Module 2.13.2 : Error correcting codes and applications to cryptography

Mid-term exam, November 26

> You have 2 hours. Any document including personal lecture notes is authorized. The exercises are independent. You can answer either in French or in English.

Exercise 1. (1) (a) Give the list of minimal 2-cyclotomic cosets modulo 9 which permit to classify cyclic codes of length 9 over \mathbb{F}_{2}.

Answer : $\{0\},\{1,2,4,8,7,5\},\{3,6\}$.
(b) How many cyclic codes (including trivial ones) of length 9 over \mathbb{F}_{2} does there exists?

Answer : There are 3 minimal cyclotomic cosets so $2^{3}=8$ cyclotomic cosets which gives 8 cyclic codes.
(2) (a) Give the list of minimal 3-cyclotomic cosets modulo 13.

Answer : $\{0\},\{1,3,9\},\{2,6,5\},\{4,12,10\},\{7,8,11\}$.
(b) How many cyclic codes (including trivial ones) of length 13 over \mathbb{F}_{3} does there exists?

Answer : 32.
(c) Prove the existence of a $[13,4, \geqslant 7]_{3}$ cyclic code and a $[13,7, \geqslant 5]_{3}$ cyclic code.

Answer : Using the BCH bound, the code associated to the class $\{1,3,9\} \cup\{2,6,5\} \cup$ $\{4,12,10\}$ contains the consecutive numbers $1,2,3,4,5,6$, hence has minimum distance $\geqslant 7$. Since the class has cardinality 9 , the code has dimension $13-9=4$.
The second code is obtained from the class : $\{2,6,5\} \cup\{7,8,11\}$ which contains $5,6,7,8$ and hence has minimum distance $\geqslant 5$ and dimension 7 .

Exercise 2. A code $C \subseteq \mathbb{F}_{q}^{n}$ is said to be non degenerate, if for any $i \in\{1, \ldots, n\}$, there exists $\mathbf{c} \in C$ such that $c_{i} \neq 0$.
(1) Reformulate the notion of being non degenerate in terms of a generator matrix of C.

Answer : One can reformulate as : A generator matrix of C has no zero column.
(2) Reformulate the notion of being non degenerate in terms of the minimum distance of C^{\perp}. Justify why this reformulation is equivalent.

Answer : One can reformulate as : The minimum distance of $C^{\perp} i s>1$. Indeed, a result from the course asserts that the minimum distance of a code is the least number of linearly linked columns in a parity check matrix. Since a generator matrix of C is a parity-check matrix of C^{\perp}, the assumption of non degeneracy of C is equivalent to the fact that a generator matrix of C has no zero column, which entails that its dual distance cannot be less than or equal to 1.

Given a non degenerate code $C \subseteq \mathbb{F}_{q}^{n}$ and a position $i \in\{1, \ldots, n\}$, the locality of C at i is defined as

$$
\operatorname{Loc}(C, i):=\min \left\{w_{H}(\mathbf{c}) \mid c \in C^{\perp}, c_{i} \neq 0\right\}-1
$$

where $w_{H}(\mathbf{x})$ denotes the Hamming weight of \mathbf{x}. Next, the locality of C is defined as

$$
\mathbf{L o c}(C)=\max _{i=1, \ldots, n}\{\mathbf{L o c}(C, i)\}
$$

(3) Prove that $\operatorname{Loc}(C) \geqslant d_{\text {min }}\left(C^{\perp}\right)-1$, where $d_{\min }(\cdot)$ denotes the minimum distance.

Answer : By definition of the locality, for any $i, \operatorname{Loc}(C, i) \geqslant d_{\min }\left(C^{\perp}\right)-1$. Then, its maximum when i ranges over $\{1, \ldots, n\}$ should also be larger than or equal to $d_{\min }\left(C^{\perp}\right)-1$.
(4) Prove that $\operatorname{Loc}(C) \leqslant \operatorname{dim}(C)$.

