
MPRI Year 2018–19
Module 2.13.2 : Error correcting codes and applications to cryptography

Mid-term exam, November 26

You have 2 hours. Any document including personal lecture notes is authorized.
The exercises are independent.

You can answer either in French or in English.

Exercise 1. (1) (a) Give the list of minimal 2–cyclotomic cosets modulo 9 which permit to classify cyclic
codes of length 9 over F2.

Answer : {0}, {1, 2, 4, 8, 7, 5}, {3, 6}.

(b) How many cyclic codes (including trivial ones) of length 9 over F2 does there exists ?

Answer : There are 3 minimal cyclotomic cosets so 23 = 8 cyclotomic cosets which gives
8 cyclic codes.

(2) (a) Give the list of minimal 3–cyclotomic cosets modulo 13.

Answer : {0}, {1, 3, 9}, {2, 6, 5}, {4, 12, 10}, {7, 8, 11}.

(b) How many cyclic codes (including trivial ones) of length 13 over F3 does there exists ?

Answer : 32.

(c) Prove the existence of a [13, 4,> 7]3 cyclic code and a [13, 7,> 5]3 cyclic code.

Answer : Using the BCH bound, the code associated to the class {1, 3, 9} ∪ {2, 6, 5} ∪
{4, 12, 10} contains the consecutive numbers 1, 2, 3, 4, 5, 6, hence has minimum distance
> 7. Since the class has cardinality 9, the code has dimension 13− 9 = 4.
The second code is obtained from the class : {2, 6, 5} ∪ {7, 8, 11} which contains 5, 6, 7, 8
and hence has minimum distance > 5 and dimension 7.

Exercise 2. A code C ⊆ Fnq is said to be non degenerate, if for any i ∈ {1, . . . , n}, there exists c ∈ C such
that ci 6= 0.
(1) Reformulate the notion of being non degenerate in terms of a generator matrix of C.

Answer : One can reformulate as : A generator matrix of C has no zero column.
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(2) Reformulate the notion of being non degenerate in terms of the minimum distance of C⊥. Justify why
this reformulation is equivalent.

Answer : One can reformulate as : The minimum distance of C⊥ is > 1. Indeed, a result from
the course asserts that the minimum distance of a code is the least number of linearly linked
columns in a parity check matrix. Since a generator matrix of C is a parity–check matrix of
C⊥, the assumption of non degeneracy of C is equivalent to the fact that a generator matrix
of C has no zero column, which entails that its dual distance cannot be less than or equal to
1.

Given a non degenerate code C ⊆ Fnq and a position i ∈ {1, . . . , n}, the locality of C at i is defined as

Loc(C, i) := min{wH(c) | c ∈ C⊥, ci 6= 0} − 1,

where wH(x) denotes the Hamming weight of x. Next, the locality of C is defined as

Loc(C) = max
i=1,...,n

{Loc(C, i)}.

(3) Prove that Loc(C) > dmin(C
⊥)− 1, where dmin(·) denotes the minimum distance.

Answer : By definition of the locality, for any i, Loc(C, i) > dmin(C
⊥) − 1. Then, its

maximum when i ranges over {1, . . . , n} should also be larger than or equal to dmin(C
⊥)− 1.

(4) Prove that Loc(C) 6 dim(C).

Answer : Denote by k the dimension of C. Let G be a generator matrix of C. Let i ∈
{1, . . . , n}. Since G has k rows, its i–th column is linearly linked to k other ones, which proves
the existence of a word of weight 6 k + 1 in C⊥ whose support contains i. This proves that
for any position i ∈ {1, . . . , n}, we have Loc(C, i) 6 k. Therefore, the code has locality less
than or equal to dimC.

(5) Prove that C is MDS if and only if, ∀i ∈ {1, . . . , n}, Loc(C, i) = dim(C).

Answer : One can use the lecture notes and use the fact that C is MDS if and only if C⊥
is MDS, or we can prove it again. Suppose C is MDS and let G be a generator matrix of C.
We claim that any k columns of C are independent. Indeed, if some k–tuple of columns was
linked, then one could construct by Gaussian elimination a nonzero codeword vanishing at
these k positions which would have weight < n − k + 1 which is a contradiction. Therefore
any k columns of G are independent and hence the minimum distance of C⊥ is larger than or
equal to k + 1. We proved that the dual of an MDS code is MDS.

