Mid-term exam, November 28

You have 1h30. Personal lecture notes are authorized. Computers and phones are forbidden. The exercises are independent. You can answer either in French or in English.

- **Exercise 1.** (1) Compute the weight distribution of the $[7, 4, 3]_2$ Hamming code. Explain in a few words how you computed it.
- (2) Deduce that of its dual.
- (3) More generally, considering a $[2^{\ell} 1, 2^{\ell} \ell, 3]$ Hamming code. How many codewords of weight 3 and 4 does it contain?
- **Exercise 2.** (1) List all the minimal cyclotomic classes for \mathbb{F}_5^{12} , i.e. the minimal subsets of $\mathbb{Z}/12\mathbb{Z}$ stable by multiplication by 5.
- (2) What is the number of cyclic codes of length 12 over \mathbb{F}_5 ?
- (3) What is the number of cyclic codes of length 12 and dimension 9 over \mathbb{F}_5 ?

3

(4) Prove the existence of a cyclic code of length 12 over \mathbb{F}_5 of dimension 5 and minumum distance at least 6.

Exercise 3. Let p denote a prime number and n be a positive integer. The Hamming weight of a vector $\mathbf{y} \in \mathbb{F}_p^n$ is denoted as $w_H(\mathbf{y})$. The *support* of a vector $\mathbf{y} \in \mathbb{F}_p^n$ is the subset $\mathbf{Supp}(\mathbf{y}) \subset \{1, \ldots, n\}$ of the indexes of its nonzero entries.

(1) Let $\zeta = e^{\frac{2i\pi}{p}} \in \mathbb{C}$ be a primitive *p*-th root of unity. Prove that for any integer ℓ prime to *p* we have

$$\sum_{j \in \mathbb{F}_p \setminus \{0\}} \zeta^{\ell j} = -1.$$

Note. Since, for $t \in \mathbb{Z}$, the number ζ^t depends only on the class of t modulo p, the notation ζ^a for $a \in \mathbb{F}_p$ makes sense.

(2) Let ℓ be a positive integer and $\mathbf{x} = (x_1, \ldots, x_\ell, 0, \ldots, 0) \in \mathbb{F}_p^n$ where x_1, \ldots, x_ℓ are all nonzero. Let $0 \leq j \leq \ell$ and $I \subseteq \{1, \ldots, n\}$ be a set such that $|I \cap \{1, \ldots, \ell\}| = j$ and $D_I \subseteq \mathbb{F}_p^n$ be the set of vectors whose support equals I. Prove that

$$\sum_{\boldsymbol{\gamma} \in D_I} \zeta^{\langle \mathbf{x}, \mathbf{y} \rangle} = (-1)^j (p-1)^{|I|-j}.$$

(3) Let t be a positive integer, with $t \ge j$ and $\mathbb{S}(0,t) \subseteq \mathbb{F}_p^n$ be the set of vectors of weight t. Deduce from the previous result that

$$\sum_{\mathbf{y}\in\mathbb{S}(0,t)}\zeta^{\langle\mathbf{x},\mathbf{y}\rangle} = \sum_{j=0}^{t} \binom{\ell}{j} \binom{n-\ell}{t-j} (-1)^{j} (p-1)^{t-j}.$$
(1)

(4) The right hand side of (1) is a polynomial expression in ℓ that we denote by $K_t(\ell)$. Deduce from the previous questions that for any $\mathbf{x} \in \mathbb{F}_p^n$ of weight ℓ ,

$$\sum_{\mathbf{y}\in\mathbb{S}(0,t)}\zeta^{\langle\mathbf{x},\mathbf{y}\rangle}=K_t(\ell).$$

(5) Let $\mathcal{C} \subseteq \mathbb{F}_p^n$ be a code and $P_{\mathcal{C}} = \sum_{\ell=0}^n A_\ell z^\ell$ its weight enumerator polynomial. Prove that for any $0 \leq t \leq n$,

$$\sum_{\ell=0}^{n} A_{\ell} K_t(\ell) \ge 0$$

Hint. One can use the following fact appearing in your lecture notes. For any $\mathbf{y} \in \mathbb{F}_p^n$

$$\sum_{\mathbf{c}\in\mathcal{C}}\zeta^{\langle\mathbf{c},\mathbf{y}\rangle} = \begin{cases} |\mathcal{C}| & \text{if } \mathbf{y}\in\mathcal{C}^{\perp}\\ 0 & \text{else} \end{cases}$$

- (6) Deduce that the coefficients of weight enumerator $P_{\mathcal{C}} = \sum_{\ell=0}^{n} A_{\ell} z^{\ell}$ of a code $\mathcal{C} \subseteq \mathbb{F}_{p}^{n}$ of minimum distance d and dimension k should satisfy the following equations and inequations
 - (i) $A_0 + \dots + A_n = p^k$;
 - (ii) $A_1 = \dots = A_{d-1} = 0;$
 - (iii) $\forall t \ge d, \sum_{\ell=0}^{n} A_{\ell} K_t(\ell) \ge 0.$
- (7) We wish to know the maximum dimension of a linear code over \mathbb{F}_2 of length 9 and minimum distance ≥ 4 having only even weight codewords. In this context the inequations of the previous question yield (you can admit that fact) $A_4 \leq 18$, $A_6 \leq \frac{24}{5}$ and $A_8 \leq \frac{9}{5}$. What is the largest possible dimension of a such a code?
- (8) Prove that the previous result is sharper than what one could prove using the Hamming bound.