Exercises n° 4, Cyclic and BCH codes

November 24, 2014

Exercise 1. In this exercise, we give an alternative proof of the BCH bound using the
discrete Fourier Transform.

Let n be an integer and F, a finite field with ¢ prime to n. Let F,((,) be a finite extension
of IF, containing all the n—th roots of 1, (,, denotes a primitive n-th root of 1. The discrete
Fourier transform is defined as

;.{I%(@)[X]/(X"—l) — Fy(G)[X]/(X" = 1)
| / — T AGHXT

1. Prove that F is an F,-linear map.

2. Prove that .
Ak 0 else
=0

3. Prove that F is an isomorphism with inverse:

py { Fy(G)IXT/(X" = 1) — Fy(G)[X]/ (X" = 1)
' f — AT )X

Indication: it suffices to prove that F~'(F(X")) = X" for alli=0,...,n— 1.

4. For all f,g € F,((,)[X]/(X™ — 1), denote by f x g the coefficientwise product:
n—1 n—1 n—1
if f= ZfZX’ and g = ZgiXi, then fxg = ZfigiXi.
i=0 i=0 i=0

Prove that for all f, g € F,((,)[X]/(X™ — 1), then
) F(fg) = F(f)*Flg);
) F(fxg) = 3 F(£)F(9):
(i) F=(fg) =n(FH(f) * F(9));
) F



5. Let g € F,[X]/(X™ — 1) be a nonzero polynomial vanishing at 1,(,,...,¢2~2 (in par-
ticular, it vanishes at § — 1 roots of X™ — 1 with consecutive exponents). Prove that

FHg)=X"""h(X) mod (X" —1)
for some h € F,((,)[X] where h is nonzero and has degree < n — 4.

6. Using F(F*(g)) prove that g has at least d nonzero coefficients.

7. Prove that of g € F,[X]/(X™ — 1) vanishes at %, ¢*™,... (%72 then g also has at
least 0 nonzero coefficients.

8. Conclude.

Exercise 2 (A decoding algorithm for BCH codes). Let F, be a finite field and n be an
integer prime to q. Let F ((,,) be the smallest extension of I, containing all the n—th roots
of 1. Let g € F [z] be a polynomial of degree < n vanishing at ¢,, ..., ¢3! for some positive
integer §. Let C' be the BCH code with generating polynomial g. The BCH bound asserts
that C' has minimum distance at least equal to §. We will prove that the code is t—correcting,
where 2t +1 =0 if  is odd and 2t +1 =9 — 1 if § is even.
Let y € F) be a word such that
y=c+e

where ¢ € C and e is a word of weight f with f <. In what follows, all the words of Fy are
canonically associated to polynomials in F,[z|/(2" — 1). For instance

e(z) = e 2" + -+ e, 2"

where the e;,’s are nonzero elements of IF,.
We introduce some notation and terminology.

e The syndrome polynomial S € F,(¢,)[z]:

e The error locator polynomial o € F,((,)[z]

f
:enl—(“z

Jj=1

o
=

1. Among the polynomials S and ¢, which one is known and which one is unknown from
the point of view of the decoder?



2. Prove that

=1

and hence depends only on the error vector e.

3. Let w be the polynomial defined as

f
w(z) =Y ey T - ¢ire)

=1 =y
Prove that

(i) degw < t;

(i) S(2)o(2) = w(z) mod (z%);

(iii) o and w are prime to each other.

Indication: to prove that two polynomaials are prime to each other, it is sufficient to
prove that no root of one is a root of the other.

4. Prove that if another pair (¢/,w’) of polynomials satisfying dego’ < t, degw’ < t and
S(2)0’(z) = w'(2) mod (2*!) then, there exists a polynomial H € F,((,)[z] such that
o' =Ho and v’ = Hw.

5. Let h be the largest integer such that 2"|S(z). Prove that h < t. Deduce that the
greatest common divisor of S and 2% has degree < t.

6. By proceeding to the extended Euclidian algorithm to the pair (5, 2%), there exist
sequences of polynomials Py = 2%, P, = S, P, ..., P, with deg Py > deg P, > deg P, >
- where P, is the GCD of (S, 2%) and Ay, Ay, ..., By, Bi, ... such that for all 4,

P = A2* + B.S.

In particular, we have Ag = B; = 1 and By = A; = 0.

Prove the existence of a polynomial H and an index ¢ such that P, = Hw and A; = Ho.
Indication : You need to analyze Fuclid algorithm, and in particular to prove that for
all v > 2, deg B; = deg Py — deg P;_.

Remark : Actually a deeper analysis of extends FEuclid algorithm makes possible to
prove that H has degree 0 and equals B;(0).

7. Describe a decoding algorithm for decoding BCH codes. What is its complexity?

Exercise 3. The goal of the exercise is to observe the strong relations between BCH and
Reed-Solomon codes. Let F, be a finite field and n be an integer prime to g.