Next, suppose that C is MDS, then combining the results of questions 3 and 4, we get :

dimC > Loc(C, i) > dmin(C
⊥)− 1

But if C (and hence C⊥) is MDS, then the right hand side equals n− dim(C⊥) = dimC.
Conversely, suppose that Loc(C, i) > dimC for any possible i. Then, the minimum distance
of C⊥ is larger than or equal to dimC + 1. Thus, C⊥ is MDS and hence so is C.

Given I ⊆ {1, . . . , n} the puncturing and shortening of a code A at I are defined as

PI(A) := {(ai)i∈{1,...,n}\I | a ∈ A} and SI(A) := {(ai)i∈{1,...,n}\I | a ∈ A and ∀i ∈ I, ai = 0}.

We admit the following statement : for any code A ⊆ Fq, SI(A)⊥ = PI(A⊥).
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(6) Let C be a non degenerate code and I ⊆ {1, . . . , n}. Prove that Loc(SI(C)) 6 Loc(C).

Answer : Let j ∈ {1, . . . , n} \ I. By definition

Loc(SI(C), j) = min{wH(c) | c ∈ SI(C)⊥, cj 6= 0}
= min{wH(c) | c ∈ PI(C⊥), cj 6= 0}
6 min{wH(c) | c ∈ C⊥, cj 6= 0} = Loc(C, j).

Thus, Loc(SI(C)) 6 Loc(C).

(7) Let c ∈ C⊥ with c1 6= 0, wH(c) = Loc(C, 1) + 1 and I ⊆ {1, . . . , n} be the support of c, i.e.

I := {i | ci 6= 0}.

Prove that SI(C) is an [n− Loc(C, 1)− 1, k − Loc(C, 1)]q–code.

Answer : The assertion on the length is obvious, we only have to prove that the dimension
equals k − Loc(C, 1). Consider the projection map C⊥ → PI(C⊥). Its kernel contains the
words of C⊥ whose support are in I. The subcode of such words has dimension 1 and spanned
by c, indeed, if this subcode had a larger dimension, then, by elimination one could construct
other codewords in C⊥ whose support contains 1 and which is strictly included in I. This
would be a contradiction with the definition of the locality at 1. Therefore, the kernel of the
projection, C⊥ → PI(C⊥) has dimension 1, thus dimPI(C⊥) = n − k − 1 and hence the
dimension of its dual

dimSI(C) = n− |I| − (n− k − 1)

= k − |I|+ 1

= k − Loc(C, 1).

(8) Let t =
⌈
k
`

⌉
− 1. Until the end of the exercise, we suppose that n > (` + 1)t. Prove that there

exists a finite sequence of distinct indexes i1, . . . , it ∈ {1, . . . , n} and a sequence c1, . . . , ct ∈ C⊥ such
that :
(i) for any j ∈ {2, . . . , t}, ij is not contained in the supports of c1, . . . , cj−1 ;
(ii) for any j ∈ {1, . . . , t}, wH(cj) = Loc(C, j) + 1.

Answer : Take c1 to be the vector c of the previous question. We iteratively choose ij out
of the union of the supports of c1, . . . , cj−1 and cj to be a codeword in C⊥ whose support
contains ij and whose weight equals the locality of the code at ij . By definition, these supports
have cardinality at most `+ 1, hence, one can repeat this process at least t times.

(9) Let s ∈ {1, . . . , t} (where t has been defined in Question 8). Let Is be the union of the supports of
c1, . . . , cs and [ns, ks, ds] be the parameters of SIs(C). Prove that ds > d and ns − ks 6 n− k − s.

Hint. Use Question 7 and proceed by induction on s.

Answer : The shortening is constructed from a subcode of C by removing zero positions.
Hence, its minimum distance is at least that of C. Therefore ds > d.
From question 7, we have n1 − k1 6 n− k − 1. Applying this result iteratively we get

ns − ks 6 n− k − s.
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(10) Let ` be the locality of C. Prove that the parameters [n, k, d] of C satisfy

d 6 n− k −
⌈
k

`

⌉
+ 2.

Hint. Consider the shortening of C at the union of the supports of the words c1, . . . , ct.

Answer : Applying Singleton bound to SIt(C). This code satisfies

ds 6 ns − ks + 1

Using the previous questions, we deduce :

d 6 n− k − t+ 1.

This yields the result.

Exercise 3. Let n be a positive integer, σ be a permutation on n elements and φσ be the linear map :

φσ :

{
Fnq −→ Fnq

(x1, . . . , xn) 7−→ (xσ(1), . . . , xσ(n))
.

(1) Show that if C ⊆ Fnq is a code, then C and φσ(C) have the same weight distribution.

Answer : The map σ preserves the weights, hence for any a ∈ {0, . . . , n} it induces a bijection
between the set of words of weight a of C and the set of words of weight a in σ(C).

