
Exercises n◦ 4, Cyclic and BCH codes

November 24, 2014

Exercise 1. In this exercise, we give an alternative proof of the BCH bound using the
discrete Fourier Transform.

Let n be an integer and Fq a finite field with q prime to n. Let Fq(ζn) be a finite extension
of Fq containing all the n–th roots of 1, ζn denotes a primitive n–th root of 1. The discrete
Fourier transform is defined as

F :

{
Fq(ζn)[X]/(Xn − 1) −→ Fq(ζn)[X]/(Xn − 1)

f 7−→
∑n−1

i=0 f(ζ
−i
n )X i .

1. Prove that F is an Fq–linear map.

2. Prove that
n−1∑
i=0

ζ ijn =

{
n if n|j
0 else

.

3. Prove that F is an isomorphism with inverse:

F−1 :
{

Fq(ζn)[X]/(Xn − 1) −→ Fq(ζn)[X]/(Xn − 1)

f 7−→ 1
n

∑n−1
i=0 f(ζ

i
n)X

i .

Indication: it suffices to prove that F−1(F(X i)) = X i for all i = 0, . . . , n− 1.

4. For all f, g ∈ Fq(ζn)[X]/(Xn − 1), denote by f ? g the coefficientwise product:

if f =
n−1∑
i=0

fiX
i and g =

n−1∑
i=0

giX
i, then f ? g =

n−1∑
i=0

figiX
i.

Prove that for all f, g ∈ Fq(ζn)[X]/(Xn − 1), then

(i) F(fg) = F(f) ? F(g);
(ii) F(f ? g) = 1

n
F(f)F(g);

(iii) F−1(fg) = n(F−1(f) ? F−1(g));
(iv) F−1(f ? g) = F−1(f)F−1(g);
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5. Let g ∈ Fq[X]/(Xn − 1) be a nonzero polynomial vanishing at 1, ζn, . . . , ζδ−2n (in par-
ticular, it vanishes at δ − 1 roots of Xn − 1 with consecutive exponents). Prove that

F−1(g) ≡ Xδ−1h(X) mod (Xn − 1)

for some h ∈ Fq(ζn)[X] where h is nonzero and has degree 6 n− δ.

6. Using F(F−1(g)) prove that g has at least δ nonzero coefficients.

7. Prove that of g ∈ Fq[X]/(Xn − 1) vanishes at ζan, ζa+1
n , . . . , ζa+δ−2n , then g also has at

least δ nonzero coefficients.

8. Conclude.

Exercise 2 (A decoding algorithm for BCH codes). Let Fq be a finite field and n be an
integer prime to q. Let Fq(ζn) be the smallest extension of Fq containing all the n–th roots
of 1. Let g ∈ Fq[x] be a polynomial of degree < n vanishing at ζn, . . . , ζδ−1n for some positive
integer δ. Let C be the BCH code with generating polynomial g. The BCH bound asserts
that C has minimum distance at least equal to δ. We will prove that the code is t–correcting,
where 2t+ 1 = δ if δ is odd and 2t+ 1 = δ − 1 if δ is even.

Let y ∈ Fnq be a word such that
y = c+ e

where c ∈ C and e is a word of weight f with f 6 t. In what follows, all the words of Fnq are
canonically associated to polynomials in Fq[z]/(zn − 1). For instance

e(z) = ei1z
i1 + · · ·+ eif z

if

where the eij ’s are nonzero elements of Fq.
We introduce some notation and terminology.

• The syndrome polynomial S ∈ Fq(ζn)[z]:

S(z)
def
=

2t∑
i=1

y(ζ in)z
i−1.

• The error locator polynomial σ ∈ Fq(ζn)[z]

σ(z)
def
=

f∏
j=1

(1− ζ ijn z).

1. Among the polynomials S and σ, which one is known and which one is unknown from
the point of view of the decoder?



2. Prove that

S(z) =
2t∑
i=1

e(ζ in)z
i−1

and hence depends only on the error vector e.

3. Let ω be the polynomial defined as

ω(z)
def
=

f∑
j=1

eijζ
ij
n

∏
k 6=j

(1− ζ ikn z)

Prove that

(i) degω < t;

(ii) S(z)σ(z) ≡ ω(z) mod (z2t);

(iii) σ and ω are prime to each other.

Indication: to prove that two polynomials are prime to each other, it is sufficient to
prove that no root of one is a root of the other.

4. Prove that if another pair (σ′, ω′) of polynomials satisfying deg σ′ 6 t, degω′ < t and
S(z)σ′(z) ≡ ω′(z) mod (z2t) then, there exists a polynomial H ∈ Fq(ζn)[z] such that
σ′ = Hσ and ω′ = Hω.

