Exercises $n^{\circ} 4$, Cyclic and BCH codes

November 24, 2014

Exercise 1. In this exercise, we give an alternative proof of the BCH bound using the discrete Fourier Transform.

Let n be an integer and \mathbb{F}_{q} a finite field with q prime to n. Let $\mathbb{F}_{q}\left(\zeta_{n}\right)$ be a finite extension of \mathbb{F}_{q} containing all the n-th roots of $1, \zeta_{n}$ denotes a primitive n-th root of 1 . The discrete Fourier transform is defined as

$$
\mathcal{F}:\left\{\begin{array}{clc}
\mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right) & \longrightarrow & \mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right) \\
f & \longmapsto & \sum_{i=0}^{n-1} f\left(\zeta_{n}^{-i}\right) X^{i}
\end{array} .\right.
$$

1. Prove that \mathcal{F} is an \mathbb{F}_{q}-linear map.
2. Prove that

$$
\sum_{i=0}^{n-1} \zeta_{n}^{i j}=\left\{\begin{array}{lll}
n & \text { if } \\
0 & \text { else }
\end{array}\right.
$$

3. Prove that \mathcal{F} is an isomorphism with inverse:

$$
\mathcal{F}^{-1}:\left\{\begin{array}{clc}
\mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right) & \longrightarrow & \mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right) \\
f & \longmapsto & \frac{1}{n} \sum_{i=0}^{n-1} f\left(\zeta_{n}^{i}\right) X^{i}
\end{array} .\right.
$$

Indication: it suffices to prove that $\mathcal{F}^{-1}\left(\mathcal{F}\left(X^{i}\right)\right)=X^{i}$ for all $i=0, \ldots, n-1$.
4. For all $f, g \in \mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right)$, denote by $f \star g$ the coefficientwise product:

$$
\text { if } f=\sum_{i=0}^{n-1} f_{i} X^{i} \text { and } g=\sum_{i=0}^{n-1} g_{i} X^{i} \text {, then } f \star g=\sum_{i=0}^{n-1} f_{i} g_{i} X^{i} \text {. }
$$

Prove that for all $f, g \in \mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right)$, then
(i) $\mathcal{F}(f g)=\mathcal{F}(f) \star \mathcal{F}(g)$;
(ii) $\mathcal{F}(f \star g)=\frac{1}{n} \mathcal{F}(f) \mathcal{F}(g)$;
(iii) $\mathcal{F}^{-1}(f g)=n\left(\mathcal{F}^{-1}(f) \star \mathcal{F}^{-1}(g)\right)$;
(iv) $\mathcal{F}^{-1}(f \star g)=\mathcal{F}^{-1}(f) \mathcal{F}^{-1}(g)$;
5. Let $g \in \mathbb{F}_{q}[X] /\left(X^{n}-1\right)$ be a nonzero polynomial vanishing at $1, \zeta_{n}, \ldots, \zeta_{n}^{\delta-2}$ (in particular, it vanishes at $\delta-1$ roots of $X^{n}-1$ with consecutive exponents). Prove that

$$
\mathcal{F}^{-1}(g) \equiv X^{\delta-1} h(X) \quad \bmod \left(X^{n}-1\right)
$$

for some $h \in \mathbb{F}_{q}\left(\zeta_{n}\right)[X]$ where h is nonzero and has degree $\leqslant n-\delta$.
6. Using $\mathcal{F}\left(\mathcal{F}^{-1}(g)\right)$ prove that g has at least δ nonzero coefficients.
7. Prove that of $g \in \mathbb{F}_{q}[X] /\left(X^{n}-1\right)$ vanishes at $\zeta_{n}^{a}, \zeta_{n}^{a+1}, \ldots, \zeta_{n}^{a+\delta-2}$, then g also has at least δ nonzero coefficients.
8. Conclude.

