Mid-term exam, November 23

You have 1h30. Any document including personal lecture notes is authorized. The exercises are independent. You can answer either in French or in English.

Exercise 1 (Quizz). Answer the questions. You should justify your answers.

- (1) Which of these codes do exist? If they do not, explain why, if they do, explain how they can be constructed.
 - (a) A [32, 16, 17] Reed–Solomon code over \mathbb{F}_{32} ;

Answer : Exists. Over \mathbb{F}_q , there exists [n, k, n - k + 1] RS codes for any $n \leq q$ and any $k \leq n$.

(b) A [32, 15, 18] Generalised Reed-Solomon code over \mathbb{F}_{19} ;

Answer : Does not exist since the length should be less than or equal to the size of the field.

(c) A [7, 5, 3] binary code;

Answer : Does not exist, since it doesn't satisfy the Hamming bound.

(d) A $[64, 34, \ge 6]$ alternant code over \mathbb{F}_2 .

Answer: Exists : subfield subcode of a [64, 59, 6] Generalized Reed-Solomon.

- (2) Which of these statements is true?
 - (a) There is no [n, k, d] code such that d > n k + 1;

Answer : True, Singleton bound.

(b) For all ε > 0, for any sequence of binary codes whose relative distance sequence converges to δ and rate converges to R we have R ≥ 1 − H₂(δ) − ε.

Answer: False, not every sequence of codes approaches Gilbert Varshamov bound.

(c) No $[n, k, d]_q$ linear code satisfies

 $q^k Vol_q(d,n) \ge q^n$

(where $Vol_q(d, n)$ denotes the number of elements in a Hamming ball of radius d in \mathbb{F}_q^n).

Answer : False, Gilbert Varshamov bound asserts that such a code exists.

(d) There exists an [n, k, d] code over \mathbb{F}_q such that

$$d \leqslant nq^{k-1} \frac{q-1}{q^k - 1} \cdot$$

Answer : True, actually, any code does, since it should satisfy Plotkin bound.

(3) How many binary cyclic codes of length 8 do there exist?

Answer : We need to compute the number of divisors of $x^8 - 1 = (x - 1)^8$. This polynomial has 9 divisors : $(x - 1)^i$, $i \in \{0, ..., 8\}$, Hence, there is 9 such codes.

- (4) Suppose that one has a list decoding algorithm for any [32, 20, 11] Reed-Solomon code over \mathbb{F}_{32} correcting up to 10 errors.
 - (a) Deduce the existence of a list decoder correcting up to 10 errors for any [32, k] Reed-Solomon code with k < 20.

Answer : One can apply the decoder to any subcode of the [32, 20] RS code. In particular to any sub–Reed–Solomon code.

(b) For which values of k can one make sure the decoding is unique?

Answer: As soon as 10 is less than half the minimum distance. i.e. as soon as the minimum distance exceeds 21. Equivalently, this decoding is unique for any $k \leq 12$.

Exercise 2. Cyclic codes. You are allowed to skip any question and assume its result to be true in the subsequent questions.

Let n be an odd integer. Let $C \subseteq \mathbb{F}_2^n$ be a linear cyclic code of dimension k. Let T be the corresponding cyclotomic class in $\mathbb{Z}/n\mathbb{Z}$ and g_C be the generating polynomial of C.

(1) What is the cardinality of T? the degree of g_C ?

Answer: $|T| = \deg g_C = n - k$.

- (2) Let C' be the subset of C of all words of even weight.
 - (a) Prove that C' is a linear code.

Answer : It is the intersection of two binary linear codes : the code C and the parity code.

(b) What is its dimension?

Answer : Either C' = C, or dim $C' = \dim C - 1$. Indeed, C' is the kernel of the linear form $\begin{cases} \mathbb{F}_2^n & \longrightarrow & \mathbb{F}_2 \\ (x_1, \dots, x_n) & \longmapsto & \sum_{i=1}^n x_i \end{cases}$. Hence it is either equal to C or has codimension 1 in C.

(c) Prove that C' is cyclic.

Answer: Both C and the parity code are cyclic. Hence their intersection is cyclic.

- (d) Prove that the following conditions are equivalent :
 - (i) C = C';
 - (ii) $0 \in T$;
 - (iii) $g_C(1) = 0.$

Answer : Suppose (i); i.e. C = C', then C is contained in the parity code, hence for any $m \in C$, we have $m_0 + m_1 + \cdots + m_{n-1} = 0$. Regarding $m \in C$ as a polynomial, this is equivalent to m(1) = 0. Thus, (x - 1) divides any element of C (viewed as polynomials) and in particular, (x - 1) divides g_C . Therefore, $g_C(1) = 0$. This proves $(i) \Rightarrow (iii)$.

