Mid-term exam, November 24

You have 1h30. Any document including personal lecture notes is authorized. The three exercises are independent. You can answer either in French or in English.

Exercise 1 (Quizz). Answer the questions. You should justify your answers.

- (1) Does there exist :
 - (a) A [7, 4, 3] Reed Solomon code over \mathbb{F}_8 ?
 - (b) A [9, 6, 4] Reed Solomon code over \mathbb{F}_9 ?
 - (c) A [11, 9, 3] Reed Solomon code over \mathbb{F}_7 ?
- (2) Let C be a Reed Solomon code of length 25 and minimum distance 6 over \mathbb{F}_{25} . Give a lower bound for the dimension of its subfield subcode $C_{|\mathbb{F}_5}$ over \mathbb{F}_5 . (Remind that, this code is defined as $C_{|\mathbb{F}_5} := C \cap \mathbb{F}_5^{25}$).
- (3) (a) What is the largest number of errors one can correct using the repetition code of length 10 over \mathbb{F}_2 ?
 - (b) What is the largest number of erasures one can correct using the repetition code of length 10 over \mathbb{F}_2 ?
- (4) What is the largest number of errors one can correct using the [7, 4, 3] Hamming code?
- (5) What is the dimension of a self dual code of length 10?
- (6) Can one have a sequence of codes $(C_s)_{s \ge 0}$ over \mathbb{F}_5 with parameters $[n_s, k_s, d_s]$ such that $n_s \to +\infty$, $\frac{k_s}{n_s} \to 0.1$ and $\frac{d_s}{n_s} \to 0.9$?
- (7) Which one of these problems is the most difficult to solve?
 - (a) Given a generator matrix G of a code C, compute a parity-check matrix of C;
 - (b) Given a generator matrix G of a code C, compute the minimum distance of C;
 - (c) Given a basis of a code C, compute a basis of C^{\perp} ;
 - (d) Given a code C and its weight enumerator polynomial P, compute the weight enumerator polynomial of C^{\perp} .
- (8) Denote by $\operatorname{Vol}_q(r, n)$ the volume of a Hamming ball of radius r in \mathbb{F}_q^n . Which one of these three statements is true?
 - (a) For any [n, k, d] code over \mathbb{F}_q , q^k . $\operatorname{Vol}_q(d, n) < q^n$;
 - (b) For any [n, k, d] code over \mathbb{F}_q , q^k . Vol_q $(d, n) \ge q^n$;
 - (c) There exists an [n, k, d] code over \mathbb{F}_q such that $q^k \cdot \operatorname{Vol}_q(d, n) \ge q^n$;
- (9) Given a code C with a generator matrix G, which one of these operations on G provides another generator matrix of C?
 - (a) Swapping two rows of G;
 - (b) Swapping two columns of G.
- (10) Let C be a Reed Solomon code of length n and minimum distance d. Is it possible to correct d errors using Guruswami Sudan algorithm?

Please turn the page.

Exercise 2. Let C be the binary code with parity-check matrix

Note that any column of H has weight 3.

- (1) Prove that the code has minimum distance > 3.
- (2) Give a codeword of weight 4 of C.
- (3) Prove that any word of C has an even weight.
- (4) We denote the homogeneous weight enumerator polynomial of C by $P_C(x, y)$. Prove that

$$P_C(x,y) = P_C(y,x).$$

(5) Assuming that C has 16 words of weight 6, give the complete weight distribution of C without enumerating it.

Exercise 3 (Concatenated codes). Let m > 2 be an integer. Let C_o be an [N, K, D] code over \mathbb{F}_{2^m} and C_i be an [n, m, d] code over \mathbb{F}_2 . Finally, let $\phi : \mathbb{F}_{2^m} \to C_i$ be an injective \mathbb{F}_2 -linear map. We define the binary code

$$C_o \Box C_i := \{ (\phi(c_1), \dots, \phi(c_N)) \mid (c_1, \dots, c_N) \in C_o \}$$

- (1) Prove that $C_o \Box C_i$ has parameters $[Nn, Km, \ge Dd]_2$.
- (2) Prove that the minimum distance of $(C_o \Box C_i)^{\perp}$ is bounded from above by the minimum distance of C_i^{\perp} .

Bonus questions. If you did everything well up to here, you'll have 20/20. The remaining questions are bonus.

(3) Suppose that C_o is a Reed Solomon code of length $N = 2^m$ and dimension $K = 2^{m-1} + 1$ over \mathbb{F}_{2^m} . Let $\epsilon > 0$ such that $\epsilon < 1 - H_2(1/4)$ and C_i be a random binary code of length n and dimension m such that

$$m = |(1 - H_2(1/4) - \epsilon)n|,$$

where $H_2(\cdot)$ denotes the binary entropy function : $H_2(x) = -x \log_2(x) - (1-x) \log_2(1-x)$. Prove that the probability that the code $C_o \Box C_i$ has parameters :

$$\left\lfloor Nn, Km, \geqslant \frac{Nn}{8} \right\rfloor_2$$

tends to 1 when m tends to infinity.

(4) If C_o is replaced by a Reed Solomon code of length 2^m and dimension $K = R \cdot 2^m$ for some $R \in]0,1[$, which asymptotic parameters can one expect for the code $C_o \Box C_i$?