Exercise 2 (A decoding algorithm for BCH codes). Let \mathbb{F}_{q} be a finite field and n be an integer prime to q. Let $\mathbb{F}_{q}\left(\zeta_{n}\right)$ be the smallest extension of \mathbb{F}_{q} containing all the n-th roots of 1 . Let $g \in \mathbb{F}_{q}[x]$ be a polynomial of degree $<n$ vanishing at $\zeta_{n}, \ldots, \zeta_{n}^{\delta-1}$ for some positive integer δ. Let C be the BCH code with generating polynomial g. The BCH bound asserts that C has minimum distance at least equal to δ. We will prove that the code is t-correcting, where $2 t+1=\delta$ if δ is odd and $2 t+1=\delta-1$ if δ is even.

Let $y \in \mathbb{F}_{q}^{n}$ be a word such that

$$
y=c+e
$$

where $c \in C$ and e is a word of weight f with $f \leqslant t$. In what follows, all the words of \mathbb{F}_{q}^{n} are canonically associated to polynomials in $\mathbb{F}_{q}[z] /\left(z^{n}-1\right)$. For instance

$$
e(z)=e_{i_{1}} z^{i_{1}}+\cdots+e_{i_{f}} z^{i_{f}}
$$

where the $e_{i_{j}}$'s are nonzero elements of \mathbb{F}_{q}.
We introduce some notation and terminology.

- The syndrome polynomial $S \in \mathbb{F}_{q}\left(\zeta_{n}\right)[z]$:

$$
S(z) \stackrel{\text { def }}{=} \sum_{i=1}^{2 t} y\left(\zeta_{n}^{i}\right) z^{i-1}
$$

- The error locator polynomial $\sigma \in \mathbb{F}_{q}\left(\zeta_{n}\right)[z]$

$$
\sigma(z) \stackrel{\text { def }}{=} \prod_{j=1}^{f}\left(1-\zeta_{n}^{i_{j}} z\right)
$$

1. Among the polynomials S and σ, which one is known and which one is unknown from the point of view of the decoder?
2. Prove that

$$
S(z)=\sum_{i=1}^{2 t} e\left(\zeta_{n}^{i}\right) z^{i-1}
$$

and hence depends only on the error vector e.
3. Let ω be the polynomial defined as

$$
\omega(z) \stackrel{\text { def }}{=} \sum_{j=1}^{f} e_{i_{j}} \zeta_{n}^{i_{j}} \prod_{k \neq j}\left(1-\zeta_{n}^{i_{k}} z\right)
$$

Prove that
(i) $\operatorname{deg} \omega<t$;
(ii) $S(z) \sigma(z) \equiv \omega(z) \bmod \left(z^{2 t}\right)$;
(iii) σ and ω are prime to each other.

Indication: to prove that two polynomials are prime to each other, it is sufficient to prove that no root of one is a root of the other.
4. Prove that if another pair ($\sigma^{\prime}, \omega^{\prime}$) of polynomials satisfying $\operatorname{deg} \sigma^{\prime} \leqslant t, \operatorname{deg} \omega^{\prime}<t$ and $S(z) \sigma^{\prime}(z) \equiv \omega^{\prime}(z) \bmod \left(z^{2 t}\right)$ then, there exists a polynomial $H \in \mathbb{F}_{q}\left(\zeta_{n}\right)[z]$ such that $\sigma^{\prime}=H \sigma$ and $\omega^{\prime}=H \omega$.
5. Let h be the largest integer such that $z^{h} \mid S(z)$. Prove that $h<t$. Deduce that the greatest common divisor of S and $z^{2 t}$ has degree $<t$.
6. By proceeding to the extended Euclidian algorithm to the pair $\left(S, z^{2 t}\right)$, there exist sequences of polynomials $P_{0}=z^{2 t}, P_{1}=S, P_{2}, \ldots, P_{r}$ with $\operatorname{deg} P_{0}>\operatorname{deg} P_{1}>\operatorname{deg} P_{2}>$ \cdots where P_{r} is the GCD of $\left(S, z^{2 t}\right)$ and $A_{0}, A_{1}, \ldots, B_{0}, B_{1}, \ldots$ such that for all i,

$$
P_{i}=A_{i} z^{2 t}+B_{i} S .
$$

In particular, we have $A_{0}=B_{1}=1$ and $B_{0}=A_{1}=0$.
Prove the existence of a polynomial H and an index i such that $P_{i}=H \omega$ and $A_{i}=H \sigma$.
Indication : You need to analyze Euclid algorithm, and in particular to prove that for all $i \geqslant 2$, $\operatorname{deg} B_{i}=\operatorname{deg} P_{0}-\operatorname{deg} P_{i-1}$.