Clearly if (*iii*), i.e. if $g_C(1) = 0$, then $1 = \zeta^0$ is a root of the code and hence $0 \in T$, which proves (*iii*) \Rightarrow (*ii*).

Finally, suppose (*ii*). Then 1 is a root of the code, hence any element m of C satisfies $m(1) = m_0 + \cdots + m_{n-1} = 0$. That is, m has even weight, which entails (*i*).

(e) If $C \neq C'$ describe the generating polynomial of C' and its cyclotomic class.

Answer: $g'_C = (x - 1)g_C$ and $T_{C'} = T_C \cup \{0\}$.

(3) Prove that C contains the all-one codeword (1, 1, ..., 1) if and only if $0 \notin T$.

Answer : First note that

$$1 + x + \dots + x^{n-1} = \prod_{i \in (\mathbb{Z}/n\mathbb{Z}) \setminus \{0\}} (x - \zeta^i).$$

Therefore, f $0 \notin T$, then $g_C(x) = \prod_{i \in T} (x - \zeta^i)$ divides $1 + x + \cdots + x^{n-1}$. Conversely, if $1 + x + \cdots + x^{n-1} \in C$, then 0 cannot be in T.

- (4) List the minimal 2 cyclotomic classes in Z/21Z (i.e. the smallest subsets stable by multiplication by 2).
 Answer: {0}, {1, 2, 4, 8, 16, 11}, {3, 6, 12}, {5, 10, 20, 19, 17, 13}, {7, 14}, {9, 18, 15}.
- (5) How many binary cyclic codes of length 21 do there exist?

Answer : There are 6 minimal cyclotomic classes, hence $2^6 = 64$ cyclic codes.

(6) Prove the existence of a [21, 12, ≥ 5] binary cyclic code which contains the all-one codeword (you can use Question 3).

Answer: The BCH code associated to the cyclotomic class $\{1, 2, 3, 4, 6, 8, 11, 12, 16\}$.

Let

$$P_C(X,Y) = \sum_{i=0}^{21} p_i X^i Y^{n-i}$$

be the weight enumerator of C. That is, p_i is the number of words of weight i in C.

(7) Prove that the weight enumerator of such a $[21, 12, \ge 5]$ binary cyclic code is self reciprocal, i.e. $P_C(X, Y) = P_C(Y, X)$. In particular, prove that there is no codeword of weight $w \in \{17, \ldots, 20\}$.

Answer : Since the code contains the all-one codeword ans is linear, it contains the complement of any code. Thus for any codeword c of weight w the code also contains the word $c + (1 \ 1 \ \dots \ 1)$ of weight 21 - w. Therefore, for any nonnegative integer w, the number of codewords of weight w equals that of codewirds of weight 21 - w. Hence the weight enumerator is self reciprocal. Finally, since, the minimum distance is at least 5 there is no codeword of weight 1, 2, 3, 4 and, by self-reciprocity, no codeword of weight 20, 19, 18, 17.

(8) Let

$$\sigma: \left\{ \begin{array}{ccc} \mathbb{F}_q^{21} & \longrightarrow & \mathbb{F}_q^{21} \\ (x_1, \dots, x_n) & \longmapsto & (x_n, x_1, \dots, x_{n-1}) \end{array} \right.$$

be the cyclic shift. Prove that if $c \in \mathbb{F}_q^{21}$ satisfies $\sigma^{\ell}(c) = c$ for some $\ell > 1$ and $\sigma^j(c) \neq c$ for all $1 \leq j < \ell$, then :

(a) ℓ divides 21;

Answer: σ^{ℓ} generates a subgroup of the group generated by σ , namely, the *stabilizer* of c. By Lagrange Theorem, ℓ divides the order of σ .

(b) $\frac{21}{\ell}$ divides the weight of c.

Answer : Let $A \subseteq \{0, \ldots, 20\}$, be the support of c, i.e. the set of indexes i such that $c_i = 1$. The group generated by $\sigma^{\frac{n}{\ell}}$ acts freely on A, hence A is a disjoint union of orbits of this group and each orbit has cardinally the order of $\sigma^{\frac{n}{\ell}}$ i.e. ℓ . Thus ℓ divides the cardinality of A, which equals the weight of c.

- (9) Prove that
 - (a) $p_8, p_{10}, p_{11}, p_{13}$ are divisible by 21;

Answer : 8, 10, 11, 13 are prime to 21, hence no words of such weight have non trivial stabilizers. Thus, for any such word, its orbit under the action of σ has cardinality 21. Since the set of words of fixed weight is a disjoint union of orbits, we get the result.

(b) p_6, p_9, p_{12}, p_{15} are divisible by 3;

Answer : Such words may be stabilized by σ^7 , hence their orbit has cardinality either 21 or 3. Thus, any orbit has cardinality divisible by 3.

(c) p_7, p_{14} are divisible by 7.

Answer : Same reasoning.