Answer : Denote by k the dimension of C. Let \mathbf{G} be a generator matrix of C. Let $i \in$ $\{1, \ldots, n\}$. Since \mathbf{G} has k rows, its i-th column is linearly linked to k other ones, which proves the existence of a word of weight $\leqslant k+1$ in C^{\perp} whose support contains i. This proves that for any position $i \in\{1, \ldots, n\}$, we have $\operatorname{Loc}(C, i) \leqslant k$. Therefore, the code has locality less than or equal to $\operatorname{dim} C$.
(5) Prove that C is MDS if and only if, $\forall i \in\{1, \ldots, n\}, \operatorname{Loc}(C, i)=\operatorname{dim}(C)$.

Answer : One can use the lecture notes and use the fact that C is MDS if and only if C^{\perp} is MDS, or we can prove it again. Suppose C is MDS and let G be a generator matrix of C. We claim that any k columns of C are independent. Indeed, if some k-tuple of columns was linked, then one could construct by Gaussian elimination a nonzero codeword vanishing at these k positions which would have weight $<n-k+1$ which is a contradiction. Therefore any k columns of \mathbf{G} are independent and hence the minimum distance of C^{\perp} is larger than or equal to $k+1$. We proved that the dual of an MDS code is MDS.

Next, suppose that C is MDS, then combining the results of questions 3 and 4 , we get :

$$
\operatorname{dim} C \geqslant \operatorname{Loc}(C, i) \geqslant d_{\min }\left(C^{\perp}\right)-1
$$

But if C (and hence C^{\perp}) is MDS, then the right hand side equals $n-\operatorname{dim}\left(C^{\perp}\right)=\operatorname{dim} C$.
Conversely, suppose that $\operatorname{Loc}(C, i) \geqslant \operatorname{dim} C$ for any possible i. Then, the minimum distance of C^{\perp} is larger than or equal to $\operatorname{dim} C+1$. Thus, C^{\perp} is MDS and hence so is C.

Given $I \subseteq\{1, \ldots, n\}$ the puncturing and shortening of a code A at I are defined as

$$
\mathcal{P}_{I}(A):=\left\{\left(a_{i}\right)_{i \in\{1, \ldots, n\} \backslash I} \mid \mathbf{a} \in A\right\} \quad \text { and } \quad \mathcal{S}_{I}(A):=\left\{\left(a_{i}\right)_{i \in\{1, \ldots, n\} \backslash I} \mid \mathbf{a} \in A \text { and } \forall i \in I, a_{i}=0\right\}
$$

We admit the following statement : for any code $A \subseteq \mathbb{F}_{q}, \mathcal{S}_{I}(A)^{\perp}=\mathcal{P}_{I}\left(A^{\perp}\right)$.
(6) Let C be a non degenerate code and $I \subseteq\{1, \ldots, n\}$. Prove that $\operatorname{Loc}\left(\mathcal{S}_{I}(C)\right) \leqslant \operatorname{Loc}(C)$.

Answer : Let $j \in\{1, \ldots, n\} \backslash I$. By definition

$$
\begin{aligned}
\operatorname{Loc}\left(\mathcal{S}_{I}(C), j\right) & =\min \left\{w_{H}(\mathbf{c}) \mid \mathbf{c} \in \mathcal{S}_{I}(C)^{\perp}, c_{j} \neq 0\right\} \\
& =\min \left\{w_{H}(\mathbf{c}) \mid \mathbf{c} \in \mathcal{P}_{I}\left(C^{\perp}\right), c_{j} \neq 0\right\} \\
& \leqslant \min \left\{w_{H}(\mathbf{c}) \mid \mathbf{c} \in \mathcal{C}^{\perp}, c_{j} \neq 0\right\}=\operatorname{Loc}(C, j)
\end{aligned}
$$