Remark : Actually a deeper analysis of extends Euclid algorithm makes possible to prove that H has degree 0 and equals $B_{i}(0)$.
7. Describe a decoding algorithm for decoding BCH codes. What is its complexity?

Exercise 3. The goal of the exercise is to observe the strong relations between BCH and Reed-Solomon codes. Let \mathbb{F}_{q} be a finite field and n be an integer prime to q.

1. We first consider the case $n=q-1$.
(a) Prove that if $n=q-1$ then \mathbb{F}_{q} contains all the n-th roots of 1 .

Let ζ_{n} be such an n-th root, from now on the elements of $\mathbb{F}_{q} \backslash\{0\}$ are denoted by $1, \zeta_{n}, \zeta_{n}^{2}, \ldots, \zeta_{n}^{n-1}$.
(b) Then, in this situation, describe the minimal cyclotomic classes and the cyclotomic classes in general.
(c) Still in case where $n=(q-1)$, let C be a BCH whose set of roots contains $\zeta_{n}, \ldots, \zeta_{n}^{\delta-1}$. Prove that C has dimension $n-\delta+1$. Then prove that C is MDS.
(d) Let C^{\prime} be the generalised Reed-Solomon code $C^{\prime} \stackrel{\text { def }}{=} \mathbf{G R S}_{\delta-1}(\mathbf{x}, \mathbf{x})$ where $\mathbf{x} \stackrel{\text { def }}{=}$ $\left(1, \zeta_{n}, \zeta_{n}^{2}, \ldots, \zeta_{n}^{n-1}\right)$. Recall that this code is defined as the image of the map

$$
\left\{\begin{array}{ccc}
\mathbb{F}_{q}[z]_{<\delta-1} & \longrightarrow & \mathbb{F}_{q}^{n} \\
f & \longmapsto & \left(f(1), \zeta_{n} f\left(\zeta_{n}\right), \zeta_{n}^{2} f\left(\zeta_{n}^{2}\right), \ldots, \zeta_{n}^{n-1} f\left(\zeta_{n}^{n-1}\right)\right)
\end{array}\right.
$$

Prove that $C^{\prime}=C^{\perp}$.
Indication : a nice basis for C^{\prime} can be obtained from the images by the above map of the monomials $1, z, z^{2}, \ldots, z^{\delta-2}$.
(e) Conclude that C is a generalised Reed Solomon (GRS in short) code.
2. Now, consider the general case : n is prime to q and C denotes the BCH code whose set of roots contains $\zeta_{n}, \ldots, \zeta_{n}^{\delta-1}$. Prove that C is contained in the subfield subcode of a GRS code with minimum distance δ.
3. Deduce from that a decoding algorithm based on the decoding of the GRS code. Compare its complexity with that of the algorithm presented in Exercise 2.

Solution to Exercise 1

1. For all $f, g \in \mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right)$ and all $\lambda, \mu \in \mathbb{F}_{q}$,

$$
\mathcal{F}(\lambda f+\mu g)=\sum_{i=0}^{n-1}\left(\lambda f\left(\zeta_{n}^{-1}\right)+\mu g\left(\zeta_{n}^{-i}\right)\right) X^{i}=\lambda \mathcal{F}(f)+\mu \mathcal{F}(g)
$$

2. If $n \mid j$, then $\zeta_{n}^{i j}=1$ for all integer i and hence

$$
\sum_{i=0}^{n-1} \zeta_{n}^{i j}=n
$$

Else, then the classical formula on the sum of elements of geometric sequence yields

$$
\sum_{i=0}^{n-1} \zeta_{n}^{i j}=\frac{1-\zeta_{n}^{n j}}{1-\zeta_{n}^{j}}=0
$$

