X^{\delta}) \star \mathcal{F}(h(X))$ is zero if and only if that of $\mathcal{F}(h)$ is zero. Assume now that $\mathcal{F}(\mathcal{F}^{-1}(g))$ has strictly less than δ nonzero coefficients, which means that it has strictly more than $n - \delta$ zero coefficients. This entails that $\mathcal{F}(h)$ has strictly more than $n - \delta$ zero coefficients. By definition of \mathcal{F} , it means that h vanishes at strictly more than $n - \delta$ distinct elements among the ζ_{n}^{-i} 's which cannot happen since h is nonzero and has degree $\leq n - \delta$ and hence has at most $n - \delta$ distinct roots.

7. In the general case, use the cyclic structure and observe that in this situation,

$$X^{n-a}\mathcal{F}^{-1}(g) = X^{\delta}h(x)$$

for some polynomial h of degree $\leq n - \delta$ and hence

$$\mathcal{F}^{-1}(g) = X^{a+\delta}h(X).$$

The rest of the proof is exactly as in the previous question.

8. A nonzero polynomial vanishing at $\delta - 1$ roots with consecutive exponents has at least δ nonzero coefficients. This provides another proof of the BCH bound.

Solution to Exercise 2

- 1. S is known and σ is unknown.
- 2. We have,

$$S(z) = \sum_{i=1}^{2t} y(\zeta_n^i) z^{i-1}$$
$$= \sum_{i=1}^{2t} c(\zeta_n^i) z^{i-1} + \sum_{i=1}^{2t} e(\zeta_n^i) z^{i-1}.$$

Then, by the very definition of the BCH code C, the term $\sum_{i=1}^{2t} c(\zeta_n^i) z^{i-1}$ is zero.

3. (i) Clearly, ω has degree < f and since $f \leq t$, we get the result.

(ii) We have

$$\begin{split} \omega(z) &= \sum_{j=1}^{f} e_{i_j} \zeta_n^{i_j} \prod_{k \neq j} (1 - \zeta_n^{i_k} z) \\ &= \sigma(z) \sum_{j=1}^{f} e_{i_j} \zeta_n^{i_j} \frac{1}{1 - \zeta_n^{i_j} z} \\ &= \sigma(z) \sum_{j=1}^{f} e_{i_j} \zeta_n^{i_j} \sum_{k=0}^{+\infty} \zeta_n^{ki_j} z^k \\ &= \sigma(z) \sum_{k=0}^{+\infty} z^k \left(\sum_{j=1}^{f} e_{i_j} \zeta_n^{i_j(k+1)} \right) \\ &= \sigma(z) \sum_{k=0}^{+\infty} z^k e(\zeta_n^{k+1}) \\ &= \sigma(z) \sum_{\ell=1}^{+\infty} z^{\ell-1} e(\zeta_n^\ell) \\ &\equiv \sigma(z) S(z) \mod (z^{2t}). \end{split}$$

(iii) The polynomial σ is separable with f distinct roots which are $\zeta_n^{-i_1}, \ldots, \zeta_n^{-i_f}$. Now, let $1 \leq \ell \leq f$.

$$\omega(\zeta_n^{-i_\ell}) = \sum_{j=1}^f e_{i_j} \zeta_n^{i_j} \prod_{k \neq j} (1 - \zeta_n^{i_k} \zeta_n^{-i_\ell}).$$

and the product $\prod_{k \neq j} (1 - \zeta_n^{i_k} \zeta_n^{-i_\ell})$ is zero unless $j = \ell$. Therefore,

$$\omega(\zeta_n^{-i_\ell}) = e_{i_\ell} \zeta_n^{i_\ell} \prod_{k \neq \ell} (1 - \zeta_n^{i_k} \zeta_n^{-i_\ell})$$

which is nonzero. Thus no root of σ cancels ω , hence the two polynomials are prime to each other.

4. We have,

$$\omega(z)\sigma'(z) \equiv S(z)\sigma(z)\sigma'(z) \equiv \omega'(z)\sigma(z) \mod (z^{2t})$$

Therefore, $z^{2t}|\omega(z)\sigma'(z) - \omega'(z)\sigma(z)$. But the polynomial $\omega\sigma' - \omega'\sigma$ has degree < 2t and hence is zero. Thus we have,

$$\omega(z)\sigma'(z) = \omega'(z)\sigma(z)$$

and since σ and ω are prime to each other, we get $\sigma | \sigma'$ which yields the existence of a polynomial H such that $\sigma' = H\sigma$. Next one deduce easily that $\omega' = H\omega$.

- 5. The coefficients of S are obtained by evaluating e which has degree $f \leq t$. Therefore, the number of roots of e is less than or equal to t. Thus, h < t.
- 6. From Question 5, the GCD P_r of S and z^{2t} equals up to multiplication by a nonzero scalar) z^h for some h < t. Consequently, in the sequence $(P_i)_i$ of polynomials given by the Euclidian algorithm, there exists an index i such that deg $P_{i-1} \ge t$ and deg $P_i < t$.

Set $\omega \stackrel{\text{def}}{=} P_i$. By construction, we have $\deg \omega < t$, moreover, the *i*-th step of Euclid Algorithm yields

$$\omega(z) \equiv B_i(z)S(z) \mod (z^{2t}).$$

To conclude by applying the result of Question 4, we need to prove that deg $A_i \leq t$. For this sake, we proceed to a deeper analysis of Euclid algorithm. Remind that there exists a sequence of quotients Q_1, Q_2, \ldots such that for all $i \geq 2$,

$$P_i = Q_{i-1}P_{i-1} - P_{i-2} \tag{1}$$

$$B_i = Q_{i-1}B_{i-1} - B_{i-2}.$$
 (2)

By induction, one proves that the sequence of degrees deg B_i is increasing for $i \ge 1$. Indeed, since $B_2 = Q_1 B_1$ (remind that $B_0 = 0$), we clearly have deg $B_2 \le \deg B_1$. Then, by induction, for all $i \ge 2$, we assume that deg $B_{i-1} \ge \deg B_{i-2}$ and hence from (2), we get

$$\deg(B_i) = \deg Q_{i-1} + \deg(B_{i-1}) \geqslant \deg B_{i-1} \tag{3}$$

since Q_i is nonzero (it is a quotient in an Euclidian division).