1. We first consider the case n = q — 1.
(a) Prove that if n = ¢ — 1 then F, contains all the n—th roots of 1.

Let ¢, be such an n-th root, from now on the elements of F, \ {0} are denoted by
17<—n7 72LJ s 7(7?_1'

(b) Then, in this situation, describe the minimal cyclotomic classes and the cyclotomic
classes in general.

(c) Still in case where n = (¢ — 1), let C' be a BCH whose set of roots contains
Cn, - -+, C27L. Prove that C has dimension n — § 4+ 1. Then prove that C' is MDS.

(d) Let C” be the generalised Reed-Solomon code C’ & GRS;_1(x,x) where x &
(1,¢,,C2, ..., ¢" ). Recall that this code is defined as the image of the map

{]Fq[z]<5_1 — ]FZ
f — (f(1), Guf(Ga)y GGy os GHAG)

Prove that ¢! = C+.

Indication : a nice basis for C' can be obtained from the images by the above map
of the monomials 1,2, 2%, ..., 2072

(e) Conclude that C' is a generalised Reed Solomon (GRS in short) code.

2. Now, consider the general case : n is prime to ¢ and C' denotes the BCH code whose
set of roots contains (,, ..., (2~!. Prove that C is contained in the subfield subcode of
a GRS code with minimum distance §.

3. Deduce from that a decoding algorithm based on the decoding of the GRS code. Com-
pare its complexity with that of the algorithm presented in Exercise



Solution to Exercise [1]

1. For all f,g € F,((,)[X]/(X™—1) and all \, u € F,
n—1

FOf+pg) =Y (MG +ng(G )X = AF(f) + nF(g).

1=0

2. If n|j, then ¢¥ =1 for all integer ¢ and hence

n—1
Si-n
=0

Else, then the classical formula on the sum of elements of geometric sequence yields

3. Let 5 € {0,...,n—1}. Then

n—1
)= ¢IX
1=0

Set
G- { Fy(G)IX/(X" —1) — By (G)IX]/(X" 1)
! — s f(C X"
1 n—1 n—1
J - —ij ~hi yh
Go F(X7) = Zg chix
h=0 =0
1 n—1 n—1
—— Q%(h—j)) xh
n , "
h=0 =0
And from Quest1onl ZZ 0 ih=3) — 0 if h # j and n else. Thus,
Go F(X?) =X’

4. . Obv1ous smce for all i, fg(¢;%) = f(C‘i)g(C;i). By the very same manner, one
proves can be obtained from (4il) and ( as follows

F(f+9) = FENF() «F(F )
— 7 (L7 D))

= LF(NF()

where the second equality is a consequence of . Identity can be obtained by
the very same manner by exchanging F and F 1.



5. By the very definition of F~1, the § — 1 first coefficients of F~1(g) are zero. This yields

the result.

. From and from the previous question, we get:

F(F(g)) = F(X°h(X))
= F(X°) x F(h(X))

Now, observe that F(X?) =", (,;® X" and hence has only nonzero coefficients. There-
fore, the i-th coefficient of F(F~1(g)) = F(X?)x F(h(X)) is zero if and only if that of
F(h) is zero. Assume now that F(F1(g)) has strictly less than § nonzero coefficients,
which means that it has strictly more than n — 0 zero coefficients. This entails that
F(h) has strictly more than n — ¢ zero coefficients. By definition of F, it means that
h vanishes at strictly more than n — § distinct elements among the ¢, *’s which cannot
happen since h is nonzero and has degree < n — ¢ and hence has at most n — ¢ distinct
roots.

. In the general case, use the cyclic structure and observe that in this situation,

X" F(g) = X°h(x)
for some polynomial h of degree < n — ¢ and hence
FHg) = X“h(X).

The rest of the proof is exactly as in the previous question.

. A nonzero polynomial vanishing at § — 1 roots with consecutive exponents has at least

0 nonzero coefficients. This provides another proof of the BCH bound.

Solution to Exercise

1. S is known and o is unknown.

2. We have,

3.

S(:) = Yl

2t 2t
= )T+ ) el
i=1 i=1

Then, by the very definition of the BCH code C', the term Zfil c(¢h)z1 is zero.

(i) Clearly, w has degree < f and since f < t, we get the result.



(ii) We have

I
Q
—
N
N—
N

T
L
Q)
—
4
S—

=1
o(2)S(z) mod (2*).

(iii) The polynomial ¢ is separable with f distinct roots which are ;... ¢, £ Now,
let 1 <0< .
f
(G =D el [T = Gr6™).
=1 kAj

and the product [, (1 — (#¢, ™) is zero unless j = £. Therefore,
w(G) = e 10 =GR
py,

which is nonzero. Thus no root of o cancels w, hence the two polynomials are prime
to each other.

4. We have,
w(2)d'(2) = S(2)o(2)0'(2) = W' (2)o(2) mod (2*)
Therefore, 2%|w(2)0’(z) — w'(2)o(2). But the polynomial wo’ — w'o has degree < 2t and

hence is zero. Thus we have,
w(z)d'(z) = W' (2)o(2)

and since o and w are prime to each other, we get o|o’ which yields the existence of a
polynomial H such that ¢’ = Ho. Next one deduce easily that w’' = Hw.