3. Let $j \in\{0, \ldots, n-1\}$. Then

$$
\mathcal{F}\left(X^{j}\right)=\sum_{i=0}^{n-1} \zeta_{n}^{-i j} X^{i}
$$

Set

$$
\mathcal{G}:\left\{\begin{array}{rl}
\mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right) & \longrightarrow \\
f & \longmapsto \mathbb{F}_{q}\left(\zeta_{n}\right)[X] /\left(X^{n}-1\right) \\
& \longmapsto \\
\frac{1}{n} \sum_{h=0}^{n-1} f\left(\zeta_{n}^{h}\right) X^{h}
\end{array} .\right.
$$

And from Question 2, $\sum_{i=0}^{n-1} \zeta_{n}^{i(h-j)}=0$ if $h \neq j$ and n else. Thus,

$$
\mathcal{G} \circ \mathcal{F}\left(X^{j}\right)=X^{j}
$$

4. (4i) Obvious, since for all $i, f g\left(\zeta_{n}^{-i}\right)=f\left(\zeta_{n}^{-i}\right) g\left(\zeta_{n}^{-i}\right)$. By the very same manner, one proves (4iii). (4iii) can be obtained from (4ii) and (4iii) as follows

$$
\begin{aligned}
\mathcal{F}(f \star g) & =\mathcal{F}\left(\mathcal{F}^{-1}(\mathcal{F}(f)) \star \mathcal{F}^{-1}(\mathcal{F}(g))\right) \\
& =\mathcal{F}\left(\frac{1}{n} \mathcal{F}^{-1}(\mathcal{F}(f) \mathcal{F}(g))\right) \\
& =\frac{1}{n} \mathcal{F}(f) \mathcal{F}(g)
\end{aligned}
$$

where the second equality is a consequence of (4i). Identity (4iv) can be obtained by the very same manner by exchanging \mathcal{F} and \mathcal{F}^{-1}.
5. By the very definition of \mathcal{F}^{-1}, the $\delta-1$ first coefficients of $\mathcal{F}^{-1}(g)$ are zero. This yields the result.
6. From (4ii) and from the previous question, we get:

$$
\begin{aligned}
\mathcal{F}\left(\mathcal{F}^{-1}(g)\right) & =\mathcal{F}\left(X^{\delta} h(X)\right) \\
& =\mathcal{F}\left(X^{\delta}\right) \star \mathcal{F}(h(X))
\end{aligned}
$$

Now, observe that $\mathcal{F}\left(X^{\delta}\right)=\sum_{i} \zeta_{n}^{-i \delta} X^{i}$ and hence has only nonzero coefficients. Therefore, the i-th coefficient of $\mathcal{F}\left(\mathcal{F}^{-1}(g)\right)=\mathcal{F}\left(X^{\delta}\right) \star \mathcal{F}(h(X))$ is zero if and only if that of $\mathcal{F}(h)$ is zero. Assume now that $\mathcal{F}\left(\mathcal{F}^{-1}(g)\right)$ has strictly less than δ nonzero coefficients, which means that it has strictly more than $n-\delta$ zero coefficients. This entails that $\mathcal{F}(h)$ has strictly more than $n-\delta$ zero coefficients. By definition of \mathcal{F}, it means that h vanishes at strictly more than $n-\delta$ distinct elements among the ζ_{n}^{-i},s which cannot happen since h is nonzero and has degree $\leqslant n-\delta$ and hence has at most $n-\delta$ distinct roots.
7. In the general case, use the cyclic structure and observe that in this situation,

$$
X^{n-a} \mathcal{F}^{-1}(g)=X^{\delta} h(x)
$$

for some polynomial h of degree $\leqslant n-\delta$ and hence

$$
\mathcal{F}^{-1}(g)=X^{a+\delta} h(X)
$$

The rest of the proof is exactly as in the previous question.
8. A nonzero polynomial vanishing at $\delta-1$ roots with consecutive exponents has at least δ nonzero coefficients. This provides another proof of the BCH bound.

