Module 2.13.2 : Error correcting codes and applications to cryptography

Mid-term exam, November 26

> You have 2 hours. Any document including personal lecture notes is authorized. The exercises are independent. You can answer either in French or in English.

Exercise 1. (1) (a) Give the list of minimal 2-cyclotomic cosets modulo 9 which permit to classify cyclic codes of length 9 over \mathbb{F}_{2}.
(b) How many cyclic codes (including trivial ones) of length 9 over \mathbb{F}_{2} does there exists?
(2) (a) Give the list of minimal 3-cyclotomic cosets modulo 13.
(b) How many cyclic codes (including trivial ones) of length 13 over \mathbb{F}_{3} does there exists?
(c) Prove the existence of a $[13,4, \geqslant 7]_{3}$ cyclic code and a $[13,7, \geqslant 5]_{3}$ cyclic code.

Exercise 2. A code $C \subseteq \mathbb{F}_{q}^{n}$ is said to be non degenerate, if for any $i \in\{1, \ldots, n\}$, there exists $\mathbf{c} \in C$ such that $c_{i} \neq 0$.
(1) Reformulate the notion of being non degenerate in terms of a generator matrix of C.
(2) Reformulate the notion of being non degenerate in terms of the minimum distance of C^{\perp}. Justify why this reformulation is equivalent.

Given a non degenerate code $C \subseteq \mathbb{F}_{q}^{n}$ and a position $i \in\{1, \ldots, n\}$, the locality of C at i is defined as

$$
\mathbf{L o c}(C, i):=\min \left\{w_{H}(\mathbf{c}) \mid c \in C^{\perp}, c_{i} \neq 0\right\}-1
$$

where $w_{H}(\mathbf{x})$ denotes the Hamming weight of \mathbf{x}. Next, the locality of C is defined as

$$
\mathbf{L o c}(C)=\max _{i=1, \ldots, n}\{\mathbf{L o c}(C, i)\}
$$

(3) Prove that $\operatorname{Loc}(C) \geqslant d_{\text {min }}\left(C^{\perp}\right)-1$, where $d_{\min }(\cdot)$ denotes the minimum distance.
(4) Prove that $\operatorname{Loc}(C) \leqslant \operatorname{dim}(C)$.
(5) Prove that C is MDS if and only if, $\forall i \in\{1, \ldots, n\}, \operatorname{Loc}(C, i)=\operatorname{dim}(C)$.

Given $I \subseteq\{1, \ldots, n\}$ the puncturing and shortening of a code A at I are defined as

$$
\mathcal{P}_{I}(A):=\left\{\left(a_{i}\right)_{i \in\{1, \ldots, n\} \backslash I} \mid \mathbf{a} \in A\right\} \quad \text { and } \quad \mathcal{S}_{I}(A):=\left\{\left(a_{i}\right)_{i \in\{1, \ldots, n\} \backslash I} \mid \mathbf{a} \in A \text { and } \forall i \in I, a_{i}=0\right\}
$$

We admit the following statement : for any code $A \subseteq \mathbb{F}_{q}, \mathcal{S}_{I}(A)^{\perp}=\mathcal{P}_{I}\left(A^{\perp}\right)$.
(6) Let C be a non degenerate code and $I \subseteq\{1, \ldots, n\}$. Prove that $\operatorname{Loc}\left(\mathcal{S}_{I}(C)\right) \leqslant \operatorname{Loc}(C)$.
(7) Let $\mathbf{c} \in C^{\perp}$ with $c_{1} \neq 0, w_{H}(\mathbf{c})=\operatorname{Loc}(C, 1)+1$ and $I \subseteq\{1, \ldots, n\}$ be the support of \mathbf{c}, i.e.

