Module 2.13.2 : Error correcting codes and applications to cryptography

Mid-term exam, November 24

You have 1h30. Any document including personal lecture notes is authorized.
The three exercises are independent.
You can answer either in French or in English.

Exercise 1 (Quizz). Answer the questions. You should justify your answers.
(1) Does there exist :
(a) $\mathrm{A}[7,4,3]$ Reed Solomon code over \mathbb{F}_{8} ?
(b) $\mathrm{A}[9,6,4]$ Reed Solomon code over \mathbb{F}_{9} ?
(c) $\mathrm{A}[11,9,3]$ Reed Solomon code over \mathbb{F}_{7} ?
(2) Let C be a Reed Solomon code of length 25 and minimum distance 6 over \mathbb{F}_{25}. Give a lower bound for the dimension of its subfield subcode $C_{\mid \mathbb{F}_{5}}$ over \mathbb{F}_{5}. (Remind that, this code is defined as $C_{\mid \mathbb{F}_{5}}:=C \cap \mathbb{F}_{5}^{25}$).
(3) (a) What is the largest number of errors one can correct using the repetition code of length 10 over \mathbb{F}_{2} ?
(b) What is the largest number of erasures one can correct using the repetition code of length 10 over \mathbb{F}_{2} ?
(4) What is the largest number of errors one can correct using the [7, 4, 3] Hamming code?
(5) What is the dimension of a self dual code of length 10 ?
(6) Can one have a sequence of codes $\left(C_{s}\right)_{s \geqslant 0}$ over \mathbb{F}_{5} with parameters $\left[n_{s}, k_{s}, d_{s}\right]$ such that $n_{s} \rightarrow+\infty$, $\frac{k_{s}}{n_{s}} \rightarrow 0.1$ and $\frac{d_{s}}{n_{s}} \rightarrow 0.9 ?$
(7) Which one of these problems is the most difficult to solve?
(a) Given a generator matrix G of a code C, compute a parity-check matrix of C;
(b) Given a generator matrix G of a code C, compute the minimum distance of C;
(c) Given a basis of a code C, compute a basis of C^{\perp};
(d) Given a code C and its weight enumerator polynomial P, compute the weight enumerator polynomial of C^{\perp}.
(8) Denote by $\operatorname{Vol}_{q}(r, n)$ the volume of a Hamming ball of radius r in \mathbb{F}_{q}^{n}. Which one of these three statements is true?
(a) For any $[n, k, d]$ code over $\mathbb{F}_{q}, q^{k} . \operatorname{Vol}_{q}(d, n)<q^{n}$;
(b) For any $[n, k, d]$ code over $\mathbb{F}_{q}, q^{k} . \operatorname{Vol}_{q}(d, n) \geqslant q^{n}$;
(c) There exists an $[n, k, d]$ code over \mathbb{F}_{q} such that $q^{k} . \operatorname{Vol}_{q}(d, n) \geqslant q^{n}$;
(9) Given a code C with a generator matrix G, which one of these operations on G provides another generator matrix of C ?
(a) Swapping two rows of G;
(b) Swapping two columns of G.
(10) Let C be a Reed Solomon code of length n and minimum distance d. Is it possible to correct d errors using Guruswami Sudan algorithm?

Please turn the page.

Exercise 2. Let C be the binary code with parity-check matrix

$$
H=\left(\begin{array}{llllllllllll}
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Note that any column of H has weight 3 .
(1) Prove that the code has minimum distance >3.
(2) Give a codeword of weight 4 of C.
(3) Prove that any word of C has an even weight.
(4) We denote the homogeneous weight enumerator polynomial of C by $P_{C}(x, y)$. Prove that

$$
P_{C}(x, y)=P_{C}(y, x)
$$

(5) Assuming that C has 16 words of weight 6 , give the complete weight distribution of C without enumerating it.

Exercise 3 (Concatenated codes). Let $m>2$ be an integer. Let C_{o} be an $[N, K, D]$ code over $\mathbb{F}_{2^{m}}$ and C_{i} be an $[n, m, d]$ code over \mathbb{F}_{2}. Finally, let $\phi: \mathbb{F}_{2^{m}} \rightarrow C_{i}$ be an injective \mathbb{F}_{2}-linear map. We define the binary code

$$
C_{o} \square C_{i}:=\left\{\left(\phi\left(c_{1}\right), \ldots, \phi\left(c_{N}\right)\right) \mid\left(c_{1}, \ldots, c_{N}\right) \in C_{o}\right\} .
$$

(1) Prove that $C_{o} \square C_{i}$ has parameters $[N n, K m, \geqslant D d]_{2}$.
(2) Prove that the minimum distance of $\left(C_{o} \square C_{i}\right)^{\perp}$ is bounded from above by the minimum distance of C_{i}^{\perp}.

Bonus questions. If you did everything well up to here, you'll have 20/20. The remaining questions are bonus.
(3) Suppose that C_{o} is a Reed Solomon code of length $N=2^{m}$ and dimension $K=2^{m-1}+1$ over $\mathbb{F}_{2^{m}}$. Let $\epsilon>0$ such that $\epsilon<1-H_{2}(1 / 4)$ and C_{i} be a random binary code of length n and dimension m such that

$$
m=\left\lfloor\left(1-H_{2}(1 / 4)-\epsilon\right) n\right\rfloor,
$$

where $H_{2}(\cdot)$ denotes the binary entropy function : $H_{2}(x)=-x \log _{2}(x)-(1-x) \log _{2}(1-x)$. Prove that the probability that the code $C_{o} \square C_{i}$ has parameters :

$$
\left[N n, K m, \geqslant \frac{N n}{8}\right]_{2}
$$

tends to 1 when m tends to infinity.
(4) If C_{o} is replaced by a Reed Solomon code of length 2^{m} and dimension $K=R \cdot 2^{m}$ for some $\left.R \in\right] 0,1[$, which asymptotic parameters can one expect for the code $C_{o} \square C_{i}$?