Solution to Exercise 2

1. S is known and σ is unknown.
2. We have,

$$
\begin{aligned}
S(z) & =\sum_{i=1}^{2 t} y\left(\zeta_{n}^{i}\right) z^{i-1} \\
& =\sum_{i=1}^{2 t} c\left(\zeta_{n}^{i}\right) z^{i-1}+\sum_{i=1}^{2 t} e\left(\zeta_{n}^{i}\right) z^{i-1}
\end{aligned}
$$

Then, by the very definition of the BCH code C, the term $\sum_{i=1}^{2 t} c\left(\zeta_{n}^{i}\right) z^{i-1}$ is zero.
3. (i) Clearly, ω has degree $<f$ and since $f \leqslant t$, we get the result.
(ii) We have

$$
\begin{aligned}
\omega(z) & =\sum_{j=1}^{f} e_{i_{j}} \zeta_{n}^{i_{j}} \prod_{k \neq j}\left(1-\zeta_{n}^{i_{k}} z\right) \\
& =\sigma(z) \sum_{j=1}^{f} e_{i_{j}} \zeta_{n}^{i_{j}} \frac{1}{1-\zeta_{n}^{i_{j}} z} \\
& =\sigma(z) \sum_{j=1}^{f} e_{i_{j}} \zeta_{n}^{i_{j}} \sum_{k=0}^{+\infty} \zeta_{n}^{k i_{j}} z^{k} \\
& =\sigma(z) \sum_{k=0}^{+\infty} z^{k}\left(\sum_{j=1}^{f} e_{i_{j}} \zeta_{n}^{i_{j}(k+1)}\right) \\
& =\sigma(z) \sum_{k=0}^{+\infty} z^{k} e\left(\zeta_{n}^{k+1}\right) \\
& =\sigma(z) \sum_{\ell=1}^{+\infty} z^{\ell-1} e\left(\zeta_{n}^{\ell}\right) \\
& \equiv \sigma(z) S(z) \bmod \left(z^{2 t}\right)
\end{aligned}
$$

(iii) The polynomial σ is separable with f distinct roots which are $\zeta_{n}^{-i_{1}}, \ldots, \zeta_{n}^{-i_{f}}$. Now, let $1 \leqslant \ell \leqslant f$.

$$
\omega\left(\zeta_{n}^{-i_{\ell}}\right)=\sum_{j=1}^{f} e_{i_{j}} \zeta_{n}^{i_{j}} \prod_{k \neq j}\left(1-\zeta_{n}^{i_{k}} \zeta_{n}^{-i_{\ell}}\right) .
$$

and the product $\prod_{k \neq j}\left(1-\zeta_{n}^{i_{k}} \zeta_{n}^{-i_{\ell}}\right)$ is zero unless $j=\ell$. Therefore,

$$
\omega\left(\zeta_{n}^{-i_{\ell}}\right)=e_{i_{\ell}} \zeta_{n}^{i_{\ell}} \prod_{k \neq \ell}\left(1-\zeta_{n}^{i_{k}} \zeta_{n}^{-i_{\ell}}\right)
$$

which is nonzero. Thus no root of σ cancels ω, hence the two polynomials are prime to each other.
4. We have,

$$
\omega(z) \sigma^{\prime}(z) \equiv S(z) \sigma(z) \sigma^{\prime}(z) \equiv \omega^{\prime}(z) \sigma(z) \quad \bmod \left(z^{2 t}\right)
$$

Therefore, $z^{2 t} \mid \omega(z) \sigma^{\prime}(z)-\omega^{\prime}(z) \sigma(z)$. But the polynomial $\omega \sigma^{\prime}-\omega^{\prime} \sigma$ has degree $<2 t$ and hence is zero. Thus we have,