Thus, $\operatorname{Loc}\left(\mathcal{S}_{I}(C)\right) \leqslant \boldsymbol{\operatorname { L o c }}(C)$.
(7) Let $\mathbf{c} \in C^{\perp}$ with $c_{1} \neq 0, w_{H}(\mathbf{c})=\operatorname{Loc}(C, 1)+1$ and $I \subseteq\{1, \ldots, n\}$ be the support of \mathbf{c}, i.e.

$$
I:=\left\{i \mid c_{i} \neq 0\right\}
$$

Prove that $\mathcal{S}_{I}(C)$ is an $[n-\mathbf{L o c}(C, 1)-1, k-\mathbf{L o c}(C, 1)]_{q}$-code.
Answer : The assertion on the length is obvious, we only have to prove that the dimension equals $k-\mathbf{L o c}(C, 1)$. Consider the projection map $C^{\perp} \rightarrow \mathcal{P}_{I}\left(C^{\perp}\right)$. Its kernel contains the words of C^{\perp} whose support are in I. The subcode of such words has dimension 1 and spanned by \mathbf{c}, indeed, if this subcode had a larger dimension, then, by elimination one could construct other codewords in C^{\perp} whose support contains 1 and which is strictly included in I. This would be a contradiction with the definition of the locality at 1 . Therefore, the kernel of the projection, $C^{\perp} \rightarrow \mathcal{P}_{I}\left(C^{\perp}\right)$ has dimension 1 , thus $\operatorname{dim} \mathcal{P}_{I}\left(C^{\perp}\right)=n-k-1$ and hence the dimension of its dual

$$
\begin{aligned}
\operatorname{dim} \mathcal{S}_{I}(C) & =n-|I|-(n-k-1) \\
& =k-|I|+1 \\
& =k-\mathbf{L o c}(C, 1)
\end{aligned}
$$

(8) Let $t=\left\lceil\frac{k}{\ell}\right\rceil-1$. Until the end of the exercise, we suppose that $n>(\ell+1) t$. Prove that there exists a finite sequence of distinct indexes $i_{1}, \ldots, i_{t} \in\{1, \ldots, n\}$ and a sequence $\mathbf{c}_{1}, \ldots, \mathbf{c}_{t} \in C^{\perp}$ such that :
(i) for any $j \in\{2, \ldots, t\}, i_{j}$ is not contained in the supports of $\mathbf{c}_{1}, \ldots, \mathbf{c}_{j-1}$;
(ii) for any $j \in\{1, \ldots, t\}, w_{H}\left(\mathbf{c}_{j}\right)=\mathbf{L o c}(C, j)+1$.

Answer : Take \mathbf{c}_{1} to be the vector \mathbf{c} of the previous question. We iteratively choose i_{j} out of the union of the supports of $\mathbf{c}_{1}, \ldots, \mathbf{c}_{j-1}$ and \mathbf{c}_{j} to be a codeword in C^{\perp} whose support contains i_{j} and whose weight equals the locality of the code at i_{j}. By definition, these supports have cardinality at most $\ell+1$, hence, one can repeat this process at least t times.
(9) Let $s \in\{1, \ldots, t\}$ (where t has been defined in Question 8). Let I_{s} be the union of the supports of $\mathbf{c}_{1}, \ldots, \mathbf{c}_{s}$ and $\left[n_{s}, k_{s}, d_{s}\right]$ be the parameters of $\mathcal{S}_{I_{s}}(C)$. Prove that $d_{s} \geqslant d$ and $n_{s}-k_{s} \leqslant n-k-s$.