5. Let h be the largest integer such that zh|S(z). Prove that h < t. Deduce that the
greatest common divisor of S and z2t has degree < t.

6. By proceeding to the extended Euclidian algorithm to the pair (S, z2t), there exist
sequences of polynomials P0 = z2t, P1 = S, P2, . . . , Pr with degP0 > degP1 > degP2 >
· · · where Pr is the GCD of (S, z2t) and A0, A1, . . ., B0, B1, . . . such that for all i,

Pi = Aiz
2t +BiS.

In particular, we have A0 = B1 = 1 and B0 = A1 = 0.
Prove the existence of a polynomial H and an index i such that Pi = Hω and Ai = Hσ.

Indication : You need to analyze Euclid algorithm, and in particular to prove that for
all i > 2, degBi = degP0 − degPi−1.

Remark : Actually a deeper analysis of extends Euclid algorithm makes possible to
prove that H has degree 0 and equals Bi(0).

7. Describe a decoding algorithm for decoding BCH codes. What is its complexity?

Exercise 3. The goal of the exercise is to observe the strong relations between BCH and
Reed-Solomon codes. Let Fq be a finite field and n be an integer prime to q.



1. We first consider the case n = q − 1.

(a) Prove that if n = q − 1 then Fq contains all the n–th roots of 1.

Let ζn be such an n–th root, from now on the elements of Fq \ {0} are denoted by
1, ζn, ζ

2
n, . . . , ζ

n−1
n .

(b) Then, in this situation, describe the minimal cyclotomic classes and the cyclotomic
classes in general.

(c) Still in case where n = (q − 1), let C be a BCH whose set of roots contains
ζn, . . . , ζ

δ−1
n . Prove that C has dimension n− δ + 1. Then prove that C is MDS.

(d) Let C ′ be the generalised Reed–Solomon code C ′ def
= GRSδ−1(x,x) where x

def
=

(1, ζn, ζ
2
n, . . . , ζ

n−1
n ). Recall that this code is defined as the image of the map{

Fq[z]<δ−1 −→ Fnq
f 7−→ (f(1), ζnf(ζn), ζ

2
nf(ζ

2
n), . . . , ζ

n−1
n f(ζn−1n ))

.

Prove that C ′ = C⊥.

Indication : a nice basis for C ′ can be obtained from the images by the above map
of the monomials 1, z, z2, . . . , zδ−2.

(e) Conclude that C is a generalised Reed Solomon (GRS in short) code.

2. Now, consider the general case : n is prime to q and C denotes the BCH code whose
set of roots contains ζn, . . . , ζδ−1n . Prove that C is contained in the subfield subcode of
a GRS code with minimum distance δ.

3. Deduce from that a decoding algorithm based on the decoding of the GRS code. Com-
pare its complexity with that of the algorithm presented in Exercise 2.



Solution to Exercise 1

1. For all f, g ∈ Fq(ζn)[X]/(Xn − 1) and all λ, µ ∈ Fq,

F(λf + µg) =
n−1∑
i=0

(λf(ζ−1n ) + µg(ζ−in ))X i = λF(f) + µF(g).

2. If n|j, then ζ ijn = 1 for all integer i and hence
n−1∑
i=0

ζ ijn = n.

Else, then the classical formula on the sum of elements of geometric sequence yields
n−1∑
i=0

ζ ijn =
1− ζnjn
1− ζjn

= 0.

3. Let j ∈ {0, . . . , n− 1}. Then

F(Xj) =
n−1∑
i=0

ζ−ijn X i.

Set
G :

{
Fq(ζn)[X]/(Xn − 1) −→ Fq(ζn)[X]/(Xn − 1)

f 7−→ 1
n

∑n−1
h=0 f(ζ

h
n)X

h .

G ◦ F(Xj) =
1

n

n−1∑
h=0

n−1∑
i=0

ζ−ijn ζhin X
h

=
1

n

n−1∑
h=0

(
n−1∑
i=0

ζ i(h−j)n

)
Xh.

And from Question 2,
∑n−1

i=0 ζ
i(h−j)
n = 0 if h 6= j and n else. Thus,

G ◦ F(Xj) = Xj.

4. (4i) Obvious, since for all i, fg(ζ−in ) = f(ζ−in )g(ζ−in ). By the very same manner, one
proves (4iii). (4ii) can be obtained from (4i) and (4iii) as follows

F(f ? g) = F(F−1(F(f)) ? F−1(F(g)))

= F
(
1

n
F−1(F(f)F(g))

)
=

1

n
F(f)F(g),

where the second equality is a consequence of (4i). Identity (4iv) can be obtained by
the very same manner by exchanging F and F−1.