We aim at solving the following problem :

Problem : Given two codes C,D, is there a permutation σ such that D = φσ(C)?

(2) Propose a naive brute force algorithm to solve the problem and compute its complexity.

Answer : Let G be a generator matrix of C and H a parity–check matrix of D. Enumerate
any permutation σ ∈ Sn. For any such permutation σ, denote by Gσ the matrix G whose
columns have been permuted using the permutation σ. Then, compute

H ·Gσ.

If the above matrix is zero, then φσ(C) = D.
The complexity of one iteration is the complexity of a product of matrices, i.e. O(n3) and
hence the overall complexity is in O(n!n3) (say Õ(n!)).

(3) Prove that if two codes C,D satisfy D = φσ(C), then,
(i) D⊥ = φσ(C

⊥) ;

Answer : Let d ∈ D and c ∈ C⊥. Then,

〈φσ(c),d〉 = 〈c, φσ−1(d)〉

Since D = φσ(C), then there exists c0 ∈ C such that d = φσ(c0). Thus,

〈φσ(c),d〉 = 〈c, φσ−1 ◦ φσ(d)〉 = 〈c,d〉 = 0.

Thus, φσ(C⊥) ⊆ D⊥ and since these codes have the same dimensions, the inclusion is an
equality.
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(ii) D ∩D⊥ = φσ(C ∩ C⊥).

Answer : It is a direct consequence of the previous question.

(4) Consider the following algorithm.
• if C ∩ C⊥ and D ∩D⊥ do not have the same weight distribution, return false.
• else return true

(a) Does this algorithm always solve the problem ?

Answer : If the algorithm returns false, then the codes are not permutation–equivalent.
If it returns true, the codes many not be equivalent, for instance, it may happen that
C ∩ C⊥ and D ∩D⊥ and, the codes may not be permutation–equivalent.

(b) Express the complexity of this algorithm in function of the dimension s of C ∩C⊥. We suppose that
the computation of the weight of a word costs O(n) and that the best manner to compute the weight
distribution is to enumerate all the codewords.

Answer : O(nqdimC∩C
⊥
).

(c) Explain the advantages and possible drawbacks of comparing the weight distributions of C ∩ C⊥
and D ∩D⊥ instead of comparing those of C,D ?

Answer : Unless the codes are contained in their dual, in general C ∩ C⊥ is strictly
contained in C and hence the computation of its weight distribution will be much less
expensive.

(5) Given a code C and i ∈ {1, . . . , n}, we denote by Ci the code obtained by removing the i–th entry of
any codeword of C. Namely :

Ci = {(c1, . . . , ci−1, ci+1, . . . , cn) | (c1, . . . , cn) ∈ C} ⊆ Fn−1q

Using these codes Ci the algorithm can be refined as follows : if C ∩ C⊥ and D ∩ D⊥ have the same
weight distributions, then compute the weight distributions of Ci∩C⊥i and Di∩D⊥i for all i ∈ {1, . . . , n}.
(a) If the weight distributions of the codes Ci ∩ C⊥i for i ∈ {1, . . . , n} are distinct, explain why is it

possible to solve the problem.

Answer : Compute the weight distribution of Ci∩C⊥i and Di∩D⊥i for any i ∈ {1, . . . , n}.
If for any i there exists ji ∈ {1, . . . , n} such that Ci∩C⊥i andDji∩D⊥ji have the same weight
distribution, then consider the permutation σ : i 7→ ji and check whether D = φσ(C). If
it does, you found the permutation. If not, or if there was no ji for at least on i then the
codes are not permutation equivalent.

(b) If not, what kind of information on σ (if exists) can we get ?

Answer : You can consider a partition U1 ∪ · · · ∪ Ur of {1, . . . , n} such that the weight
distribution of Ci ∩ C⊥i is the same for any i ∈ Uj . You can compute the same partition
for D and compare the sequence of cardinalities of these partitions. If they differ, then the
codes are non equivalent.
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(c) Suppose that there exists a cyclic code E and permutations σ1, σ2 such that C = φσ1(E) and
D = φσ2(E). Show that in this situation, the previous refinement will not be helpful.

Answer : If the codes are cyclic, then the weight distribution of Ci∩C⊥i will be the same
for any i.

(d) In the case of a cyclic code as described in Question (5c), propose an improvement of the refinement
which may solve the problem.

Answer : One can for instance consider the weight distributions of C1i∩C⊥1i andD1j∩D⊥1j
for i, j ∈ {2, . . . , n}.
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