$$
\omega(z) \sigma^{\prime}(z)=\omega^{\prime}(z) \sigma(z)
$$

and since σ and ω are prime to each other, we get $\sigma \mid \sigma^{\prime}$ which yields the existence of a polynomial H such that $\sigma^{\prime}=H \sigma$. Next one deduce easily that $\omega^{\prime}=H \omega$.
5. The coefficients of S are obtained by evaluating e which has degree $f \leqslant t$. Therefore, the number of roots of e is less than or equal to t. Thus, $h<t$.
6. From Question 5, the GCD P_{r} of S and $z^{2 t}$ equals up to multiplication by a nonzero scalar) z^{h} for some $h<t$. Consequently, in the sequence $\left(P_{i}\right)_{i}$ of polynomials given by the Euclidian algorithm, there exists an index i such that $\operatorname{deg} P_{i-1} \geqslant t$ and $\operatorname{deg} P_{i}<t$.
Set $\omega \stackrel{\text { def }}{=} P_{i}$. By construction, we have $\operatorname{deg} \omega<t$, moreover, the i-th step of Euclid Algorithm yields

$$
\omega(z) \equiv B_{i}(z) S(z) \quad \bmod \left(z^{2 t}\right)
$$

To conclude by applying the result of Question 4, we need to prove that $\operatorname{deg} A_{i} \leqslant t$. For this sake, we proceed to a deeper analysis of Euclid algorithm. Remind that there exists a sequence of quotients Q_{1}, Q_{2}, \ldots such that for all $i \geqslant 2$,

$$
\begin{align*}
P_{i} & =Q_{i-1} P_{i-1}-P_{i-2} \tag{1}\\
B_{i} & =Q_{i-1} B_{i-1}-B_{i-2} \tag{2}
\end{align*}
$$

By induction, one proves that the sequence of degrees $\operatorname{deg} B_{i}$ is increasing for $i \geqslant 1$. Indeed, since $B_{2}=Q_{1} B_{1}$ (remind that $B_{0}=0$), we clearly have $\operatorname{deg} B_{2} \leqslant \operatorname{deg} B_{1}$. Then, by induction, for all $i \geqslant 2$, we assume that $\operatorname{deg} B_{i-1} \geqslant \operatorname{deg} B_{i-2}$ and hence from (2), we get

$$
\begin{equation*}
\operatorname{deg}\left(B_{i}\right)=\operatorname{deg} Q_{i-1}+\operatorname{deg}\left(B_{i-1}\right) \geqslant \operatorname{deg} B_{i-1} \tag{3}
\end{equation*}
$$

since Q_{i} is nonzero (it is a quotient in an Euclidian division).
Now, as specified in (1), for all $i \geqslant 2$, we have the Euclidian division $P_{i-2}=Q_{i-1} P_{i-1}+P_{i}$ where P_{i} is the remainder. By the very definition of Euclidian division, we have

$$
\begin{equation*}
\forall i \geqslant 2, \quad \operatorname{deg} P_{i-2}=\operatorname{deg}\left(Q_{i-1} P_{i-1}\right)=\operatorname{deg} Q_{i-1}+\operatorname{deg}\left(P_{i-1}\right) \tag{4}
\end{equation*}
$$

and, putting (3) and (4) together, we get

$$
\begin{equation*}
\forall i \geqslant 2, \quad \operatorname{deg} B_{i}=\operatorname{deg} B_{i-1}+\operatorname{deg} P_{i-2}-\operatorname{deg} P_{i-1} \tag{5}
\end{equation*}
$$

Finally, using (2) again, and since $B_{1}=0$, by induction, (5) leads to

$$
\forall i \geqslant 2, \quad \operatorname{deg} B_{i}=\operatorname{deg} P_{0}-\operatorname{deg} P_{i-1}=2 t-\operatorname{deg} P_{i-1} .
$$

Next, by definition of i we have $\operatorname{deg} P_{i-1} \geqslant t$ which leads to $\operatorname{deg} B_{i} \leqslant t$. Thus, from Question 4, we get the result.
7. Step 1. Compute S from the received word y.

Step 2. Proceed to Euclid Algorithm to compute P_{i} and B_{i}.
Step 3. Compute the GCD H of P_{i} and B_{i} and set $\omega=\frac{P_{i}}{H} \sigma=\frac{B_{i}}{H}$ (actually a deeper analysis of Euclid Algorithm would lead to $\operatorname{deg} H=1$).