5. The coefficients of S are obtained by evaluating e which has degree f < t. Therefore, the
number of roots of e is less than or equal to t. Thus, h < t.

6. From Question , the GCD P, of S and z? equals up to multiplication by a nonzero

scalar) 2" for some h < t. Consequently, in the sequence (P;) ; of polynomials given by

the Fuclidian algorithm, there exists an index ¢ such that deg P;_; > t and deg P; < t.

Set w ¥ P;. By construction, we have degw < t, moreover, the i—th step of Euclid

Algorithm yields
w(z) = Bi(2)S(2) mod (2*).

To conclude by applying the result of Question 4 we need to prove that deg A; < t. For
this sake, we proceed to a deeper analysis of Euclid algorithm. Remind that there exists
a sequence of quotients 1, Q)», ... such that for all i > 2,
Pi=Qi1Pi-1— P (1)
B; =Qi-1Bi-1 — Bi». (2)

By induction, one proves that the sequence of degrees deg B; is increasing for ¢ > 1.
Indeed, since By = Q1 B; (remind that By = 0), we clearly have deg By < deg By. Then,
by induction, for all 7 > 2, we assume that deg B;,_; > deg B;_» and hence from , we
get

deg(B;) = deg Q;_1 + deg(B;_1) > deg B; 1 (3)

since ; is nonzero (it is a quotient in an Euclidian division).

Now, as specified in , for all 7 > 2, we have the Euclidian division P,_y = Q;,_1P,_1+ P;
where F; is the remainder. By the very definition of Euclidian division, we have

Vi>2, degP;_p=deg(Q;—1P—1) = degQ;—1 + deg(P;_1) (4)
and, putting and together, we get
Vi > 2, deg B; = deg B;_1 + deg P,_y — deg P;_;. (5)
Finally, using again, and since B; = 0, by induction, leads to
Vi > 2, deg B; = deg Py — deg P;_1 = 2t — deg P;_;.

Next, by definition of ¢ we have deg P,_; > t which leads to deg B; < t. Thus, from
Question [4, we get the result.

7. Step 1. Compute S from the received word .
Step 2. Proceed to Euclid Algorithm to compute P; and B;.

Step 3. Compute the GCD H of P, and B; and set w = % o= % (actually a deeper
analysis of Euclid Algorithm would lead to deg H = 1).



Step 4. Compute the inverse of the roots of o in F,((,). Call them (!, ..., i

Step 5. Compute the vector e defined as e, = 0 for all k£ ¢ {i1,...,i;} and

g WG )G
T (1= GG

Vied{l,...,f} e

Step 6. return y — e.

The most expensive part of the algorithm is Euclid algoritm whose complexity is O(?)
operations in F,(¢,).

Solution to Exercise [3]

1. (a)

(b)

()

(e)

It is well-known in finite field theory that

2l —1= H(z—a).

aEF;

Cyclotomic classes are any subset of Z/(¢ — 1)Z and minimal cyclotomic classes
are subsets of cardinality 1.

Let g be the polynomial g(2) def H‘.;’

°~1(z— (). Since the ¢i are all in F,, g € F,[2]
and is a generating polynomial of the code. Since its degree is § — 1 its dimension is
n—0+1 and by the BCH bound its minimum distance is > ¢. Thanks to Singleton
bound we see that its distance is actually equal to § and hence it is an MDS code.

From the basis of polynomials 1, z, 22, ..., 22, the code C’ has a basis given by
def % % i(n— n—
v = (LG G G e)

for i € {0,...,0 —2}. Let ¢ € C, then the inner product (c,v;) is nothing but
c(¢t*1) regarding ¢ as a polynomial. Then, since, by definition of C', we know that
c(¢Z) =0 for all j € {1,...,8 — 1}, which proves than

Vie{0,...,d —2}, (c,v;) = 0.

Therefore, ' C C*. Next, since C' has dimension § — 1 and C has dimension
n — 0 + 1, we conclude that

C'=C+.
The dual of a GRS code is a GRS code. Hence C is GRS code.

2. Consider the BCH code D over F,(¢,) (and not F,) associated to the roots ¢, ..., (57"
The code C'is contained in Dyy,. Moreover, from the previous question, D is a GRS
code.

3. The code D considered in the previous question has minimum distance 6. Thus an
approach to correct up to L‘sg—lj errors would be to proceed as follows:



e Given a received word y = ¢ + e where ¢ € C and wg(e) < %51]. Solve the
decoding problem in D using Berlekamp Welch algorithm.

By uniqueness of the solution of this decoding problem in C' and in D, we know that
the solution is the closest element in C' to y and hence is c.

Compared to the algorithm presented in Exercise [2| whose complexity was quadratic
in 9, the present algorithm includes a part of linear algebra which will be cubic.