Hint. Use Question 7 and proceed by induction on s.
Answer : The shortening is constructed from a subcode of C by removing zero positions.
Hence, its minimum distance is at least that of C. Therefore $d_{s} \geqslant d$.
From question 7 , we have $n_{1}-k_{1} \leqslant n-k-1$. Applying this result iteratively we get

$$
n_{s}-k_{s} \leqslant n-k-s
$$

(10) Let ℓ be the locality of C. Prove that the parameters $[n, k, d]$ of C satisfy

$$
d \leqslant n-k-\left\lceil\frac{k}{\ell}\right\rceil+2
$$

Hint. Consider the shortening of C at the union of the supports of the words $\mathbf{c}_{1}, \ldots, \mathbf{c}_{t}$.
Answer : Applying Singleton bound to $\mathcal{S}_{I_{t}}(C)$. This code satisfies

$$
d_{s} \leqslant n_{s}-k_{s}+1
$$

Using the previous questions, we deduce :

$$
d \leqslant n-k-t+1
$$

This yields the result.

Exercise 3. Let n be a positive integer, σ be a permutation on n elements and ϕ_{σ} be the linear map :

$$
\phi_{\sigma}:\left\{\begin{array}{ccc}
\mathbb{F}_{q}^{n} & \longrightarrow & \mathbb{F}_{q}^{n} \\
\left(x_{1}, \ldots, x_{n}\right) & \longmapsto & \left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)
\end{array}\right.
$$

(1) Show that if $C \subseteq \mathbb{F}_{q}^{n}$ is a code, then C and $\phi_{\sigma}(C)$ have the same weight distribution.

Answer : The map σ preserves the weights, hence for any $a \in\{0, \ldots, n\}$ it induces a bijection between the set of words of weight a of C and the set of words of weight a in $\sigma(C)$.

We aim at solving the following problem :
Problem : Given two codes C, D, is there a permutation σ such that $D=\phi_{\sigma}(C)$?
(2) Propose a naive brute force algorithm to solve the problem and compute its complexity.

Answer : Let \mathbf{G} be a generator matrix of C and \mathbf{H} a parity-check matrix of D. Enumerate any permutation $\sigma \in \mathfrak{S}_{n}$. For any such permutation σ, denote by \mathbf{G}^{σ} the matrix \mathbf{G} whose columns have been permuted using the permutation σ. Then, compute

$$
\mathbf{H} \cdot \mathbf{G}^{\sigma}
$$

If the above matrix is zero, then $\phi_{\sigma}(C)=D$.
The complexity of one iteration is the complexity of a product of matrices, i.e. $O\left(n^{3}\right)$ and hence the overall complexity is in $O\left(n!n^{3}\right)$ (say $\left.\widetilde{O}(n!)\right)$.
(3) Prove that if two codes C, D satisfy $D=\phi_{\sigma}(C)$, then,
(i) $D^{\perp}=\phi_{\sigma}\left(C^{\perp}\right)$;

Answer : Let $\mathbf{d} \in D$ and $\mathbf{c} \in C^{\perp}$. Then,

$$
\left\langle\phi_{\sigma}(\mathbf{c}), \mathbf{d}\right\rangle=\left\langle\mathbf{c}, \phi_{\sigma^{-1}}(\mathbf{d})\right\rangle
$$

Since $D=\phi_{\sigma}(C)$, then there exists $\mathbf{c}_{0} \in C$ such that $\mathbf{d}=\phi_{\sigma}\left(\mathbf{c}_{0}\right)$. Thus,

$$
\left\langle\phi_{\sigma}(\mathbf{c}), \mathbf{d}\right\rangle=\left\langle\mathbf{c}, \phi_{\sigma^{-1}} \circ \phi_{\sigma}(\mathbf{d})\right\rangle=\langle\mathbf{c}, \mathbf{d}\rangle=0 .
$$

Thus, $\phi_{\sigma}\left(C^{\perp}\right) \subseteq D^{\perp}$ and since these codes have the same dimensions, the inclusion is an equality.
(ii) $D \cap D^{\perp}=\phi_{\sigma}\left(C \cap C^{\perp}\right)$.

Answer : It is a direct consequence of the previous question.
(4) Consider the following algorithm.