Step 4. Compute the inverse of the roots of σ in $\mathbb{F}_{q}\left(\zeta_{n}\right)$. Call them $\zeta_{n}^{i_{1}}, \ldots, \zeta_{n}^{i_{f}}$
Step 5. Compute the vector e defined as $e_{k}=0$ for all $k \notin\left\{i_{1}, \ldots, i_{f}\right\}$ and

$$
\forall j \in\{1, \ldots, f\}, e_{i_{j}} \stackrel{\text { def }}{=} \frac{\omega\left(\zeta_{n}^{-i_{j}}\right) \zeta_{n}^{-i_{j}}}{\prod_{k \neq j}\left(1-\zeta_{n}^{i_{k}} \zeta_{n}^{-i_{j}}\right)} .
$$

Step 6. return $y-e$.
The most expensive part of the algorithm is Euclid algoritm whose complexity is $O\left(t^{2}\right)$ operations in $\mathbb{F}_{q}\left(\zeta_{n}\right)$.

Solution to Exercise 3

1. (a) It is well-known in finite field theory that

$$
z^{q-1}-1=\prod_{a \in \mathbb{F}_{q}^{\times}}(z-a)
$$

(b) Cyclotomic classes are any subset of $\mathbb{Z} /(q-1) \mathbb{Z}$ and minimal cyclotomic classes are subsets of cardinality 1 .
(c) Let g be the polynomial $g(z) \stackrel{\text { def }}{=} \prod_{i=1}^{\delta-1}\left(z-\zeta_{n}^{i}\right)$. Since the ζ_{n}^{i} are all in $\mathbb{F}_{q}, g \in \mathbb{F}_{q}[z]$ and is a generating polynomial of the code. Since its degree is $\delta-1$ its dimension is $n-\delta+1$ and by the BCH bound its minimum distance is $\geqslant \delta$. Thanks to Singleton bound we see that its distance is actually equal to δ and hence it is an MDS code.
(d) From the basis of polynomials $1, z, z^{2}, \ldots, z^{\delta-2}$, the code C^{\prime} has a basis given by

$$
v_{i} \stackrel{\text { def }}{=}\left(1, \zeta_{n}^{i+1}, \zeta_{n}^{2 i+2}, \ldots, \zeta_{n}^{i(n-1)+(n-1)}\right)
$$

for $i \in\{0, \ldots, \delta-2\}$. Let $c \in C$, then the inner product $\left\langle c, v_{i}\right\rangle$ is nothing but $c\left(\zeta_{n}^{i+1}\right)$ regarding c as a polynomial. Then, since, by definition of C, we know that $c\left(\zeta_{n}^{j}\right)=0$ for all $j \in\{1, \ldots, \delta-1\}$, which proves than

$$
\forall i \in\{0, \ldots, \delta-2\}, \quad\left\langle c, v_{i}\right\rangle=0
$$

Therefore, $C^{\prime} \subset C^{\perp}$. Next, since C^{\prime} has dimension $\delta-1$ and C has dimension $n-\delta+1$, we conclude that

$$
C^{\prime}=C^{\perp} .
$$

(e) The dual of a GRS code is a GRS code. Hence C is GRS code.
2. Consider the BCH code D over $\mathbb{F}_{q}\left(\zeta_{n}\right)$ (and not \mathbb{F}_{q}) associated to the roots $\zeta_{n}, \ldots, \zeta_{n}^{\delta-1}$. The code C is contained in $D_{\mid \mathbb{F}_{q}}$. Moreover, from the previous question, D is a GRS code.
3. The code D considered in the previous question has minimum distance δ. Thus an approach to correct up to $\left\lfloor\frac{\delta-1}{2}\right\rfloor$ errors would be to proceed as follows:

- Given a received word $y=c+e$ where $c \in C$ and $\left.w_{H}(e) \leqslant \frac{\delta-1}{2}\right\rfloor$. Solve the decoding problem in D using Berlekamp Welch algorithm.

By uniqueness of the solution of this decoding problem in C and in D, we know that the solution is the closest element in C to y and hence is c.
Compared to the algorithm presented in Exercise 2 whose complexity was quadratic in δ, the present algorithm includes a part of linear algebra which will be cubic.