5. By the very definition of F−1, the δ−1 first coefficients of F−1(g) are zero. This yields
the result.

6. From (4i) and from the previous question, we get:

F(F−1(g)) = F(Xδh(X))

= F(Xδ) ? F(h(X))

Now, observe that F(Xδ) =
∑

i ζ
−iδ
n X i and hence has only nonzero coefficients. There-

fore, the i-th coefficient of F(F−1(g)) = F(Xδ) ?F(h(X)) is zero if and only if that of
F(h) is zero. Assume now that F(F−1(g)) has strictly less than δ nonzero coefficients,
which means that it has strictly more than n − δ zero coefficients. This entails that
F(h) has strictly more than n− δ zero coefficients. By definition of F , it means that
h vanishes at strictly more than n− δ distinct elements among the ζ−in ’s which cannot
happen since h is nonzero and has degree 6 n− δ and hence has at most n− δ distinct
roots.

7. In the general case, use the cyclic structure and observe that in this situation,

Xn−aF−1(g) = Xδh(x)

for some polynomial h of degree 6 n− δ and hence

F−1(g) = Xa+δh(X).

The rest of the proof is exactly as in the previous question.

8. A nonzero polynomial vanishing at δ− 1 roots with consecutive exponents has at least
δ nonzero coefficients. This provides another proof of the BCH bound.

Solution to Exercise 2

1. S is known and σ is unknown.

2. We have,

S(z) =
2t∑
i=1

y(ζ in)z
i−1

=
2t∑
i=1

c(ζ in)z
i−1 +

2t∑
i=1

e(ζ in)z
i−1.

Then, by the very definition of the BCH code C, the term
∑2t

i=1 c(ζ
i
n)z

i−1 is zero.

3. (i) Clearly, ω has degree < f and since f 6 t, we get the result.



(ii) We have

ω(z) =

f∑
j=1

eijζ
ij
n

∏
k 6=j

(1− ζ ikn z)

= σ(z)

f∑
j=1

eijζ
ij
n

1

1− ζ ijn z

= σ(z)

f∑
j=1

eijζ
ij
n

+∞∑
k=0

ζkijn zk

= σ(z)
+∞∑
k=0

zk

(
f∑
j=1

eijζ
ij(k+1)
n

)

= σ(z)
+∞∑
k=0

zke(ζk+1
n )

= σ(z)
+∞∑
`=1

z`−1e(ζ`n)

≡ σ(z)S(z) mod (z2t).

(iii) The polynomial σ is separable with f distinct roots which are ζ−i1n , . . . , ζ
−if
n . Now,

let 1 6 ` 6 f .

ω(ζ−i`n ) =

f∑
j=1

eijζ
ij
n

∏
k 6=j

(1− ζ ikn ζ−i`n ).

and the product
∏

k 6=j(1− ζ ikn ζ−i`n ) is zero unless j = `. Therefore,

ω(ζ−i`n ) = ei`ζ
i`
n

∏
k 6=`

(1− ζ ikn ζ−i`n )

which is nonzero. Thus no root of σ cancels ω, hence the two polynomials are prime
to each other.

4. We have,

ω(z)σ′(z) ≡ S(z)σ(z)σ′(z) ≡ ω′(z)σ(z) mod (z2t)

Therefore, z2t|ω(z)σ′(z)− ω′(z)σ(z). But the polynomial ωσ′ − ω′σ has degree < 2t and
hence is zero. Thus we have,

ω(z)σ′(z) = ω′(z)σ(z)

and since σ and ω are prime to each other, we get σ|σ′ which yields the existence of a
polynomial H such that σ′ = Hσ. Next one deduce easily that ω′ = Hω.



5. The coefficients of S are obtained by evaluating e which has degree f 6 t. Therefore, the
number of roots of e is less than or equal to t. Thus, h < t.

6. From Question 5, the GCD Pr of S and z2t equals up to multiplication by a nonzero
scalar) zh for some h < t. Consequently, in the sequence (Pi)i of polynomials given by
the Euclidian algorithm, there exists an index i such that degPi−1 > t and degPi < t.

Set ω def
= Pi. By construction, we have degω < t, moreover, the i–th step of Euclid

Algorithm yields
ω(z) ≡ Bi(z)S(z) mod (z2t).