Now, as specified in (1), for all $i \ge 2$, we have the Euclidian division $P_{i-2} = Q_{i-1}P_{i-1} + P_i$ where P_i is the remainder. By the very definition of Euclidian division, we have

$$\forall i \ge 2, \quad \deg P_{i-2} = \deg(Q_{i-1}P_{i-1}) = \deg Q_{i-1} + \deg(P_{i-1})$$
 (4)

and, putting (3) and (4) together, we get

$$\forall i \ge 2, \qquad \deg B_i = \deg B_{i-1} + \deg P_{i-2} - \deg P_{i-1}. \tag{5}$$

Finally, using (2) again, and since $B_1 = 0$, by induction, (5) leads to

$$\forall i \ge 2, \qquad \deg B_i = \deg P_0 - \deg P_{i-1} = 2t - \deg P_{i-1}.$$

Next, by definition of i we have deg $P_{i-1} \ge t$ which leads to deg $B_i \le t$. Thus, from Question 4, we get the result.

- 7. Step 1. Compute S from the received word y.
 - Step 2. Proceed to Euclid Algorithm to compute P_i and B_i .
 - Step 3. Compute the GCD H of P_i and B_i and set $\omega = \frac{P_i}{H} \sigma = \frac{B_i}{H}$ (actually a deeper analysis of Euclid Algorithm would lead to deg H = 1).

Step 4. Compute the inverse of the roots of σ in $\mathbb{F}_q(\zeta_n)$. Call them $\zeta_n^{i_1}, \ldots, \zeta_n^{i_f}$ Step 5. Compute the vector e defined as $e_k = 0$ for all $k \notin \{i_1, \ldots, i_f\}$ and

$$\forall j \in \{1, \dots, f\}, \ e_{i_j} \stackrel{\text{def}}{=} \frac{\omega(\zeta_n^{-i_j})\zeta_n^{-i_j}}{\prod_{k \neq j} (1 - \zeta_n^{i_k} \zeta_n^{-i_j})} \cdot$$

Step 6. return y - e.

The most expensive part of the algorithm is Euclid algorithm whose complexity is $O(t^2)$ operations in $\mathbb{F}_q(\zeta_n)$.

Solution to Exercise 3

1. (a) It is well-known in finite field theory that

$$z^{q-1} - 1 = \prod_{a \in \mathbb{F}_q^\times} (z - a).$$

- (b) Cyclotomic classes are any subset of $\mathbb{Z}/(q-1)\mathbb{Z}$ and minimal cyclotomic classes are subsets of cardinality 1.
- (c) Let g be the polynomial $g(z) \stackrel{\text{def}}{=} \prod_{i=1}^{\delta-1} (z \zeta_n^i)$. Since the ζ_n^i are all in \mathbb{F}_q , $g \in \mathbb{F}_q[z]$ and is a generating polynomial of the code. Since its degree is $\delta 1$ its dimension is $n \delta + 1$ and by the BCH bound its minimum distance is $\geq \delta$. Thanks to Singleton bound we see that its distance is actually equal to δ and hence it is an MDS code.
- (d) From the basis of polynomials $1, z, z^2, \ldots, z^{\delta-2}$, the code C' has a basis given by

$$v_i \stackrel{\text{def}}{=} (1, \zeta_n^{i+1}, \zeta_n^{2i+2}, \dots, \zeta_n^{i(n-1)+(n-1)})$$

for $i \in \{0, \ldots, \delta - 2\}$. Let $c \in C$, then the inner product $\langle c, v_i \rangle$ is nothing but $c(\zeta_n^{i+1})$ regarding c as a polynomial. Then, since, by definition of C, we know that $c(\zeta_n^j) = 0$ for all $j \in \{1, \ldots, \delta - 1\}$, which proves than

$$\forall i \in \{0, \dots, \delta - 2\}, \qquad \langle c, v_i \rangle = 0.$$

Therefore, $C' \subset C^{\perp}$. Next, since C' has dimension $\delta - 1$ and C has dimension $n - \delta + 1$, we conclude that

$$C' = C^{\perp}.$$

- (e) The dual of a GRS code is a GRS code. Hence C is GRS code.
- 2. Consider the BCH code D over $\mathbb{F}_q(\zeta_n)$ (and not \mathbb{F}_q) associated to the roots $\zeta_n, \ldots, \zeta_n^{\delta-1}$. The code C is contained in $D_{|\mathbb{F}_q}$. Moreover, from the previous question, D is a GRS code.
- 3. The code *D* considered in the previous question has minimum distance δ . Thus an approach to correct up to $\lfloor \frac{\delta-1}{2} \rfloor$ errors would be to proceed as follows:

• Given a received word y = c + e where $c \in C$ and $w_H(e) \leq \frac{\delta - 1}{2} \rfloor$. Solve the decoding problem in D using Berlekamp Welch algorithm.

By uniqueness of the solution of this decoding problem in C and in D, we know that the solution is the closest element in C to y and hence is c.

Compared to the algorithm presented in Exercise 2 whose complexity was quadratic in δ , the present algorithm includes a part of linear algebra which will be cubic.