$$
I:=\left\{i \mid c_{i} \neq 0\right\}
$$

Prove that $\mathcal{S}_{I}(C)$ is an $[n-\boldsymbol{\operatorname { L o c }}(C, 1)-1, k-\mathbf{L o c}(C, 1)]_{q}$-code.
(8) Let $t=\left\lceil\frac{k}{\ell}\right\rceil-1$. Until the end of the exercise, we suppose that $n>(\ell+1) t$. Prove that there exists a finite sequence of distinct indexes $i_{1}, \ldots, i_{t} \in\{1, \ldots, n\}$ and a sequence $\mathbf{c}_{1}, \ldots, \mathbf{c}_{t} \in C^{\perp}$ such that :
(i) for any $j \in\{2, \ldots, t\}, i_{j}$ is not contained in the supports of $\mathbf{c}_{1}, \ldots, \mathbf{c}_{j-1}$;
(ii) for any $j \in\{1, \ldots, t\}, w_{H}\left(\mathbf{c}_{j}\right)=\mathbf{L o c}(C, j)+1$.
(9) Let $s \in\{1, \ldots, t\}$ (where t has been defined in Question 8). Let I_{s} be the union of the supports of $\mathbf{c}_{1}, \ldots, \mathbf{c}_{s}$ and $\left[n_{s}, k_{s}, d_{s}\right]$ be the parameters of $\mathcal{S}_{I_{s}}(C)$. Prove that $d_{s} \geqslant d$ and $n_{s}-k_{s} \leqslant n-k-s$.
Hint. Use Question 7 and proceed by induction on s.
(10) Let ℓ be the locality of C. Prove that the parameters $[n, k, d]$ of C satisfy

$$
d \leqslant n-k-\left\lceil\frac{k}{\ell}\right\rceil+2
$$

Hint. Consider the shortening of C at the union of the supports of the words $\mathbf{c}_{1}, \ldots, \mathbf{c}_{t}$.
Exercise 3. Let n be a positive integer, σ be a permutation on n elements and ϕ_{σ} be the linear map :

$$
\phi_{\sigma}:\left\{\begin{array}{ccc}
\mathbb{F}_{q}^{n} & \longrightarrow & \mathbb{F}_{q}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \longmapsto & \left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
\end{array}\right.
$$

(1) Show that if $C \subseteq \mathbb{F}_{q}^{n}$ is a code, then C and $\phi_{\sigma}(C)$ have the same weight distribution.

We aim at solving the following problem :
Problem : Given two codes C, D, is there a permutation σ such that $D=\phi_{\sigma}(C)$?
(2) Propose a naive brute force algorithm to solve the problem and compute its complexity.
(3) Prove that if two codes C, D satisfy $D=\phi_{\sigma}(C)$, then,
(i) $D^{\perp}=\phi_{\sigma}\left(C^{\perp}\right)$;
(ii) $D \cap D^{\perp}=\phi_{\sigma}\left(C \cap C^{\perp}\right)$.
(4) Consider the following algorithm.

- if $C \cap C^{\perp}$ and $D \cap D^{\perp}$ do not have the same weight distribution, return false.
- else return true
(a) Does this algorithm always solve the problem?
(b) Express the complexity of this algorithm in function of the dimension s of $C \cap C^{\perp}$. We suppose that the computation of the weight of a word costs $O(n)$ and that the best manner to compute the weight distribution is to enumerate all the codewords.
(c) Explain the advantages and possible drawbacks of comparing the weight distributions of $C \cap C^{\perp}$ and $D \cap D^{\perp}$ instead of comparing those of C, D ?
(5) Given a code C and $i \in\{1, \ldots, n\}$, we denote by C_{i} the code obtained by removing the i-th entry of any codeword of C. Namely :

$$
C_{i}=\left\{\left(c_{1}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n}\right) \mid\left(c_{1}, \ldots, c_{n}\right) \in C\right\} \subseteq \mathbb{F}_{q}^{n-1}
$$

Using these codes C_{i} the algorithm can be refined as follows: if $C \cap C^{\perp}$ and $D \cap D^{\perp}$ have the same weight distribution, then compute the weight distributions of $C_{i} \cap C_{i}^{\perp}$ and $D_{i} \cap D_{i}^{\perp}$ for all $i \in\{1, \ldots, n\}$.
(a) If the weight distributions of the codes $C_{i} \cap C_{i}^{\perp}$ for $i \in\{1, \ldots, n\}$ are distinct, explain why is it possible to solve the problem.
(b) If not, what kind of information on σ (if exists) can we get?
(c) Suppose that there exists a cyclic code E and permutations σ_{1}, σ_{2} such that $C=\phi_{\sigma_{1}}(E)$ and $D=\phi_{\sigma_{2}}(E)$. Show that in this situation, the previous refinement will not be helpful.
(d) In the case of a cyclic code as described in Question (5c), propose an improvement of the refinement which may solve the problem.