To conclude by applying the result of Question 4, we need to prove that degAi 6 t. For
this sake, we proceed to a deeper analysis of Euclid algorithm. Remind that there exists
a sequence of quotients Q1, Q2, . . . such that for all i > 2,

Pi = Qi−1Pi−1 − Pi−2 (1)
Bi = Qi−1Bi−1 −Bi−2. (2)

By induction, one proves that the sequence of degrees degBi is increasing for i > 1.
Indeed, since B2 = Q1B1 (remind that B0 = 0), we clearly have degB2 6 degB1. Then,
by induction, for all i > 2, we assume that degBi−1 > degBi−2 and hence from (2), we
get

deg(Bi) = degQi−1 + deg(Bi−1) > degBi−1 (3)

since Qi is nonzero (it is a quotient in an Euclidian division).

Now, as specified in (1), for all i > 2, we have the Euclidian division Pi−2 = Qi−1Pi−1+Pi
where Pi is the remainder. By the very definition of Euclidian division, we have

∀i > 2, degPi−2 = deg(Qi−1Pi−1) = degQi−1 + deg(Pi−1) (4)

and, putting (3) and (4) together, we get

∀i > 2, degBi = degBi−1 + degPi−2 − degPi−1. (5)

Finally, using (2) again, and since B1 = 0, by induction, (5) leads to

∀i > 2, degBi = degP0 − degPi−1 = 2t− degPi−1.

Next, by definition of i we have degPi−1 > t which leads to degBi 6 t. Thus, from
Question 4, we get the result.

7. Step 1. Compute S from the received word y.

Step 2. Proceed to Euclid Algorithm to compute Pi and Bi.

Step 3. Compute the GCD H of Pi and Bi and set ω = Pi

H
σ = Bi

H
(actually a deeper

analysis of Euclid Algorithm would lead to degH = 1).



Step 4. Compute the inverse of the roots of σ in Fq(ζn). Call them ζ i1n , . . . , ζ
if
n

Step 5. Compute the vector e defined as ek = 0 for all k /∈ {i1, . . . , if} and

∀j ∈ {1, . . . , f}, eij
def
=

ω(ζ
−ij
n )ζ

−ij
n∏

k 6=j(1− ζ
ik
n ζ
−ij
n )
·

Step 6. return y − e.
The most expensive part of the algorithm is Euclid algoritm whose complexity is O(t2)
operations in Fq(ζn).

Solution to Exercise 3

1. (a) It is well-known in finite field theory that

zq−1 − 1 =
∏
a∈F×

q

(z − a).

(b) Cyclotomic classes are any subset of Z/(q − 1)Z and minimal cyclotomic classes
are subsets of cardinality 1.

(c) Let g be the polynomial g(z) def
=
∏δ−1

i=1 (z − ζ in). Since the ζ in are all in Fq, g ∈ Fq[z]
and is a generating polynomial of the code. Since its degree is δ−1 its dimension is
n−δ+1 and by the BCH bound its minimum distance is > δ. Thanks to Singleton
bound we see that its distance is actually equal to δ and hence it is an MDS code.

(d) From the basis of polynomials 1, z, z2, . . . , zδ−2, the code C ′ has a basis given by

vi
def
= (1, ζ i+1

n , ζ2i+2
n , . . . , ζ i(n−1)+(n−1)

n )

for i ∈ {0, . . . , δ − 2}. Let c ∈ C, then the inner product 〈c, vi〉 is nothing but
c(ζ i+1

n ) regarding c as a polynomial. Then, since, by definition of C, we know that
c(ζjn) = 0 for all j ∈ {1, . . . , δ − 1}, which proves than

∀i ∈ {0, . . . , δ − 2}, 〈c, vi〉 = 0.

Therefore, C ′ ⊂ C⊥. Next, since C ′ has dimension δ − 1 and C has dimension
n− δ + 1, we conclude that

C ′ = C⊥.

(e) The dual of a GRS code is a GRS code. Hence C is GRS code.

2. Consider the BCH code D over Fq(ζn) (and not Fq) associated to the roots ζn, . . . , ζδ−1n .
The code C is contained in D|Fq . Moreover, from the previous question, D is a GRS
code.

3. The code D considered in the previous question has minimum distance δ. Thus an
approach to correct up to b δ−1

2
c errors would be to proceed as follows:



• Given a received word y = c + e where c ∈ C and wH(e) 6 δ−1
2
c. Solve the

decoding problem in D using Berlekamp Welch algorithm.

By uniqueness of the solution of this decoding problem in C and in D, we know that
the solution is the closest element in C to y and hence is c.

Compared to the algorithm presented in Exercise 2 whose complexity was quadratic
in δ, the present algorithm includes a part of linear algebra which will be cubic.