- if $C \cap C^{\perp}$ and $D \cap D^{\perp}$ do not have the same weight distribution, return false.
- else return true
(a) Does this algorithm always solve the problem?

Answer : If the algorithm returns false, then the codes are not permutation-equivalent. If it returns true, the codes many not be equivalent, for instance, it may happen that $C \cap C^{\perp}$ and $D \cap D^{\perp}$ and, the codes may not be permutation-equivalent.
(b) Express the complexity of this algorithm in function of the dimension s of $C \cap C^{\perp}$. We suppose that the computation of the weight of a word costs $O(n)$ and that the best manner to compute the weight distribution is to enumerate all the codewords.

Answer : $O\left(n q^{d i m C \cap C^{\perp}}\right)$.
(c) Explain the advantages and possible drawbacks of comparing the weight distributions of $C \cap C^{\perp}$ and $D \cap D^{\perp}$ instead of comparing those of C, D ?

Answer : Unless the codes are contained in their dual, in general $C \cap C^{\perp}$ is strictly contained in C and hence the computation of its weight distribution will be much less expensive.
(5) Given a code C and $i \in\{1, \ldots, n\}$, we denote by C_{i} the code obtained by removing the i-th entry of any codeword of C. Namely :

$$
C_{i}=\left\{\left(c_{1}, \ldots, c_{i-1}, c_{i+1}, \ldots, c_{n}\right) \mid\left(c_{1}, \ldots, c_{n}\right) \in C\right\} \subseteq \mathbb{F}_{q}^{n-1}
$$

Using these codes C_{i} the algorithm can be refined as follows : if $C \cap C^{\perp}$ and $D \cap D^{\perp}$ have the same weight distributions, then compute the weight distributions of $C_{i} \cap C_{i}^{\perp}$ and $D_{i} \cap D_{i}^{\perp}$ for all $i \in\{1, \ldots, n\}$.
(a) If the weight distributions of the codes $C_{i} \cap C_{i}^{\perp}$ for $i \in\{1, \ldots, n\}$ are distinct, explain why is it possible to solve the problem.

Answer : Compute the weight distribution of $C_{i} \cap C_{i}^{\perp}$ and $D_{i} \cap D_{i}^{\perp}$ for any $i \in\{1, \ldots, n\}$. If for any i there exists $j_{i} \in\{1, \ldots, n\}$ such that $C_{i} \cap C_{i}^{\perp}$ and $D_{j_{i}} \cap D_{j_{i}}^{\perp}$ have the same weight distribution, then consider the permutation $\sigma: i \mapsto j_{i}$ and check whether $D=\phi_{\sigma}(C)$. If it does, you found the permutation. If not, or if there was no j_{i} for at least on i then the codes are not permutation equivalent.
(b) If not, what kind of information on σ (if exists) can we get?

Answer : You can consider a partition $U_{1} \cup \cdots \cup U_{r}$ of $\{1, \ldots, n\}$ such that the weight distribution of $C_{i} \cap C_{i}^{\perp}$ is the same for any $i \in U_{j}$. You can compute the same partition for D and compare the sequence of cardinalities of these partitions. If they differ, then the codes are non equivalent.
(c) Suppose that there exists a cyclic code E and permutations σ_{1}, σ_{2} such that $C=\phi_{\sigma_{1}}(E)$ and $D=\phi_{\sigma_{2}}(E)$. Show that in this situation, the previous refinement will not be helpful.

Answer : If the codes are cyclic, then the weight distribution of $C_{i} \cap C_{i}^{\perp}$ will be the same for any i.
(d) In the case of a cyclic code as described in Question (5c), propose an improvement of the refinement which may solve the problem.

Answer : One can for instance consider the weight distributions of $C_{1 i} \cap C_{1 i}^{\perp}$ and $D_{1 j} \cap D_{1 j}^{\perp}$ for $i, j \in\{2, \ldots, n\}$.

